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Genetic discovery from the multitude of phenotypes extractable from routine healthcare data can 

transform our understanding of the human phenome and accelerate progress towards precision 

medicine. However, a critical question when analysing high-dimensional and heterogeneous data 

is how to best interrogate increasingly specific subphenotypes whilst retaining statistical power to 

detect genetic associations. Here we develop and employ a novel Bayesian analysis framework 

that exploits the hierarchical structure of diagnosis classifications to analyse genetic variants 

against UK Biobank disease phenotypes derived from self-reporting and hospital episode statistics. 

Our method displays a more than 20% increase in power to detect genetic effects over other 

approaches and identifies novel associations between classical human leukocyte antigen (HLA) 

alleles and common immune-mediated diseases (IMDs). By applying the approach to genetic risk 

scores (GRSs) we reveal the extent of genetic sharing between IMDs and expose differences in 

disease perception or diagnosis with potential clinical implications.

Large-scale, hypothesis-free approaches for identifying genetic risk variants, including 

genome-wide association studies (GWAS) and next generation sequencing analyses, have 

greatly advanced our understanding of complex traits, with implications for drug 

development and clinical practice1–5. These approaches typically involve genetic discovery 

from case-control cohorts where clinically derived phenotypes are considered one at a time. 

By contrast, resources such as the UK Biobank6,7, which has prospectively collected 

extensive health-relevant phenotypic and genotypic information from 500,000 participants, 

allow for simultaneous investigation of multiple traits and are set to lead to a step-change in 

the rate of genetic discovery8,9.

However, capitalizing on availability of population-based cohorts for biomedical research is 

complicated by the scale and nature of the data: the phenotypic space is multi-dimensional 

and heterogeneous as data can be subject to observational predilections, non-uniform 

recording practices, and longitudinal biases, and phenotype prevalence is variable10–16. 

This creates new challenges that are not addressed by existing analytical methods for GWAS 

and phenome-wide association studies (PheWAS). An open question is how to interrogate 

the many precise phenotypes obtainable from routine healthcare data at a resolution that 

reveals associations above and beyond those identified through GWAS, but without 

sacrificing statistical power. Making use of disease classification hierarchies, such as the tree 

of International Classification of Diseases, Tenth Revision (ICD-10) codes, provides a 

tractable solution. Here we have developed a novel Bayesian analysis framework for 

identifying genetic associations across the entire health phenotype space by taking 

advantage of the relative topology of nodes within two tree-structured phenotypic datasets 

from the UK Biobank - the self-reported (SR) diagnoses that are organised using the UK 

Biobank classification tree which includes 531 diagnostic terms, and the hospitalisation 

episode statistics (HES) data that utilise ICD-10 codes and contain 16,310 diagnostic terms.

Results

Tree analysis approach

To test the association of genetic variation with any given UK Biobank clinical phenotype, 

we want to construct a statistical framework that meets a set of fundamental requirements. 
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Firstly, the method must accommodate different types of genetic variation, such as (i) single 

nucleotide polymorphisms (SNPs), (ii) haplotypes in a highly polymorphic region like the 

HLA gene region, or (iii) GRSs constructed using multiple SNPs or haplotypes known to be 

associated with a quantitative trait or complex disease. Secondly, for single locus variation, 

any genetic model (e.g. additive, dominant or full) must be accommodated. Thirdly, the 

method must allow for joint analysis and quantification of evidence of association at each 

clinical phenotype, and must estimate the genetic coefficients of effects. Next, the method 

must allow identification of independent genetic effects through conditional analysis. Lastly, 

the method must model correlation structure of genetic effects across observed clinical 

phenotypes using a priori knowledge of phenotype relationships obtained from a diagnosis 

classification tree.

To meet these requirements, we have developed a novel Bayesian analysis framework, 

termed TreeWAS, which models genetic coefficients across all phenotypes as a set of 

random variables. To model the correlation structure we allow coefficients to evolve down a 

tree in a Markov process (Fig. 1). A known classification hierarchy determines the tree 

structure, where each node is a clinical term in the classification, and observations can be 

made at terminal and internal nodes. The prior θ determines the expected correlation 

between genetic coefficients across phenotypes. The coefficient at a parent node can be 

inherited by a child node with probability e−θ, or can transition to a new uncorrelated value, 

with probability 1 − e−θ. This new value will be zero with a probability 1 − π1, or non-zero 

with a probability π1. Thus, parameters θ and π1 define transition probabilities controlling 

the Markov process. Given the model structure and the Markov process assumption, we can 

calculate the likelihood over genetic coefficients across all clinical phenotypes using 

dynamic programming (details are provided in the Supplementary Note), and we estimate a 

Bayes Factor statistic (BFtree) for the evidence that genetic coefficients are non-zero for at 

least one node. Similarly, because of the model’s properties, using dynamic programming 

and the forward and backward algorithms, we can determine the marginal posterior 

probability (PP) at each node that the genetic coefficient is non-zero, and the magnitude of 

this effect using the maximum a posteriori (MAP) estimator (see Supplementary Note).

