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Objectives: To explore the risk factors for renal damage in childhood

immunoglobulin A vasculitis (IgAV) within 6 months and construct a clinical

model for individual risk prediction.

Methods: We retrospectively analyzed the clinical data of 1,007 children in our

hospital and 287 children in other hospitals who were diagnosed with IgAV.

Approximately 70% of the cases in our hospital were randomly selected using

statistical product service soltions (SPSS) software for modeling. The remaining

30% of the cases were selected for internal verification, and the other hospital’s

cases were reviewed for external verification. A clinical prediction model for

renal damage in children with IgAV was constructed by analyzing themodeling

data through single-factor and multiple-factor logistic regression analyses.

Then, we assessed and verified the degree of discrimination, calibration and

clinical usefulness of the model. Finally, the prediction model was rendered in

the form of a nomogram.

Results: Age, persistent cutaneous purpura, erythrocyte distribution width,

complement C3, immunoglobulin G and triglycerides were independent

influencing factors of renal damage in IgAV. Based on these factors,

the area under the curve (AUC) for the prediction model was 0.772;

the calibration curve did not significantly deviate from the ideal curve;

and the clinical decision curve was higher than two extreme lines when

the prediction probability was ∼15–82%. When the internal and external

verification datasets were applied to the prediction model, the AUC was

0.729 and 0.750, respectively, and the Z test was compared with the

modeling AUC, P > 0.05. The calibration curves fluctuated around the ideal

curve, and the clinical decision curve was higher than two extreme lines

when the prediction probability was 25∼84% and 14∼73%, respectively.
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Conclusion: The prediction model has a good degree of discrimination,

calibration and clinical usefulness. Either the internal or external verification

has better clinical e�cacy, indicating that the model has repeatability

and portability.

Clinical trial registration: www.chictr.org.cn, identifier ChiCTR2000033435.

KEYWORDS

children, immunoglobulin vasculitis, renal damage, clinical predictive model,

nomogram

Introduction

Immunoglobulin A vasculitis (IgAV), formerly called the

Henoch-Schönlein purpura (HSP), is characterized by the

deposition of immune complexes on the walls of small

vessels and is the most common type III hypersensitivity-

mediated vasculitis in children (1). The clinical manifestations

of IgAV are nonthrombocytopenic purpura, abdominal pain,

gastrointestinal bleeding, arthritis and renal damage. It has been

reported that the annual incidence of IgAV is ∼3-26.7/100,000

(2), of which 30% to 50% of cases result in renal damage (2–4),

that is, IgAVwith nephritis (IgAVN). The clinical manifestations

of IgAVN are hematuria, proteinuria, nephrotic syndrome and

renal dysfunction, which usually occur within 6 months of the

course of IgAV (3, 4). Most patients generally have a good

prognosis, but repeated illness and a prolonged course of disease

can lead to end-stage renal disease, which occurs in ∼1 to 10%

of children (5, 6), creating huge economic, physical and mental

burdens to patients and their families. At present, almost all

clinical studies on IgAV focus on the risk factors for IgAVN, and

there is still a lack of quantitative tools for individualized risk

prediction and benefit assessment of renal damage in children

with IgAV. The purpose of this paper was to explore the risk

factors for IgAVN, construct a clinical prediction model, and

evaluate its clinical efficacy. Finally, the prediction model is

shown in the form of a nomogram to provide a scientific

quantitative tool for individual risk prediction and assessment

of benefits for patients.

Materials and methods

Research subjects

Subjects enrolled in the study were hospitalized in Hunan

Children’s Hospital from January 2018 to December 2018

and in Hunan Provincial People’s Hospital, Changsha Central

Hospital and Changsha First People’s Hospital from January

2018 to December 2019. The patients were clinically diagnosed

with IgAV (7) and met the following conditions: ① age

< 18 years; ② follow-up time≥6 months; ③ no history of

lupus nephritis, poststreptococcal nephritis, IgA nephropathy,

hepatitis-associated glomerulonephritis and other renal diseases;

and ④ no history of rheumatic connective tissue diseases,

renal damage, tumors and other diseases. This study was

approved by the Ethics Committee of Hunan Children’s

Hospital (ethical batch number: HCHLL-2020-48) and was

registered in the China Clinical Trials Registry (registration

number: ChiCTR2000033435).

