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Many of the neurocircuits and hormones known to underlie the sensations of hunger
and satiety also substantially alter the activity of the dopaminergic reward system. Much 
interest lies in the ways that hunger, satiety, and reward tie together, as the epidemic of 
obesity seems tied to the recent development and mass availability of highly palatable
foods. In this review, we will first discuss  the basic neurocircuitry of the midbrain and 
basal forebrain reward system. We will elaborate how several important mediators of
hunger—the agouti-related protein neurons of the arcuate nucleus, the lateral hypotha-
lamic nucleus, and ghrelin—enhance the sensitivity of the dopaminergic reward system. 
Then, we will elaborate how mediators of satiety—the nucleus tractus solitarius, pro-
opiomelanocortin neurons of the arcuate nucleus, and its peripheral hormonal influences 
such as leptin—reduce the reward system sensitivity. We hope to provide a template by 
which future research may identify the ways in which highly rewarding foods bypass this 
balanced system to produce excessive food consumption.
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iNTRODUCTiON

In evolutionary psychology, a supernormal stimulus or “superstimulus” is some evolutionarily novel 
concentration of engaging characteristics, which produces a stronger response than the natural one 
(1). As Pinker described it, strawberry cheesecake is a superstimulus as compared to a Neolithic 
human diet; it overloads the senses and drives caloric overconsumption, combining the “sweet taste 
of ripe fruit, the creamy mouth feel of fats and oils from nuts and meat, and the coolness of fresh 
water” (2). The debate is ongoing as to what exactly differentiates a superstimulus from a regular one 
or whether it is truly maladaptive to create them or seek them out (1). Nevertheless, an important 
concept for neuroscience emerges from this discussion; certain systems governing the reaction to 
rewarding stimulus can be overloaded and their negative feedback component overridden. This 
hypothesis provides explanation for the panoply of excessive behaviors we cope with as a society, 

Abbreviations: AgRP, agouti-related protein; Arc, arcuate nucleus of the hypothalamus; CCK, cholecystokinin; D1R, D2R, 
dopamine receptors; GHS1R, growth hormone secretagogue 1 receptor (ghrelin receptor); GLP1/GLP1R, glucagon-like 
peptide 1/receptor; LepR, leptin receptor; LH, lateral hypothalamic area; LTD, long-term depression; LTP, long-term potentia-
tion; MC3R, MC4R, melanocortin receptors; MCH/MCH1R, melanin concentrating hormone/receptor; MSH, melanocyte-
stimulating hormone (natural MCR agonist); MSN, medium spiny neuron; MTII, melanotan II (non-selective MCR agonist); 
NAc, nucleus accumbens; NAcc, nucleus accumbens core; NAcSh, nucleus accumbens shell; NTS, nucleus tractus solitarius; 
O1R, O2R, orexin receptors; POMC, pro-opiomelanocortin; PPG, preproglucagon; PVH, paraventricular hypothalamic 
nucleus; VTA, ventral tegmental area.
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often conceptualized as “behavioral addictions”: drug addiction, 
internet addiction, porn addiction, food addiction, and so on (3). 
Even physical activity in some individuals meets the criteria for 
behavioral addiction, demonstrating the complex nature of this 
phenomenon (4). It is necessary to provide biological evidence 
for the existence of the balanced system which these superstimuli 
overload.

The neurocircuitry and endocrinology underlying hunger and 
satiety may represent the best studied system in this regard. It 
clearly produces a physiological balance in certain conditions with 
regular stimulus, such as a laboratory mouse fed rodent chow its 
whole life producing a normal weight, and is dysregulated in other 
conditions that contain superstimuli, such as when that mouse 
is fed a high-fat, high-carbohydrate diet producing obesity. The 
signals encoding hunger and satiety alter the brain’s dopaminergic 
reward system in a multitude of ways. In this review, we will discuss 
the mechanisms by which these signals, primarily hypothalamic 
neurocircuits and neuropeptides in combination with peripheral 
hormones, modulate midbrain dopaminergic activity to alter 
reward salience and value. By laying out this evidence, we provide 
a substrate for future research to examine how superstimulus 
foods, such as cheesecake or high-fat/high-carbohydrate chow, 
drive so-called hedonic feeding and produce obesity.