HLA-B*27:05 TreeWAS and PheWAS comparison

We illustrate the advantages of the TreeWAS approach compared to existing PheWAS tests 

by analysing the association of the HLA-B*27:05 allele against the UK Biobank HES 

dataset. The HLA-B*27:05 association with ankylosing spondylitis (AS) is one of the 

strongest genetic effects observed in human complex diseases, with an odds ratio of 46 (ref. 

17), and this allele also confers risk for reactive arthritis18, psoriatic arthritis19 and anterior 

uveitis (iridocyclitis/iritis)20. Using PheWAS, where evidence of genetic association for 

each clinical term is estimated independently, HLA-B*27:05 is significantly associated with 

six ICD-10 terms after correcting for multiple testing (P-adj < 0.05; using the Benjamini & 

Hochberg procedure21), including M45 AS and M45.X9 AS (Site unspecified) (Fig. 2a). 

However, this approach fails to identify associations with terms with a greater granularity of 

clinical description and a relatively low prevalence, such as M45.X6 AS with lumbar spine 

involvement (P = 0.01, P-adj = 1.0), which is 17 times less prevalent than M45.X9 (0.08%). 

By contrast, when employing TreeWAS with priors θ = 1/3 and π1 = 0.001 we observed 
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HLA-B*27:05 associations with 145 ICD-10 terms (PP ≥ 0.75; the level of significance used 

throughout the analysis), clustered in different branches of the classification tree (Fig. 2b-e 

and Supplementary Table 1). These prior values were chosen to maximise power and 

sensitivity after exploring the variability of the BFtree statistic and the number of non-zero 

nodes at a threshold of PP = 0.75 over the parameter space of θ and π1 (Supplementary Fig. 

1). As for PheWAS, there was a significant association with M45 AS (PP = 1), but TreeWAS 

additionally revealed associations with four M45 subcategories (M45.X0, M45.X2, M45.X6 

and M45.X9) rather than two (M45.X0 and M45.X9) (Fig. 2a,b). Moreover, there was an 

association with the broader Spondylopathies category (M45-M49) (PP = 1.0), which was 

likely driven by associations with M45 (PP = 1.0) and M49 (PP = 0.43), but not M47 

Spondylosis (PP = 0.07), despite the latter being ten times more prevalent than M45 (Fig. 

2b). As spondylosis occurs due to age-related disk degeneration22, lack of an HLA-B*27:05 
association with M47 is consistent with its non-immunological aetiology.

Associations with reactive arthritis (e.g. M02.39 Reiter’s disease; PP = 0.78) and anterior 

uveitis (H20.9 Iridocyclitis, unspecified; PP = 0.98) were also observed (Fig. 2c,d), and we 

detected a previously unreported HLA-B*27:05 association with H40 Glaucoma (PP = 0.84) 

(Fig. 2d). As glaucoma is a common complication of chronic uveitis23, comorbidity may 

explain this association. Lastly, we observed a weak effect on L40.5 Arthropathic psoriasis 

(PS) susceptibility (PP = 0.60), but not non-arthropathic PS (PP ≤ 0.25 for L40 child nodes 

except L40.5), consistent with prior studies24 (Fig. 2e). Therefore, our TreeWAS analysis of 

HLA-B*27:05 in the HES dataset recapitulates known associations, and demonstrates that 

our method can identify additional genuine associations compared to PheWAS.

Sensitivity and specificity analysis of TreeWAS approach using simulated data

Given the capacity of TreeWAS to identify multiple associations with HLA-B*27:05 we 

wanted to further investigate the method’s sensitivity and specificity. To assess the relative 

power of TreeWAS, and to explore its robustness and accuracy, we performed two sets of 

simulations. In the first set, we assessed power by simulating data from a simple scenario 

where genetic coefficients are non-zero for a set of five clinical annotations in the tree. 