Research indicators

Indicators are commonly based on previous literature

reports, statistically significant indicators, or indicators

considered by the investigator to be clinically relevant. In this

study, There are 27 indicators included: sex, age, purpura

of external skin of the lower limbs, persistent skin purpura

and recurrence, abdominalgia, severe colic, gastrointestinal

bleeding, joint involvement, white blood cell count, hemoglobin

concentration, platelet count, erythrocyte distribution width,

C-reactive protein (CRP), erythrocyte sedimentation rate (ESR),

complement C3, complement C4, immunoglobulin G (IgG),

IgM, IgA, IgE, triglycerides, total cholesterol, low density

lipoprotein, albumin, serum creatinine and uric acid. End point

indicator: the occurrence of renal damage in children with IgAV.

According to EULAR/PRINTO/PRES criteria for Henoch–

Schönlein purpura (7), IgAV with nephritis criteria: Proteinuria

> 0.3 g/24 h or > 30 mmol/mg of urine albumin/creatinine

ratio on a spot morning sample; Hematuria or red blood cell

casts: >5 red blood cells/high power feld or red blood cells casts

in the urinary sediment or ≥ 2+ on dipstick.

Statistical methods

SPSS 18.0 software, Stata 15.0 software and R 3.5.1 language

were used to analyze the clinical data. The measurement data

with a normal distribution are expressed as the means ±

standard deviation (SD), and comparisons between the two

groups were performed using the independent sample t-test. The
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measurement data of skewness distribution are expressed as the

medians and interquartile ranges (IQR), and theMann–Whitney

U-test was used to determine differences between groups. The

counting data are expressed as frequencies (percentages), and

the chi-square test was used for the analysis of counting data.

Univariate analysis and multifactor logistic regression analysis

were used to construct a clinical prediction model for the

data of the modeling group. The discrimination, calibration

and clinical usefulness of the model were evaluated using the

AUC, calibration curve and clinical decision curve (DCA).

Internal and external verification datasets were used to further

verify the clinical effectiveness of the model, which was finally

shown in the form of a nomogram. P < 0.05 were considered

statistically significant.

Results

General information

After excluding the cases of loss to follow-up and missing

clinical data more than 20% (Figure 1), a total of 1,007 cases

were included from Hunan Children’s Hospital, including 579

(57.5%) males and 428 (42.5%) females. The median (IQR) age

at disease onset was 7.20 (5.64, 9.52) years. A total of 715 cases

were randomly selected using SPSS software as a modeling set

to establish a clinical prediction model, and the remaining 291

cases were used as the internal verification set. A total of 287

cases, including 155 males (54.0%) and 131 females (46.0%)

with a median age of 6.88 (5.16, 9.13) years were included in

Hunan Provincial People’s Hospital, Changsha Central Hospital

and Changsha First People’s Hospital as the external verification

set. A total of 335 (46.9%) children with IgAV had renal damage.

There were 335 (46.9%) cases with IgAVN in the modeling set,

137 cases (46.9%) in the internal verification set and 87 cases

(30.3%) in the external verification set.

Risk factors

Among the 1,007 cases from Hunan Children’s Hospital,

the occurrence of renal damage within 6 months of IgAV was

the dependent variable, and 27 observation indicators of the

study subjects were the independent variables. The results of

univariate analysis showed that 15 indicators were statistically

significant (Table 1). In this study, 11 of the 15 indicators

were diagnosed by collinearity, and the results showed that the

tolerance of all variables was close to 1 and variance inflation

factor (VIF) < 10, indicating that there was no collinearity,

and the indicators could be included in logistic regression

analysis. Fifteen statistically significant indicators from the

univariate analysis were included in the multivariate logistic

analysis (Table 2); age, persistent cutaneous purpura, erythrocyte

FIGURE 1

Flowchart of included/excluded cases for studies.

distribution width, complement C3, immunoglobulin G and

triglycerides were independent influencing factors of IgAVN.

Establishment of a model

The modeling set establishes the multiple regression

equation of the prediction model according to the statistically

significant variables and their regression coefficients in the

multivariate analysis. P is the probability of occurrence of IgAVN

with a value range of 0–1. The closer the P value is 1, the greater

the probability, and the closer the P value is 0, the smaller

the probability. A multivariate logistic regression model was

established as follows: LogitP = −3.530 + 0.181X1 + 0.852X2

+ 0.280X3 −1.551X4 −0.123X5 + 0.676X6.