The relationship of the midbrain dopaminergic reward system 
and hypothalamic neurocircuits governing hunger and satiety, 
hereafter referred to as the reward system and hunger system, is 
ancient. The patterned expression of genes necessary to produce 
segmentation of the brain at the mesencephalon (midbrain) and 
diencephalon (hypothalamus) occurred very early in chordate 
evolution (5, 6). Both dopamine neuronal receptors and hypo-
thalamic feeding-related peptides and their associated receptors 
are present in most vertebrates and have similar functions across 
taxa (7–9). Given this intimate association, it is not surprising 
that they share a fundamental interdependence. For example, 
dopamine-deficient mice stop feeding a few weeks after birth; 
administration of l-DOPA reverses this phenotype and restores 
normal growth (10). Conversely, knockout of orexin, a hypotha-
lamic neuropeptide associated with hunger, reduces dopamine 
response to cocaine (11). They also produce cross-sensitization 
or desensitization; food-restricted, hungry mice have enhanced 
response and reinforcement to amphetamine or cocaine (drugs 
which flood the brain with dopamine), and satiety signals such as 
leptin reduce the drive to seek self-administration of these drugs 
(12, 13). As will be discussed below, hypothalamic and endocrine 
components of the hunger system alter the activity of the reward 
system. To demonstrate this, we will first present a brief overview 
of the neurocircuitry of the reward system. Then, we will chart 
the various ways the hunger system interacts with the reward 
system.

NeUROCiRCUiTRY OF THe RewARD 
SYSTeM

The ventral Tegmental Area (vTA)
The VTA and substantia nigra pars compacta (SNc) are 
immediately caudal to the posterior hypothalamus, brace the 

third ventricle, and contain the major source of dopaminergic 
outflow to the rest of the brain. The SNc is best known for its 
role in the nigrostriatal pathway regulating the dorsal striatum 
in movement, and the VTA for mediating salience, motivation, 
and reward and aversion-related learning (14, 15). Salience 
refers to the attention paid to the stimulus; an increase in sali-
ence means the stimulus, if identified, will be more likely to draw 
the organism’s attention. The value of the stimulus, whether it 
is rewarding or aversive, refers to whether a stimulus induces 
behavior to acquire it or avoid it, respectively (15). Rewarding 
stimuli produce a positive valence when acquired and a negative 
valence when unable to be acquired; the converse is true with 
aversive stimuli (15).

The VTA dopaminergic neurons are the primary mediators 
of the behavioral response to a rewarding or aversive stimulus 
(16). They are not uniform in their activity or projection targets, 
and thus activation of one neuron may produce substantially 
different behavioral output than another. This is why studies 
evaluating the rewarding nature of dopamine often focus on 
the VTA to nucleus accumbens (NAc) projections specifically; 
this will be discussed below. However, much effort has been 
spent elucidating the ways in which local VTA dopaminergic 
neurons encode reward across brain regions by alteration in fir-
ing pattern, increase or decrease in action potential frequency, 
and projection target. The literature is incomplete on this topic, 
but discussion of some of these mechanisms sets the stage for 
further discussion of how the hunger system interfaces with the 
VTA dopaminergic neurons. For example, in vivo recording of 
the VTA during a conditioned place preference task suggests that 
one subset of dopaminergic neurons exhibits phasic activation in 
response to reward-related cues or reward consumption; another 
exhibits phasic inhibition in response to aversive stimulus or the 
absence of reward consumption after a reward cue (17). Tonic 
activation of dopaminergic neurons can produce the opposite 
effect of phasic activity on the same target and will decrease 
reward consumption (18). Thus, a given projection target 
receives either increased or decreased dopamine input depend-
ent on the valence of the reward. Furthermore, dopaminergic 
neurons vary in their projection targets; the VTA’s projections 
are heterogeneous. Dependent on the projection target, an 
increase in dopamine outflow produces either rewarding or 
aversive responses (14, 19). As has been well-established, VTA 
projections to the NAc core (NAcc) and NAc shell (NAcSh) 
increase dopamine release in response to a rewarding stimulus 
and induce goal-direct behavior to acquire and consume it 
(14). Conversely, VTA dopaminergic neurons projecting to the 
medial prefrontal cortex are activated in response to an aversive 
stimulus and produce aversive behaviors (19). However, even 
within the same target, dopaminergic activation can code both 
types of behaviors; VTA dopaminergic projections to the lateral 
portion of the NAcSh are activated in response to both rewarding 
and aversive stimulus (19).