These were chosen to occur within a single branch of the tree (clustered nodes), or across 

distant branches (distributed nodes). We compared the power obtained under these two 

scenarios when considering a range of allele frequencies. We fitted the TreeWAS model 

under a two-parameter setting with default parameters θ = 1/3 and π1 = 0.001. For the 

alternative PheWAS model we assumed complete independence across annotations, 

equivalent to setting θ → ∞. Under the clustered nodes simulations, the relative gain in 

power for identifying active nodes, where the genetic coefficients are non-zero, of TreeWAS 

compared to PheWAS was 20-25% across the allele frequencies tested (Fig. 3a). This gain in 

power was not associated with an increased false positive rate (< 0.001), as observed in 

nodes simulated with zero genetic coefficients (Fig. 3a). When we simulated non-zero 

genetic coefficients in distributed nodes there was a 1-3% reduction in power to identify 

active nodes for TreeWAS compared to PheWAS (Supplementary Fig. 2). We also observed 

an increase in power in quantifying the overall evidence for association with clustered nodes 

(3.4-5.4%), but a small decrease with distributed nodes (0.2-1.0%) (Supplementary Fig. 3 

and 4). Therefore, when genetic coefficient correlation is captured by the classification tree 
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the gain in power with TreeWAS relative to PheWAS is substantial, and if the correlation is 

not well-represented by the tree then the cost incurred with the former method is minimal.

In the second simulation set we assessed the impact of non-independence between 

annotations arising from the clinical data collection approach. For example, recording of a 

specific disease subtype for an individual may mean that other subtypes are less likely to be 

recorded for the same patient. We performed simulations under the null using the individual-

level phenotype data from both UK Biobank phenotype datasets. For each simulation we 

permuted the observed genotypes of HLA-B*27:05, representative of a common genetic 

variant (given its 4.05% allele frequency in the UK Biobank), whilst maintaining non-

independence between annotations in the tree. For comparison, we also performed 

permutations of individual-level phenotype data in addition to the genetic data, where all 

correlation is removed. With these permutations we quantified the rate of false positives in 

our approach. When we permuted genotypes only, we observed an inflation of the BFtree 

statistic and the node-level PP with the HES dataset, consistent with the more prominent 

correlation structure in the ICD-10 compared to the SR diagnosis trees (Fig. 3b,c). Through 

these simulations we estimated a false positive rate of 0.05 and 0.01 with a log10 BFtree 

threshold of 10 and 20, respectively, in the HES dataset, when substantial non-independence 

exists between nodes. For the SR dataset, the false positive rate at these thresholds was 

below 0.01. Thus, although non-independence between nodes can artificially increase test 

statistics, this can be countered by using conservative significance thresholds to maintain the 

false positive rate at an appropriate level.

The effects on HLA allelic variation in the phenome

HLA region genetic variation is associated with numerous human disorders, in particular 

autoimmune and autoinflammatory diseases. Hence, we sought to interrogate HLA effects 

on the full range of SR and HES phenotypes using TreeWAS. Through conditional analysis 

(Online Methods and Supplementary Note), we identified independent associations for ten 

HLA alleles in the SR data (log10 BFtree ≥ 10) and eight in the HES data (log10 BFtree ≥ 20) 

(Fig. 4 and Supplementary Tables 2 and 3). Seven of these alleles or alleles in high linkage 

disequilibrium (LD; r > 0.98) were associated in both datasets (Supplementary Fig. 5).

These associations were fine-mapped, and the majority of the strongest effects were with 

IMDs, as reported previously through GWAS17,25–30 (Fig. 4). For class I alleles, we 

observed associations with PS (HLA-C*06:02) and AS (HLA-B*27:05), with the genetic 

coefficients of the latter being the largest observed in the SR and HES datasets (Fig. 4a,c). 

For class II alleles, HLA-DRB1*03:01 and HLA-DQB1*02:02 were observed to be 

independently associated with coeliac disease (COE) in both datasets; these alleles tag two 

of the strongest known COE HLA risk haplotypes, DR3-DQ2 and DR7-DQ2 (ref. 26). In 

both datasets, HLA-DQA1*03:01 was identified and fine-mapped to rheumatoid arthritis 

(RA); this allele is in moderate LD with HLA-DRB1*04:01 (r = 0.71), which is the likely 

causal allele driving this association27. Similarly, HLA-DQA1*03:01 was associated with 

type 1 diabetes (T1D), noting that this allele is in LD with HLA-DQB1*03:02 (r = 0.67), 

which has been indicated as the most significantly associated T1D class II allele26. In the 

SR dataset we identified an HLA-DRB1*15:01 association and fine-mapped it to multiple 
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sclerosis (MS) (Fig. 4a). In the HES dataset HLA-DQB1*06:02 was identified instead and 

also fine-mapped to MS (PP = 1; Fig. 4c), but this allele is in strong LD with HLA-
DRB1*15:01 (r = 0.97) (Supplementary Fig. 5). Lastly, HLA-DRB1*01:03 was fine-mapped 

to ulcerative colitis (UC) and Crohn’s disease (CD) in both datasets, and it is the likely 

causal allele for these two types of inflammatory bowel disease (IBD)30.