Note: X1: age, X2: persistent skin purpura, X3: erythrocyte

distribution width, X4: complement C3, X5: immunoglobulin G,

X6: triglyceride.

Evaluation and verification of the model

Discrimination

In this study, the prediction probability of IgAVN in the

modeling set was expressed by P-m. According to the occurrence

of the prediction probability P-m and the actual IgAVN in the

modeling set, the ROC curve of the P-m value was constructed

using Stata15.0 software (Figure 2), and the discrimination of

the IgAVN prediction model was evaluated using the AUC.

The ROC curve showed that the AUC of the P-m value in the

IgAVN model was 0.772, and the 95% confidence interval was

0.738∼0.807. We divided the IgAVN model into the internal
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TABLE 1 Univariate analysis of observation indicators in 1,007 children with IgAV.

IgAVN group

(n = 472)

IgAV group

(n = 535)

Statistical value P

Age (year) 8.50± 2.98 7.04± 2.69 8.197 <0.001

Sex (%) 0.111 0.739

Male 274 (58.05) 305 (57.01)

Female 198 (41.95) 230 (42.99)

Purpura of external skin of the

lower limbs (%)

152 (32.20) 179 (33.46) 0.179 0.672

Persistent skin purpura (%) 155 (32.84) 73 (13.64) 52.746 <0.001

Recurrence (%) 53 (11.23) 24 (4.49) 16.145 <0.001

Abdominalgia (%) 276 (58.47) 299 (55.89) 0.685 0.408

Severe colic (%) 90 (19.07) 95 (17.76) 0.287 0.592

Gastrointestinal bleeding (%) 39 (8.26) 39 (7.29) 0.332 0.564

Joint involvement (%) 303 (64.19) 389 (72.71) 8.459 0.004

White blood cell count (×10∧9/L) 10.33± 4.30 10.83± 4.33 1.578 0.115

Hemoglobin concentration (g/L) 125.83± 12.97 124.46± 12.50 −1.701 0.083

Platelet count (×10∧12/L) 334.66± 104.49 348.27± 95.47 2.159 0.016

Erythrocyte distribution width (%) 13.20 (12.60, 13.90) 12.80 (12.30, 13.40) 6.777 <0.001

CRP (mg/l) 2.61 (1.58, 8.12) 5.60 (2.56, 12.40) −7.112 <0.001

ESR (mm/h) 9.00 (3.00, 18.00) 11.00 (6.00, 22.00) −4.262 <0.001

Complement C3 (g/L) 0.94± 0.19 1.02± 0.20 5.944 <0.001

Complement C4 (g/L) 0.20± 0.07 0.23± 0.08 5.468 <0.001

IgG (g/L) 8.95 (6.95, 11.1) 10.10 (8.19, 12.10) −5.982 <0.001

IgM (g/L) 1.01 (0.78, 1.37) 1.05 (0.82, 1.37) −1.680 0.093

IgA (g/L) 2.04 (1.54, 2.74) 1.97 (1.51, 2.59) 1.003 0.316

IgE (IU/mL) 56.70 (20.65, 152.00) 68.50 (25.10, 174.00) −1.377 0.168

Triglycerides (mmol/L) 1.22 (0.93, 1.68) 1.02 (0.75, 1.29) 7.234 <0.001

Total cholesterol (mmol/L) 3.70 (3.22, 4.37) 3.49 (3.12, 3.97) 4.290 <0.001

Low density Lipoprotein (mmol/L) 2.03 (1.65, 2.49) 1.94 (1.60, 2.35) 1.903 0.057

Albumin (g/L) 38.9 (35.90, 41.55) 39.00 (36.80, 41.40) −1.085 0.278

Serum creatinine (µmol/L) 34.45 (29.00, 41.80) 30.70 (26.40, 36.50) 6.738 <0.001

Uric acid (µmol/L) 249.20 (198.30,

302.00)

228.00 (182.00,

286.00)

3.665 <0.001

(a) persistent skin purpura: skin purpura lasts for more than 1 month; (b) recurrence: new skin purpura or other systemic complications in patients previously diagnosed with IgAV and

asymptomatic for at least 1 month are defined as recurrence; (c) gastrointestinal symptoms: including abdominal pain, severe colic and gastrointestinal bleeding, in which severe colic

refers to those who are unable to eat because of diffuse abdominal pain; (d) joint involvement: joint swelling or soft tissue edema around joint pain.