The VTA also possesses neurons releasing the classic neu-
rotransmitters glutamate and GABA. The function of these 
glutamatergic and GABAergic neurons is less well-known, but 
recent evidence indicates they also participate in valence-related 
responses. VTA glutamatergic projections to the lateral habenula 
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(LHb) play a significant role in encoding aversive learning (20). 
VTA glutamatergic projections to the NAcSh act in concert 
with the dopaminergic projections to produce reward-mediated 
behavior (14). Finally, VTA GABAergic neurons projecting to 
the LHb appear to inhibit this area to enhance positive valence 
responses (21). Recent analysis has identified that some VTA 
neurons corelease glutamate and dopamine—it is as yet unknown 
whether this occurs at the same synapse or at separate synaptic 
targets (14). Further research is needed to fully evaluate how the 
classic fast-acting neurotransmitters coordinate with dopaminer-
gic neurons to produce the full suite of valence-related behaviors 
and alter future learned responses.

The NAc
The NAc is part of the ventral striatum and extended amygdala 
in the basal forebrain, and it mediates much of the motivated 
behavior produced in response to VTA dopaminergic outflow 
after sensation of a rewarding stimulus. Many components of 
the hunger system act here as well as in the VTA to alter the 
responsiveness to rewarding stimulus; thus, some description of 
its components and basic activity follows. The NAc is divided 
into a medial shell (NAcSh) and lateral core (NAcc). Self-
administration of cocaine into the NAcSh is highly rewarding 
and rapidly produces cue-responsiveness with locomotor sensi-
tization to anticipation of the drug (22–24). Self-administration 
of cocaine into the NAcc, however, is not reinforcing (22). Phasic 
activity of VTA dopaminergic projections to the NAcc instead 
responds to risk and prediction error in response to reward 
presentation (22, 24, 25). Thus, a basic paradigm can be con-
structed, where the NAcc responds to the salience, availability, 
and risk of acquiring the reward to produce motivation to pursue 
it, and the NAcSh responds to the positive valence of the reward 
acquisition, learns the cues which associate with the reward, 
and enhances the future salience of those cues. Interestingly, if 
dopamine is depleted in the NAc but reward acquisition is low 
effort, rats will still take the reward; however, if it requires high 
effort, rats will choose less effort-requiring behaviors (26). Thus, 
the level of dopamine in the NAc may provide a rough proxy for 
the amount of motivation an animal has to ignore risk and effort 
costs of acquiring a reward.

Both the shell and the core are inhibitory on all downstream 
targets; the vast majority of neurons are the GABAergic medium 
spiny neurons (MSNs). These are divided by receptor profile. 
There are D1R-MSNs, possessing excitatory D1R-like dopamine 
receptors (D1R and D5R), and D2R-MSNs, possessing inhibi-
tory D2R-like dopamine receptors (D2R, D3R, and D4R). A 
significant minority express both receptor subtypes (27). The 
projection fields of the NAcSh and NAcc are wide and differ from 
each other in several important respects for their mediation of 
behavior. The NAcSh densely projects to the ventromedial ventral 
pallidum, lateral hypothalamic area (LH), and lateral preoptic 
area, whereas the NAcc projects to the dorsolateral ventral pal-
lidum, subthalamic nucleus, and substantia nigra pars reticulata 
(22). The NAcSh shares significant reciprocal connections with 
feeding-related areas of the hypothalamus, whereas the NAcc pri-
marily interacts with the basal ganglia. Thus, the NAcSh responds 

more to signals from the hunger system than the NAcc and will 
feature more prominently in this discussion.

HUNGeR NeUROCiRCUiTS SeLeCT FOR 
iNCReASeD RewARD SYSTeM ACTiviTY 
iN THe PReSeNCe OF FOOD

There are numerous and dense interconnections between the 
hypothalamic nuclei, VTA, and NAc, and a wealth of neuropep-
tide and neurocircuit data exists to support the powerful influence 
of the several hypothalamic nuclei and their specific neuronal 
subtypes on the reward system. The interaction is complex and 
dynamic, depending upon both the availability of food and the 
endocrine manipulation of the system, as will be discussed later. 
A summary of the major hunger and satiety neurocircuits influ-
encing the reward system is shown in Figure 1.