Apart from established HLA associations with common IMDs, we also confirmed HLA 

effects for conditions where GWAS have not been performed, detected associations with 

clinical annotations linked to disease complications, and identified novel HLA associations 

with other IMDs. For example, in the SR dataset, we confirmed the association of HLA-
DRB1*04:04 with polymyalgia rheumatic and giant cell arteritis, which has been previously 

identified only through small candidate gene studies31,32 (Fig. 4a). The UC- and CD-

associated HLA-DRB1*01:03 allele was found to also be associated with surgical 

procedures linked to complications of IBD, such as Z93.3 Colostomy status (PP = 1) and 

Z93.2 Ileostomy status (PP = 1), consistent with findings by the International IBD Genetics 

Consortium33 (Fig. 4c). Of the ten HLA alleles independently associated with clinical 

phenotypes in the SR dataset, five were associated with hypothyroidism/myxoedema, and 

three of the eight alleles from the HES data were associated with the E03 hypothyroidism 

code. This disease is thus the phenotype with the largest number of independent HLA 

associations across both UK Biobank datasets. Associations have been reported with 

hypothyroidism for both HLA class I and II loci, but the specific alleles driving these are not 

well resolved34,35, apart from a recently reported HLA-DQA1*05:01-HLA-DQB1*02:01-
HLA-DRB1*03:01 (HLA-DR3-DQ2 haplotype) association36. Further to HLA-
DRB1*03:01, we refined the HLA associations with hypothyroidism to two additional 

independent risk alleles, HLA-DQA1*03:01 and HLA-DRB1*01:03, and two independent 

protective alleles, HLA-B*15:01 and HLA-DPB1*01:01 (Fig. 4 and Supplementary Table 

4). Our HLA analysis therefore demonstrates the validity of our method as it can identify 

known genetic associations, and can facilitate discovery of new associations for relatively 

understudied diagnoses.

Genetic risk score associations with IMDs

Outside of the HLA, over the last decade our understanding of genetic susceptibility to the 

common IMDs has increased tremendously, with tens to hundreds of risk loci being 

identified per disease37. However, given the prevalence of IMDs in the UK Biobank and the 

typically small effect sizes estimated, we expect low power at individual loci. For example, 

when considering nine of the most common autoimmune and auto-inflammatory diseases 

(see Online Methods) we observed evidence of association (log10 BFtree > 0) for 64 

individual SNPs (12.96% of GWAS SNPs tested) in the SR and 125 SNPs (25.30%) in the 

HES datasets. Nevertheless, we can gain power by combining the effects of multiple typed 

and imputed susceptibility variants as a GRS (see Online Methods), and using the TreeWAS 

approach to assess their relationship with the UK Biobank phenome (Fig. 5).

Typically the GRSs best identified those clinical annotations from which they were 

constructed, with secondary associations being detected for conditions with shared genetic 

risk. For example, CD and UC have a high genetic correlation38, although disease-specific 
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susceptibility loci have been identified for each and heterogeneity in effect sizes has been 

observed39. The GRS for CD was thus associated with both CD itself as well as UC, but the 

magnitude of genetic coefficients was greater for CD as expected (β = 0.86 vs. β = 0.44 in 

SR and β = 0.73 vs. β = 0.35 in HES for CD and UC, respectively). However, the GRS for 

UC could not differentiate these two clinical annotations, with estimated genetic coefficients 

of the same magnitude for both CD and UC (β = 0.68 in SR and β = 0.64 in HES; Fig. 5a,b). 

This indicates some level of variation in the precision of different GRSs to identify specific 

phenotypes, such that the discriminatory capacity of GRSs will depend on the degree of 

genetic sharing between conditions and may require the consideration of additional clinical 

features33.

For all associations, genetic coefficients were less than 1, demonstrating a degree of dilution 

in phenotype detection across both the SR and HES datasets, and noting that simulation 

analyses estimated an expected dilution of ~15% due to the winner’s curse (Supplementary 

Note and Supplementary Table 5). The least dilution was observed for the association of the 

COE GRS and this disease (β = 0.96 and β = 0.87 in the SR and HES datasets, respectively). 

The COE phenotypes derived from the UK Biobank healthcare data are thus highly 

comparable to the clinically ascertained disease phenotype used in the GWAS40 from which 

the variants for the COE GRS were obtained. Across both datasets the greatest dilution of a 

GRS and its respective disease was observed for RA (β = 0.43 and β = 0.55 in the SR and 

HES data, respectively), whilst in the HES data specifically the AS GRS was not associated 

with the disease (PP = 0.01), potentially due to the small number of AS patients in this 

dataset (n = 146), and in the SR data the SLE GRS association with SLE had a genetic 

coefficient of only 0.20 (Fig. 5a,b).

Overall the GRS associations were largely consistent between the SR and HES datasets, and 

for the GRSs and their respective diseases the estimated genetic coefficients were weakly 

positively correlated (rcorrected = 0.23, correcting for measurement error) (Fig. 5c). 