TABLE 2 Multivariate analysis of 1,007 children with IgAV.

Variable B Z P OR OR(95%CI)

Age 0.181 5.79 <0.001 1.198 1.127∼1.274

Persistent skin purpura 0.852 4.04 <0.001 2.345 1.551∼3.546

Erythrocyte distribution width 0.280 3.99 <0.001 1.323 1.153∼1.518

Complement C3 −1.551 −3.41 <0.001 0.212 0.087∼0.517

Igg −0.123 −4.10 <0.001 0.884 0.834∼0.938

Triglycerides 0.676 4.59 <0.001 1.967 1.473∼2.626

Constant −3.530 −3.22 <0.001 0.029 0.003∼0.250

B, partial regression coefficient; Z, statistics; OR, odds ratio; 95% CI, 95% confidence interval.
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FIGURE 2

Model set.

FIGURE 3

Internal verification set.

verification set and the external verification set, calculated the

prediction probability P-in value and P-ex value, respectively,

and constructed the ROC curve for these two sets (Figures 3, 4).

The AUC of the internal verification set was 0.729, and the

95% CI was 0.671∼0.786; the AUC of the external verification

set was 0.750, and the 95% CI was 0.688∼0.813. There was no

significant difference between the model set and two verification

sets according to the results of the Z-test used to compare

the AUCs.

Calibration

The calibration curve of the modeling set was constructed

using R3.5.1 software (Figure 5); the x-axis represents the

prediction probability of IgAVN, and the y-axis represents the

actual probability of IgAVN. The slope of Ideal (diagonal) was

FIGURE 4

External verification set.

FIGURE 5

Calibration curve for the model set.

1, which represents the ideal curve; Apparent represents the

uncalibrated prediction curve and Bias-corrected represents

the calibration prediction curve. The chart shows that the

uncalibrated prediction curve and the calibration prediction

curve fluctuated around the diagonal and did not significantly

deviate from the ideal curve. The calibration curve of the

internal verification set (Figure 6) and the external verification

set (Figure 7) show that the uncalibrated prediction curve

and the calibration prediction curve fluctuated around the

diagonal and did not significantly deviate from the ideal

curve. The goodness of fit for all three groups was assessed

using the Hosmer–Lemeshow test, and the difference was not

statistically significant.

Clinical usefulness

The DCA chart was constructed using Stata15.0 software

(Figure 8). In the DCA diagram, the red horizontal line indicates

that when the prediction model in this study lacked renal

damage, the clinical net benefit was zero; the blue slash indicates

that when all IgAV cases had renal damage, the clinical net

benefit was a slope that was negative; and the green curve
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FIGURE 6

Calibration curve for the internal verification set.

FIGURE 7

Calibration curve for the external verification set.

FIGURE 8

DCA of model set.

was based on the curve associated with the IgAVN model in

this study. As we can see from Figure 7, when the prediction

probability P-m was between 15 and 82%, the green curve was

higher than the two extreme lines, and the model can benefit

from predicting renal damage in IgAV. The DCA diagram of

the internal verification set and the external verification set

was constructed according to the IgAV renal damage prediction

FIGURE 9

DCA of internal verification set.

FIGURE 10

DCA of external verification set.

probability P-in value and P-ex value and the actual IgAV renal

damage occurrence situation in these sets (Figures 9, 10). It can

be concluded from the two figures that when the predicted

probability of P-in was∼25∼84% and P-ex was∼14%∼73%, the

green decision curve was higher than the blue slash line and red

cross line in extreme cases, suggesting that children can benefit

from the model when predicting renal damage in IgAV within

the range of prediction probability.

Model presentation

The nomogram of the IgAVN prediction model was

constructed using the rms package of R3.5.1 software (see

Figure 11). The nomogram converts the regression equation into

an easy-to-understand visual graph, which makes the results

of the prediction model more readable and convenient for the

risk assessment of patients. In Figure 10, X1–X6 represent the
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FIGURE 11

Nomogram of the prediction model. X1, age; X2, persistent skin purpura; X3, erythrocyte distribution width; X4, complement C3; X5,

immunoglobulin G; X6, triglyceride.

independent variables, and each variable finds the point on the

axis corresponding to the line chart and indicates the score of

the variable. The total score of each variable adds up to the

total score of the corresponding total score scale, and the final

total score corresponds to the reading on the risk axis of renal

damage, which indicates the probability of renal damage in

the child.