Arcuate Nucleus
The arcuate nucleus of the hypothalamus (Arc) sits adjacent to the 
third ventricle immediately ventral to the paraventricular hypo-
thalamic nucleus (PVH). These two nuclei share the distinction 
of integrating central nervous system (CNS) input into the hypo-
thalamic–pituitary axis and are the major source of the “releasing 
hormones,” which are secreted into the hypophyseal portal veins 
to alter anterior pituitary production of various hormones. Thus, 
the Arc possesses a multitude of neuronal populations defined 
by their neuropeptide content, such as gonadotropin-releasing 
hormone neurons, growth hormone releasing hormone neurons, 
kisspeptin neurons, tuberoinfundibular dopamine (TIDA) 
neurons regulating prolactin release, somatostatin neurons, and 
so on. Many of these neurons alter feeding behavior, but their 
interaction with the dopaminergic reward system is poorly 
understood at this point in time (28). Thus, our discussion will 
focus on the agouti-related protein (AgRP)/neuropeptide Y 
(NPY) neurons that govern hunger and TIDA neurons role in 
feeding behavior. The pro-opiomelanocortin (POMC) neurons 
that govern satiety will be discussed later.

AgRP/NPY-Expressing Neurons
The AgRP/NPY-expressing neurons are found solely within the 
Arc (29). NPY acts on NPY receptors (Y1, Y2, Y4, and Y5 which 
are GiPCRs) (30). AgRP is an inverse agonist of melanocortin 
receptors (MCRs; MC3R and MC4R, which are GsPCRs and 
MAPK pathway activators) (31–35). Perhaps because of this, 
these neurons share with POMC neurons the same set of con-
nections with hypothalamic and extrahypothalamic nuclei (29, 
36). Thus, AgRP neurons are strong inhibitors of their down-
stream targets via GABA release, inverse agonism of MC-Rs, 
and NPYR-Gi activity. These neurons respond to a wide array of 
peripheral and central signals of energy balance, such as leptin, 
ghrelin, low glucose concentration, and gustatory sensation, and 
are activated during fasting (37–41). Surprisingly, given this role, 
knockout of AgRP by itself or in combination with NPY does not 
produce any obvious phenotype either in ad libitum or starvation 
feeding conditions—only in old age do they demonstrate slightly 
reduced body weight and adiposity due to increased metabolic 
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rate (42, 43). Furthermore, neonatal destruction of the AgRP/
NPY neurons has minimal effect on feeding; only adult ablation 
of these neurons prevents feeding behavior and leads mice in this 
condition to starve to death (44–46). Interestingly, several AgRP/
NPY neuronal projections are not formed until a week postnatal 
in mice, such as to the PVH; there are many opportunities for 
developmental compensation to alter the neonatal AgRP/NPY 
ablation phenotype, which deserve further study to understand 
the homeostasis of feeding behavior (47). Much recent effort has 
been spent on understanding the acute dynamics of AgRP/NPY 
neuronal activity in hunger and reward.

Optogenetic stimulation produces food seeking and food 
consuming behaviors, with enhanced risk-taking and reduced 
anxiety (48–51). Their activity is aversive, as mice avoid the side 
of a chamber associated with their optogenetic activation (52). 
AgRP neurons select for food consumption; when activated, they 
reduce motivation to engage in other behaviors such as social 
interactions or drinking water when thirsty (51). Sustained 
AgRP neuronal activity is not necessary to produce feeding, and 
in  vivo recording demonstrates that these neurons stop firing 
in the presence of food cues (53). Further optogenetic evidence 
demonstrates that a brief period of activation, prior to presenta-
tion with any food stimulus, will produce subsequent feeding, 
enhanced motivation to work for food, and selection for calorie 
dense foods (54). As strength of AgRP signal increases, there is 
a first-order kinetic increase in length of feeding and motivation 
to work which saturates (54). Stimulating AgRP projections 
to the PVH, bed nucleus of the stria terminalis, or LH are all 
individually sufficient to produce this effect (54). However, AgRP 
neurons also synapse on the VTA and regulate the reward system 
through this connection. AgRP projections to the VTA inhibit 
dopaminergic and glutamatergic release in the NAc and reduce 
the development of long-term potentiation (LTP) (55). It can be 
argued that AgRP neurons in the Arc reduce activity of the reward 

system while activating the hunger system, priming it to respond 
to food and not other stimuli; once food is spotted, cessation of 
AgRP neuronal activity releases the brakes on the reward system 
to enhance dopaminergic outflow. The increase in dopamine in 
the NAc likely increases the willingness to work for food and take 
risks to acquire it.