Strikingly, although the SLE GRS capacity to identify SLE itself in the SR data was so 

diluted that the SLE GRS was in fact a better predictor of COE (β = 0.57) (Fig. 5a), in the 

HES dataset this was not the case. The SLE GRS was most predictive of M32.9 SLE (β = 

0.50; PP = 1.00), and to a lesser extent of K90.0 COE (β = 0.47; PP = 1.00) (Fig. 5b). This 

discrepancy between the SR and HES datasets suggests differences in the diseases annotated 

as SLE in the two datasets, which may in turn reflect differences in disease perception or 

diagnosis that could have clinical implications. Notably, in the SR data SLE was also 

associated with the COE GRS (β = 0.13), but this was not the case in the HES data, further 

supporting a distinction between SLE phenotypes in the two datasets.

Secondary associations of the GRSs were identified either with known complications of the 

disease with which the primary association was observed, or with other IMDs. For example, 

as for the HLA-DRB1*01:03 associations, the UC GRS was associated with colostomy and 

ileostomy events (β = 0.31 and PP = 0.98, and β = 0.31 and PP = 1, respectively), as was the 

CD GRS, although the effect size magnitude was lower (β = 0.03 and PP = 0.91, and β = 

0.03 and PP = 0.87, respectively). Also paralleling the HLA analysis, hypothyroidism was 

associated with several GRSs: five and four of the nine GRSs tested were associated with the 

disease in the SR and HES datasets, respectively, with those for COE, RA, SLE and T1D 
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being found in both datasets. Hence, hypothyroidism is the single phenotype with the largest 

number of different GRS associations (Fig. 5a,b and Supplementary Table 6 and 7).

Discussion

By exploiting the inherent hierarchical structure of diagnostic classifications, our Bayesian 

analysis framework addresses a fundamental challenge for the analysis of high-dimensional, 

heterogeneous routine healthcare data - how to identify statistically significant genetic 

associations when interrogating thousands of diagnoses without employing methods11,13 

that sacrifice phenotypic resolution. When applying TreeWAS to interrogate the effect of 

HLA on the UK Biobank phenome, associations were identified with 143 and 966 nodes in 

the SR and HES datasets, respectively. Assessing the impact of IMD GRSs also revealed 

associations with 151 and 810 nodes in the two respective datasets. The total number of 

nodes identified demonstrates the power of TreeWAS for detecting associations in datasets 

where numerous weak but correlated effects are present across the classification tree.

Amongst the many active nodes for which genetic associations were observed, previously 

established effects of HLA alleles on specific IMDs were detectable, as were effects for 

relatively understudied conditions. Notably, multiple novel associations with HLA alleles 

were discovered for hypothyroidism. Although not all previously reported HLA associations 

could be detected for any single IMD - such as AS41 or MS29 - due to limited power with 

the current UK Biobank datasets, the capacity for genetic discovery will improve with 

increasing cohort size, and associations with nodes displaying a substantial granularity of 

clinical description were already identifiable.

In the GRS analysis, associations between GWAS-derived GRSs and their respective 

diseases were typically the strongest effects observed, even without HLA allele inclusion, 

demonstrating that non-HLA variants can provide precision for detecting specific IMDs. 

Cross-disease associations of GRSs were also identified, particularly for hypothyroidism, 

and this previously unappreciated extent of genetic sharing indicates a common, genetically 

determined pathogenesis. For all GRS associations, dilution of the capacity for phenotype 

detection was observed but was largely comparable between the SR and HES datasets. An 

intriguing exception was the differential association of the SLE GRS with the respective 

SLE terms in the two datasets: this GRS could not precisely predict the self-reported disease, 

but could accurately detect the hospitalisation record-derived phenotype. Compared to other 

the IMDs investigated, SLE is a more heterogeneous, systemic condition which 

consequently presents a substantial diagnostic challenge42. Therefore, this discrepancy in 

the magnitude of SLE GRS associations could reflect incorrect reporting of the disease, 

disease over-diagnosis not discernible in the HES data if hospitalisation is associated with 

more clear-cut diagnosis, or greater disease heterogeneity whereby SLE as defined in GWAS 

and in the HES data represents only a subset of a more genetically variable syndrome.