Discussion

IgAV is the most common small vessel inflammatory disease

in childhood and worldwide and mainly involves the small

vasculature of the skin, joints, gastrointestinal tract and kidneys

(8). The clinical manifestations of IgAVN are mainly hematuria

and proteinuria, which long-term prognosis depends on the

severity of renal damage (9). The influencing factors of IgAVN

are complex; a large number of studies have shown that the

older the age of the child, the greater the risk of renal damage,

which is most likely due to the increase in immune function

with age. A systematic review of 13 studies from the year 2000 to

2016 (10) (2,398 children) showed that males older than 10 years

of age, gastrointestinal symptoms such as abdominal pain and

bleeding, joint involvement, persistent skin purpura, recurrent

rash, elevated white blood cells, elevated platelets and decreased

complement C3 can increase the risk of renal involvement.

Some studies have shown that erythrocyte distribution width

can be used as a marker of IgAV risk and may be related to the

severity of the disease (11). At present, it is controversial whether

immunoglobulin G is related to IgAVN. In a retrospective

analysis of 250 children with IgAV, elevated cholesterol and

low-density lipoprotein was identified as an independent risk

factor for IgAVN (12). In this paper, the children with IgAV

were followed up for half a year, and renal damage was the

end point index. Twenty-seven potential predictive indicators,

such as age, clinical manifestations, and serological indices were

used in univariate analysis and logistic multivariate analysis

The results showed that age, persistent purpura, erythrocyte

distribution width, complement C3, immunoglobulin G and

triglycerides were considered to be independent influencing

factors for IgAVN, which is similar to the findings of previous

studies on the prediction risk factors for IgAVN.

The construction of a clinical predictive model based on

risk factors is a popular and challenging endeavor in current

research. A prediction model is a tool to obtain risk or

probability by assigning relative weights to each prediction

factor to combine multiple prediction factors (13). Clinically,

the establishment of a predictive model is one of the important

methods used to transform clinical research into clinical

application. However, the establishment of a good clinical

prediction model is a complex project. The “Transparent

Reporting of a multivariable prediction model for Individual

Prognosis or Diagnosis” (TRIPOD) (14) published in 2015 has

made a relatively complete behavior norm for the establishment

of the prediction model, including the construction, evaluation,

and verification of the model.

Frontiers in Pediatrics 07 frontiersin.org

https://doi.org/10.3389/fped.2022.967249
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Fu et al. 10.3389/fped.2022.967249

Building amodel involves the selection of possible predictors

and combining them into a multivariate model, which is usually

analyzed by logistic regression or Cox regression. Logistic

regression analysis is most commonly used to predict binary

events, while Cox regression is often used for long-term

prognostic results (15). This paper is a retrospective study, and

the content of the study is the risk prediction of renal damage in

IgAV. The end point is whether renal damage occurs in IgAV

within 6 months of follow-up; thus, it is considered a binary

outcome index. Therefore, logistic regression was selected to

analyze the predictive factors for IgAVN.

The evaluation model includes the evaluation of

discrimination, calibration and clinical usefulness. The

degree of discrimination refers to the ability of the prediction

model to distinguish between terminal events and nonterminal

events; the AUC is generally used to quantify logistic models

(14). The closer the AUC is to the value of 1, the better the

discrimination of the model, and clinically, the model has a

better degree of discrimination when 0.7 < AUC < 0.9 (16).

The accuracy reflects the degree to which the model correctly

estimates the absolute risk; that is, whether the predicted value

of the model is consistent with the actual value (16, 17). The

positional relationship between the calibration curve and the

ideal curve and the Hosmer–Lemeshow test are usually used

for evaluation (18). Clinical practicality refers to the clinical net

benefit of the patient using the prediction model at a certain

threshold probability, which is evaluated by DCA (19). DCA

obtains the net benefit value of using the model on this threshold

by determining the relationship between the selected predictive

probability threshold and the relative values of false-positive

and false-negative results (20, 21). The net return is calculated

by all possible risk thresholds between the two extremes, that

is, zero and maximum risk estimates, representing all negative

events and all positive events, respectively (22). If the DCA

is higher than two extreme lines, it indicates that the patient

can benefit, and the clinical practicability is better (23). In

this paper, the AUC of the IgAVN model based on the logistic

regression equation was 0.772 (0.738–0.807), suggesting that

the renal damage model has a good degree of discrimination.