TIDA Neurons
The dopaminergic neurons of the Arc regulate the release of 
prolactin from the anterior pituitary. A subset of TIDA neurons 
appear to be functionally distinct from governing prolactin; these 
corelease GABA and dopamine, and deletion of prolactin recep-
tor within this subpopulation has no effect on prolactin secretion 
regulation (56). A recent study demonstrated that optogenetic 
stimulation of these neurons produces feeding behavior inde-
pendent of their stimulation of prolactin release, and inhibition 
of these neurons reduces body weight (57). Activation of these 
neurons, which are ghrelin sensitive, inhibited POMC neurons 
and excited AgRP/NPY neurons. While these are not considered 
part of the dopaminergic reward system, their role in detect-
ing the intersection of hunger and reward is relevant to this 
discussion as any manipulation altering whole-brain dopamine 
systems (such as dopamine reuptake inhibitors such as cocaine) 
will alter the activity of these neurons and may subtly alter the 
phenotype.

The Lateral Hypothalamus
One of the major downstream targets of AgRP neurons is the 
LH. This was classically understood as both a hunger center 
and reward hot spot from early lesion and electrical stimulation 
studies. The LH has extensive projections divided by multiple 
subpopulations of neurons that express various neuropeptides 
as well as solely fast-acting neurotransmitter neurons (58). 
Many of these fast-acting projections play a role in mediating 
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hunger and reward. LH glutamatergic projections to the LHb 
prevent consumption of a conditioned reward of sucrose and 
has negative valence (59). Inhibition of this same projection has 
positive valence and induces sucrose consumption. Conversely, 
LH GABAergic projections appear to mediate consumption; 
activation of LH GABAergic neurons produces consumption 
regardless of the target’s food value, such as ethanol, water, 
saccharin, sucrose, or wood (60). The projection targets of the 
LH GABAergic neurons may relate to different aspects of this 
behavior. For example, LH GABAergic projections to the PVH 
produce directed food consumption (61). However, activation 
of the LH-VTA GABAergic projections produce non-directed 
gnawing and licking of immediately available objects, despite 
the availability of a sucrose reward distant from the mouse (62). 
These LH-VTA GABAergic neurons inhibit both a subpopula-
tion of dopaminergic and GABAergic neurons within the VTA. 
Interestingly, the reciprocal VTA-LH projection is observed to 
be activated in response to reward omission; the disorganized 
feeding behavior from LH-VTA projection may occur because of 
the lack of this feedback information (62). Indeed, a recent study 
evaluating lateral septum inhibitory influence on the LH found 
that one subset of LH GABAergic neurons are activated during 
food approach and another during food consumption, indicating 
that a temporal sequence of GABAergic subpopulation activation 
occurs to produce successful food consumption (63).

Orexin Neurons
Another reciprocal functional relationship between LH neuronal 
subtypes can be found in orexin (hypocretin) and melanin-
concentrating hormone (MCH) neuropeptide-expressing 
neurons. Orexin, as the name suggests, is an orexigenic or food 
consumption-inducing neuropeptide released primarily by glu-
tamatergic neurons in the medial and dorsal portions of the LH. 
Orexin A and B are co-released from the same neurons and bind 
to their receptors O1R and O2R, potently inducing arousal via Gs 
signaling. Orexin release dramatically increases in release in the 
human amygdala upon waking up or during arousing positive 
stimuli such as laughing or talking (64). Orexinergic neurons 
are activated in response to learned reward cues, but not novel 
objects; for example, activating them can reinstate extinguished 
drug-seeking behavior (65). Indeed, O2R protein levels in the 
NAc are elevated for up to 60  days after discontinuation of 
repeated cocaine administration (66). They are depolarized in 
response to low glucose, and directly activate VTA dopaminergic 
neurons which project to both the medial and lateral portions of 
the NAcSh (67). Orexin receptors also exist within both of these 
subdivisions; injection of Orexin A into the medial NAcSh induces 
a sucrose pleasure-associated facial response, whereas injection 
into the lateral NAcSh induces a sucrose seeking reaction (68). 
O1R activation increases NMDA glutamate receptor activity, a 
sign of LTP formation, whereas blockade of O1R in the VTA 
reduces the rate of self-administration of cocaine or chocolate 
(11, 69). Thus, orexinergic neurons clearly enhance the seeking 
and acquisition of a learned reward, partially via activation of 
the dopaminergic pathway as well as potentially enhancing the 
reinforcing quality of those rewards.