Identifying misclassification, misdiagnosis and miscoding in routine healthcare data is an 

on-going challenge, although there are recognised instances, such as inaccuracy in T1D and 

type 2 diabetes (T2D) differentiation43. In the UK Biobank, the T1D GRS is not associated 

with T2D terms in the SR data (PP = 0.0002), and shows weak evidence of association with 

Cortes et al. Page 8

Nat Genet. Author manuscript; available in PMC 2018 January 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the HES data (PP = 0.52). However, the T2D GRS, which can accurately detect T2D terms 

(β = 0.80 and PP = 1.00 and β = 0.71 and PP = 1.00 in the SR and HES datasets, 

respectively), is also associated with T1D in the HES (β = 0.71 and PP = 1.00) but not SR 

data (PP = 0.30; and see Supplementary Note and Supplementary Table 8). These cross-

disease associations may be attributable to T1D/T2D misclassification, misdiagnosis and 

miscoding43 (Supplementary Note and Supplementary Figures 6 and 7), but also to genetic 

sharing44, and poor distinction of latent autoimmune diabetes of adulthood patients45, 

whose genetic profiles comprise a mixture of T1D and T2D risk loci46. Thus, the SLE and 

diabetes examples demonstrate how exploring the genetic basis of the healthcare phenome 

can expose disease areas where improvements are required to ameliorate disease perception 

or strengthen diagnostic practices. Digital phenotyping using genetic data, combined with 

longitudinal clinical information, physical measures and biomarkers43,47, could help to 

rectify misclassification, misdiagnosis and miscoding present in healthcare data and to infer 

missing phenotypes. This could in turn facilitate patient management, particularly if it 

enables correction of treatment strategies within an actionable time frame.

Integration of genomic data with routine healthcare information offers much potential to 

learn about differences in disease risk, diagnosis, and reporting within and between 

healthcare systems, including between countries. Moreover, increased incorporation of 

correlated, high-dimensional phenotypes (e.g. from molecular, cytometry and imaging 

readouts), including measures of temporal disease progression48, may come to lead to a 

genetically driven understanding of the architecture of the human phenome and of causal 

relationships. The value of TreeWAS lies in enhancing power to identify groups of endpoints 

affected by specific genetic risk factors, by exploiting the encoding of medical ontologies. A 

corollary is that structures that better capture the underlying biological process affecting the 

origin and progression of disease should be better correlated with genetic risk factors. 

Although generalising the TreeWAS method to structures reflecting temporal progression 

and associated quantitative data modalities requires future development, we believe that it is 

an important step towards the goal of learning a genetically motivated classification of 

disease and associated phenotypes.

Online Methods

UK Biobank data

The UK Biobank is a prospective cohort of over 500,000 men and women aged 40 to 69 

years when recruited in 2006-2010. Participants have provided: data on lifestyle, 

environment, and medical history through an interview and completion of a questionnaire; 

physical measures; biological samples for genotyping and biochemical assays; and informed 

consent to long-term medical follow-up through linkage of national health registries. UK 

Biobank data is available under open access to conduct health-related research after approval 

of a project proposal6. The UK Biobank has obtained ethical approval covering this study 

from the National Research Ethics Committee (REC reference 11/NW/0382).
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Phenotypic data

We analysed two phenotypic datasets available through the UK Biobank. The first included 

the SR diagnosis data, ascertained through the completion of questionnaires and interviews 

with study participants (data field 20002 Non-cancer illness code, self-reported); the second 

dataset included the HES registry dataset ascertained through linkage of health registries 

(data fields 41142 and 41078; accessed on September 2016). Clinical diagnoses in these 

datasets are described with different classification schemes, both of which follow a 

hierarchical structure. The diagnosis terms used to store the medical history of UK Biobank 

participants were proposed by the UK Biobank team (data-coding 6), and this classification 

tree is organised into 11 sub-classes with a total of 561 clinical terms, 531 of which are 

selectable. Diagnosis terms used to store hospitalisation events follow the ICD-10 list 

compiled by the World Health Organisation. The ICD-10 classification tree is organised into 

22 Chapters and containing a total of 19,855 clinical terms, 16,310 of which are selectable. 

Each hospitalisation episode in the dataset has a primary diagnosis associated with the event 

and an event may be annotated with one or more secondary diagnoses. Disease outcomes for 

each individual, as a binary trait, were generated for the combined primary and secondary 

diagnoses annotations. Individuals were considered unaffected for any given diagnostic term 

unless the diagnosis was reported in the questionnaires and interviews, or a hospitalisation 

event with that diagnostic term was observed.

Genetic dataset

The interim release of the UK Biobank genetic data used for this study includes 152,732 

individuals, 120,286 of which were determined to be of British Isles ancestry 

(Supplementary Fig. 8) and included in the analysis. The initial 50,000 individuals were 

genotyped on the Affymetrix UK BiLEVE Axiom array as part of a pilot study described 

elsewhere49 and the remaining 102,732 individuals were genotyped on the Affymetrix UK 

Biobank Axiom array. The quality control of SNP data and whole-genome SNP imputation 

was performed by the UK Biobank analysis team and described in the UK Biobank website 

(http://www.ukbiobank.ac.uk/scientists-3/genetic-data). We imputed 356 classical HLA 

alleles for the HLA-A, -B, -C, -DRB5, -DRB4, -DRB3, -DRB1, -DQB1, -DQA1, -DPB1 
and -DPA1 loci at four digit resolution with the HLA*IMP:02 algorithm50,51 using data 

from a multi-population reference panel. The imputation panel contained 2,263 SNPs in the 

MHC region (GRCh37 coordinates chr6:29500000-33500000) which overlapped UK 

Biobank genotyped SNPs. This SNP set was selected to optimize MHC coverage and 

imputation performance and the HLA*IMP:02 algorithm was trained on this SNP set. 