The Hosmer–Lemeshow test of the model, P > 0.05, and the

calibration curve around the ideal curve in Figure 2 all indicate

that the renal damage model has good accuracy. According to

the IgAVN model, the DCA is higher than two extreme lines

when the value of P-m is∼15∼82%, indicating beneficial effects

for the child. This shows that the IgAVN model established in

this study has a good degree of discrimination, calibration and

clinical usefulness. The model is helpful to effectively identify

the risk of IgAVN in the clinic and can guide regular revisits and

timely treatment of high-risk children with IgAV.

However, the IgAVN model needs to be validated in

other populations before it is used in clinical practice. Model

verification is not simply repeating the analysis steps established

by the model in other individuals to see if they have the

same prediction factors and weights but involves application

of the new individuals to the established model. According to

the prediction factors in the model and the weight assigned

(such as the regression coefficient), the predicted value of the

new individual is estimated, and the prediction performance of

the model is quantified (24–26). The verification of the model

includes internal verification and external verification; internal

verification reflects the repeatability of the model, and external

verification reflects the portability of themodel. In this paper, the

split sample verification method was used to select the clinical

data of children with 70% IgAV in our hospital as the modeling

set and the clinical data of children with 30% IgAV as the

internal verification set. The clinical data of children with IgAV

in other medical centers were used as the external verification

set. In these two sets of data, the two types of verification are

related to the discrimination, calibration and clinical usefulness

of the evaluation model. In the discrimination evaluation, the

AUC of the internal verification set was 0.729 (0.671–0.786),

and the AUC of the external verification set was 0.750 (0.688–

0.813). The AUC of these verification sets was smaller than

that of the modeling set, indicating that the discrimination of

the model decreased in the smaller dataset. However, Z test

results showed no difference in the AUC between the two sets

and the modeling set. The results showed that the prediction

model still had good discrimination in the verification data. In

the evaluation of calibration, the calibration curves for both the

internal and external verification sets fluctuated above and below

the ideal curve, and the Hosmer–Lemeshow test showed a P >

0.05. This shows that the application of the IgAVN model in

these two groups of data has good calibration. In the evaluation

of clinical usefulness, the DCA curves drawn by the internal

and external verification groups were higher than two extreme

lines when the P-in value was 25–84% and the P-ex value was

14–73%, respectively, indicating that the prediction model has

good clinical usefulness. Therefore, the IgAVN model has good

discrimination, calibration and clinical usefulness in both the

internal verification group and the external verification group,

indicating that the renal damage model shows good repeatability

and portability.

In addition, to facilitate the renal damage model in the

evaluation of patients, the most commonly used method is to

visualize the IgAVN model. At present, the model is usually

presented as a nomogram in the research of clinical prediction

models. The nomogram has the ability to personalize the

prediction, enabling it to identify and assess the risk for each

patient (27). In this paper, the nomogram of the IgAVN model

is constructed using the rms software package of R statistics

software, and the relatively complex regression equation is

transformed into a simple visual graph, which is helpful in

making effective clinical decisions when the renal damage model

is widely used in the clinic. As we can see from the nomogram in

this study, in a child with IgAV aged 8 years and 2 months with

skin purpura for more than 1 month, red blood cell distribution
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width 13.6%, complement C3 0.96 g/L, immunoglobulin G 6.92

g/L and triglycerides 1.88 mmol/L, the probability of renal

damage is ∼82%. It is suggested that the risk of renal damage is

high, and clinicians and family members should remain vigilant

and have more frequent visits for reexamination if necessary.

In summary, through univariate and multivariate logistic

regression analyses, it was concluded that older age, persistent

purpura ≥ 1 month, increased erythrocyte distribution width,

decreased complement C3, decreased immunoglobulin G and

elevated triglycerides are independent influencing factors of

IgAVN. The IgAVN model based on binary logistic regression

has good clinical predictive ability and clinical practicability

through the evaluation of clinical efficacy in terms of

discrimination, calibration and clinical usefulness. Additionally,

internal and external verification of the model revealed good

clinical repeatability and portability. The model is presented

as a line chart, which provides an effective reference basis for

the individual risk assessment of patients, contributes to early

warning of potential IgAVN in patients, and maximizes the

clinical benefits in children.
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