MCH Neurons
Melanin-concentrating hormone neurons are released from 
the anatomically adjacent dorsolateral LH and have a complex 
reciprocal relationship with orexin neurons. They linked with 
induction of sleep and directly inhibit orexin neurons via the 
MCH receptor (MCH1R) Gi protein coupled signaling (70). 
Their interaction with feeding behavior is complex. Knockdown 
of MCH1R produces hyperphagia, hyperactivity with increased 
foraging behaviors; however, these mice have a baseline lower 
body weight than controls, gain less weight on a high-fat diet, 
and exhibit an increased metabolic rate (71, 72). Elevation of glu-
cose concentration from fasting levels to fed-state levels inhibits 
orexin neurons and depolarizes MCH neurons. It appears that 
MCHergic activity appears to play a role in placing a brake on 
orexin-induced seeking and consuming behaviors after food 
is acquired (73). However, injection of MCH into the lateral 
ventricle increases food consumption, without producing long-
term weight gain (74). It appears that MCH neurons integrate 
olfactory, taste, and gut sensory input about the nutritional value 
of food and project to the VTA, NAc, and dorsal striatum in 
order to enhance the rewarding value of nutritionally valuable 
foods (75, 76). To this end, optogenetic stimulation of MCH 
neurons increases dopamine levels in the striatum only when 
paired with active consumption of an artificial sweetener; without 
stimulation, only caloric foods like sucrose induce this dopamine 
release (76). Pairing these stimuli produced a future preference 
for the artificial sweetener over sucrose—opposite of the control 
mouse preference. As further evidence of this, ablation of MCH 
neurons prevented the natural spike of dopamine in the striatum 
after the consumption of sucrose—though, interestingly, it did 
not ablate preference for sweet flavor over water, indicating that 
other mechanisms are at play (76). Thus, MCH neuronal activity 
increases when olfaction, taste, and gut nutrient sensors indicate 
that the food under active consumption is calorically valuable; it 
enhances the rewarding value of food by increasing VTA dopa-
minergic activity in the NAc.

The pattern of MCH1R activation within the NAc is similarly 
complex and deserves some further discussion. These receptors 
are coexpressed with D1R and D2R on opioid-producing MSNs. 
Activation of MCH1R here induces feeding and causes a depressed 
phenotype on the forced swim test, implying reduced locomotor 
drive (77, 78). Given that MCH1R is inhibitory, it is unsurprising 
that MSNs have decreased membrane excitability and reduced 
AMPA glutamatergic receptor currents; furthermore, antago-
nism of MCH1R reduces cocaine self-administration or cue-
induced reinstatement of cocaine seeking behavior. However, 
on MSNs which coexpress D1R, D2R, and MCH1R, there is a 
unique synergy which enhances their firing activity and activates 
a phosphorylation cascade known to increase NMDA receptor 
activation (79). Some of this response is opioid dependent, as 
blockade of any of the three opioid receptors in the NAcSh pre-
vents MCH-induced facial pleasure expression in response to oral 
gavage of sucrose (80). It appears that MCH1R activity within the 
NAc may shift the reward system response to enhance immediate 
food consumption and learning the nutrient value of food and 
dampen the seeking function of the reward system.
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Hunger enhances Sensitivity to Reward
The above discussion details how several neuronal populations—
AgRP/NPY neurons, LH GABAergic neurons, orexin neurons, 
and MCH neurons—each alter the activity of the reward system 
in a distinct way as part of their contribution to the sensation 
of hunger. AgRP neurons reduce reward system sensitivity and 
inhibit its function until food is detected. The food cue silences 
their activity, disinhibiting the VTA and NAc to produce a large 
increase in dopamine release. This increases both the salience 
and value of the food cue. A subset of LH GABAergic neurons 
act in concert with orexin neurons to respond to these cues and 
produce food-seeking behavior, enhancing VTA dopaminergic 
release into the NAc. Other LH GABAergic neurons act with 
MCH neurons to also enhance the rewarding value of food and 
increase learning of nutritionally valuable food-related cues, 
producing food consumption. Once this process begins, satiety 
neurocircuits begin to act in order to limit overconsumption, as 
will be detailed below.