Genetic risk scores, weighted by effect sizes, were generated for nine IMDs using genome-

wide associated variants compiled from previous studies: AS17, CD39, COE40, MS52, 

PS25, rheumatoid arthritis53, SLE54, T1D55, and UC39. SNP genotypes for the UK 

Biobank individuals were extracted from the imputed genotype data and maintained if the 

imputation information score was above 0.85; if a SNP was not typed or imputed 

successfully it was not included in the GRS calculation.
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Simulated data

To assess the accuracy of the method, we simulated case-control status for 120,000 

individuals and the 531 selectable phenotypes in the diagnosis tree used for the self-reported 

dataset and with disease prevalence as observed in the UK Biobank cohort. Simulations 

were generated under two scenarios. For the first, we assumed a causal relationship between 

a genetic variant and five clinical terms under the same parent node in the tree (disease 

prevalence in these nodes ranged between 0.01 and 0.4%). These simulations are referred to 

as clustered clinical phenotypes. The second set of simulations, termed distributed 

phenotypes, consisted of five clinical terms with a causal relationship distributed under 

different branches of the classification tree; these clinical terms were selected with matching 

disease prevalence, as for the clustered simulations. For each scenario we simulated 

genotypes sampled from a multinomial distribution with a fixed allele frequency and genetic 

coefficients sampled from the prior (Supplementary Figure 9). Case-control status was 

determined by using logistic risk with a y-intercept matching the observed disease 

prevalence. Sets of simulations were performed for the allele frequencies 0.005, 0.01, 0.02 

and 0.05. For each simulation we computed the evidence of association in the tree (BFtree), 

and the evidence of association at each individual node with the parameters θ = 1/3 and π1 = 

0.001. We compared the power to detect association with at least one node in the tree with 

an analysis where we assume no correlation in the genetic coefficients between nodes in the 

tree, equivalent to setting θ → ∞ in the TreeWAS method (see Supplementary Note). 500 

simulation replicates were performed for each combination of parameters and settings. To 

assess the robustness of the algorithm to the non-independence between annotations 

unaccounted by the tree structure, we performed simulations where we permuted the 

genotypes whilst leaving the observed phenotypes in the UK Biobank cohort intact. 

Simulations were performed with the observed self-reported and HES datasets, and we 

permuted the observed genotype.

HLA analysis

For each HLA locus we derived highest confidence genotypes by taking the allele at each 

chromosome with the highest imputation posterior probability. Genotypes were used to 

generate count distributions in affected and unaffected individuals at each terminal node in 

the tree. To identify independent HLA associations we performed sequential conditional 

analysis using an approximation to the likelihood function as described in the 

Supplementary Note. At each step, BFtree statistics were generated for each allele and the 

allele with the largest was selected for conditioning in the next iteration. Conditional 

analysis was repeated until all observed BFtree statistics were below 1010 in the self-reported 

diagnosis dataset and 1020 in the HES dataset, ensuring a false discovery rate below 0.01, as 

determined through the simulation analysis. For each significant allele association we 

computed the marginal PP for the genetic coefficient being not equal to 0 and the MAP 

estimate using posterior decoding as described in the Supplementary Note. Association with 

a clinical annotation was deemed significant if the PP was above 0.75.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of diagnosis classification tree and genetic coefficient transition scenarios 
tested.
Each node in the tree represents a clinical diagnosis and nodes are ordered in a hierarchical 

structure based on a classification criterion (such as similarities in clinical manifestations). 

White nodes represent the null state whereby there is no genetic association with the clinical 

phenotype. Green, red and blue nodes represent the alternative state whereby there is a 

genetic association with the clinical phenotype, with the different colours corresponding to 

different, uncorrelated genetic coefficients of association. A genetic coefficient can 

transition from the null state to a non-zero coefficient as in the I→B and A→2 pairs. From 

the non-zero state a genetic coefficient can remain in a correlated non-zero state (as in the 

B→3, 3→a, 3→b and 5→e pairs); it can transition back to the null state (as in the B→ 4 

and 5→f pairs); or it can transition to a new, uncorrelated non-zero state (as in the B→5 

pair). An in-depth description of the method is provided in the Supplementary Note.

Cortes et al. Page 15

Nat Genet. Author manuscript; available in PMC 2018 January 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Evidence of HLA-B*27:05 allele association with risk for clinical diagnoses in the HES 
dataset.
a, Quantile-quantile plot of association test P-values of the HLA-B*27:05 allele with each 

diagnosis term in the ICD-10 classification tree performed with maximum likelihood 

estimation using a logistic regression model. Grey area depicts the 95% confidence interval 

of sampling variance. Results are coloured-coded based on the posterior probability (PP) 

that HLA-B*27:05 is associated with each diagnosis term as estimated with the TreeWAS 

model. b-e, Branches of the ICD-10 classification tree where significant associations 

between HLA-B*27:05 and clinical diagnoses were identified (PP>0.75). Results are 

tabulated in Supplementary Table 1. AS, ankylosing spondylitis; PS, psoriasis.
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Figure 3. Sensitivity and specificity analysis of TreeWAS on simulated data.
a, Rate of active node identification at increasing posterior probability (PP) thresholds and 

different simulated minor allele frequencies (MAF) of the causal genetic variant, for the 

TreeWAS method (θ = 1/3 and π1 = 0.001;orange), and for the PheWAS method (a model 

assuming complete independence among phenotypes with θ → ∞ and π1 = 0.001; blue). 

For each simulation replicate (N=500) we simulated five clustered nodes with non-zero 

genetic coefficients (•) and for the remaining nodes, phenotype counts were simulated to 

match observed disease prevalence and zero genetic coefficients (♦). Vertical dashed line 

denotes the PP = 0.75 threshold used in the analysis. Rate of false positives in the BFtree 

statistic (b) and active node identification (c) when genotypes for the HLA-B*27:05 allele 

are permuted in both phenotypic datasets. Gen, genotype; phen, phenotype.
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Figure 4. Genetic analysis of HLA allelic variation in the risk of clinical phenotypes from the UK 
Biobank SR diagnosis and HES datasets.
a, The tree depicts the hierarchical structure of self-reported clinical phenotypes as 

determined by the UK Biobank classification. Only nodes with a significant association (PP 
> 0.75) with at least one HLA allele are shown, along with their parent nodes. The graph 

shows estimated effect sizes for the heterozygous genotype of the different HLA alleles on 

susceptibility to each clinical phenotype. Bars show the 95% credible interval. b, Evidence 

of association for each HLA allele with at least one node in the tree (BFtree) in the 

conditional TreeWAS analysis for the SR dataset (Supplementary Table 9). c, The tree 

depicts the hierarchical structure of HES-derived clinical phenotypes as determined by the 

ICD-10 classification (showing nodes with PP > 0.75 and their parent nodes). The graph 

shows estimated effect sizes for the heterozygous genotype of the different HLA alleles on 

susceptibility to each clinical phenotype. d, Evidence of association for each HLA allele 

with at least one node in the tree in the conditional TreeWAS analysis using the HES data 

(Supplementary Table 10). Estimates for heterozygous and homozygous genotype effect 

sizes and descriptions of all phenotypes shown are available in Supplementary Tables 2 and 
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3. AS, ankylosing spondylitis; CI, confidence interval; COE, coeliac disease; ENT, ear, nose, 

throat; MAP, maximum a posteriori; MS, multiple sclerosis; PS, psoriasis; RA, rheumatoid 

arthritis; T1D, type 1 diabetes; UC, ulcerative colitis.
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Figure 5. Association analysis of genetic risk for multiple IMDs derived from clinical phenotypes 
in the UK Biobank SR diagnosis and HES datasets.
a, The tree depicts the hierarchical structure of SR clinical phenotypes as determined by the 

UK Biobank classification. Only nodes with a significant association (posterior probability > 

0.75) with at least one IMD genetic risk score (GRS) are shown, along with their parent 

nodes. The graph shows estimated effect size of GRS on susceptibility to each clinical 

phenotype with posterior probability > 0.75. Bars show the 95% credible interval. b, The 

tree depicts the hierarchical structure of HES-derived clinical phenotypes as determined by 

the ICD-10 classification (showing nodes with posterior probability > 0.75 and their parent 

nodes). The graph shows estimated effect sizes of GRS on susceptibility to each clinical 

phenotype. c, Comparison of estimated genetic coefficients for each GRS and the respective 

clinical annotation in both phenotypic datasets. Estimates of effect sizes and description of 

all phenotypes shown are available in Supplementary Tables 6 and 7 and evidence of 

association for each GRS with at least one node in the tree are available in Supplementary 

Tables 11 and 12. AS, ankylosing spondylitis; CD, Crohn’s disease; CI, confidence interval; 

COE, coeliac disease; ENT, ear, nose, throat; MAP, maximum a posteriori; MS, multiple 

sclerosis; PS, psoriasis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, 

type 1 diabetes; UC, ulcerative colitis; MAP.
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