SATieTY NeUROCiRCUiTS DeCReASe 
THe ACTiviTY OF THe RewARD SYSTeM

The neurocircuitry of satiety is not as well-known as that of hun-
ger. The general paradigm appears to be as follows: peripheral 
signals of positive energy balance, primarily hormonal, travel to 
the brain to inhibit the activity of hunger-producing neurocir-
cuits. However, three populations of neurons within the CNS, 
defined by their neuropeptide content, are activated by these 
signals and directly influence the reward system. These are the 
POMC neurons of the Arc, the POMC neurons of the nucleus 
tractus solitarius (NTS), and the preproglucagon (PPG) neurons 
of the NTS. The NTS neurons integrate peripheral satiety signals, 
such as leptin, cholecystokinin (CCK), glucagon-like peptide 1  
(GLP1), and gut distention, to induce rapid satiety. The role 
of POMC neurons is more complex, but appears to reduce the 
immediate value of the food reward while maintaining future 
responsiveness to that same reward.

PPG Neurons in NTS
The NTS has multiple functions both related to primary routing of 
taste information as well as being the routing point for significant 
amounts of autonomic and peripheral hormonal information 
entering the brain. It is situated in the dorsal motor vagal nerve 
complex and receives the vagal sensory afferents. These afferents 
are activated by GLP1, CCK, and leptin. The first two are released 
from stomach and intestinal cells and leptin from adipocytes in 
response to increased nutrient availability. They all synergistically 
increase the activity of the GLP1 producing neurons (termed 
PPG, or PPG neurons) in the NTS (81, 82).

The PPG NTS neurons have a wide projection field and syn-
apse directly onto the VTA and NAc (83). Intestinally released 
GLP1 does not appear to cross the blood–brain barrier (BBB), 
and GLP1 receptor (GLP1R) signaling in the midbrain and 
basal forebrain requires NTS-mediated release of GLP1 (84). 
Activating GLP1R decreases highly palatable food intake and 
produces long-term weight loss; conversely, inhibiting them 
increases food consumption (83). Both changes occur due to 

changes in meal size, not frequency, indicating their role in ter-
minating meal consumption. GLP1R activity in the VTA reduces 
LTP formation on dopaminergic neuron (85). GLP1 administra-
tion significantly increases dopamine transporter expression, 
increasing dopamine clearance from the synapse (86). GLP1R 
activity in the reward system may act to place the brakes on 
dopaminergic response to nutrient contents in the gut and pre-
vent excessive learning of a food reward—or any reward, given 
the wide applicability of the reward system pathway. Consistent 
with this prediction, GLP1R knockout mice exhibit enhanced 
reward learning on the conditioned place preference test and 
increased cocaine-induced locomotion—receptor agonism had 
the inverse effect (87, 88). Thus, the PPG NTS neurons clearly 
mediate a dopamine-dampening function in the reward system 
and use this as a mechanism to reduce the reward salience and 
value of food or other objects.

POMC Neurons in the NTS and the 
Arcuate Nucleus
The role of POMC neurons is more complex, and much effort has 
been expended to explore their role in satiety. POMC is a precur-
sor polypeptide which is cleaved by prohormone convertase 1 
or 2 into α-, β-, or γ-melanocyte-stimulating hormone (MSH), 
corticotropin, and β-endorphin (89). These neuropeptides act via 
the MCR family, the best studied of which in regard to satiety 
are MC3R and MC4R. Deletion of MC4R produces obesity and 
hyperphagia; furthermore, the most common syndromic cause 
of obesity, Prader–Willi, occurs in part due to reduced cleavage 
of POMC (90, 91). The NTS and Arc POMC neurons both drive 
satiety via their actions on their receptors, but at different time 
scales. Optogenetic stimulation of the POMC NTS immediately 
halts feeding, but long-term activation does not produce weight 
loss (92). Stimulation of POMC Arc neurons has no immediate 
effect on feeding, but over many hours reduces feeding and 
produces weight loss (37). Both populations of POMC neurons 
project to the NAc and VTA—however, evidence is lacking on 
what effect direct stimulation of these projections produces (36). 
Both GABA-expressing and glutamate-expressing neurons have 
been found within the POMC neurons of the arcuate nucleus; 
but, the effects of fast neurotransmission from these neurons are 
not well explored (93). Instead, this discussion will focus on the 
pharmacological and receptor-related data that exist on the role 
of MC3R and MC4R in these regions.

MCR Signaling
The pharmacological effects of MCR activation are complex 
and their signaling mechanisms require some discussion before 
elaborating on their influence on the reward system. Multiple 
endogenous ligands for melanocortins exist. AgRP is an inverse 
agonist of MC3R and MC4R. α-, β-, and γ-MSHs and adreno-
corticotropin hormone are produced from POMC by alternative 
cleavage and have varying affinities for each MCR type. Their 
downstream signaling activity is significantly altered dependent 
on their heterodimerization with other receptors such as dopa-
mine receptors or ghrelin receptors. MC4R can couple with Gs, 
Gq, or Gi/o protein complexes dependent upon allosteric binding-
related conformational changes and thus produce increases in 
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intracellular calcium, increased cAMP signaling, or inhibit these 
same pathways (33). The two neuron-activating pathways, Gs 
and Gq, mediate distinct physiologic effects; knockout of PVH 
Gq, but not Gs, prevented the efficacy of MC4R agonism to 
prevent food intake (94). Conversely, the ghrelin receptor, when 
coupled with either MC3R or MC4R, selects for Gs signaling 
in both proteins in the PVH, for example, emphasizing that in 
conditions of increased hunger, MSH activity may select for 
activation (95). One of the most commonly used non-selective 
synthetic MCR agonists, melanotan II (MTII), also selects for Gs 
signaling (33, 95). AgRP, discussed above, is an inverse agonist of 
MC4R and reduces cAMP levels independent of the presence of 
any agonist (33–35). Hypothetically, AgRP activity may select for 
the Gi signaling conformation of MC4R, as it both antagonizes 
the ligand-binding site and binds to the allosteric site to cause a 
conformational change; it also induces receptor internalization 
and alters MC4R-mediated inhibition of L-type calcium channel 
activity (31–33, 96). While it has been demonstrated conclusively 
that intracerebroventricular infusion of the MC3R/MC4R ago-
nist α-MSH suppresses feeding and infusion of AgRP suppresses 
feeding, the multiple signaling pathways invoked by each ligand 
as compared to MTII are important considerations while evaluat-
ing the pharmacological data for melanocortin influence on the 
reward system (97).

MC4R is found on D1R MSNs in the NAc. Application of α-
MSH to ex vivo brain slices produces a decreased post-synaptic 
ratio of AMPA/NMDA glutamatergic receptor signaling and 
fewer excitatory post-synaptic currents—a sign of long-term 
depression (LTD) (98). These MC4R-linked D1R MSNs synapse 
onto LH GABAergic neurons; optogenetic activation of these 
prevents feeding (99). This reduction in feeding also occurs by 
MCR activity in the VTA; injection of MTII decreases sucrose 
consumption (100). Thus, MC4R activity may increase activity of 
these neurons to inhibit feeding, but lose their synaptic strength 
to prevent excessive inhibition of feeding behavior and simultane-
ously reduce their rewarding value. This coincides with evidence 
that administration of MC4R shRNA (knockdown) prevents the 
natural decrease in reward seeking induced by a chronic stress 
paradigm (98). Furthermore, blockade of NAc MC4R prevents 
chronic stress-elicited anhedonia, a known low-dopamine phe-
nomenon (98).

However, in other conditions MCRs may play a role in 
reward-mediated learning and sensitivity to reward. After 
2 h, intraventricular injection of MTII reduced the threshold 
for brain self-stimulation (101). Furthermore, mice with 
knockdown or inhibition of MC4R display reduced cocaine-
induced reinforcement and reduced locomotor sensitization 
(102, 103). Injection of alpha-MSH into the posterior VTA 
increases the activity of MC4R-expressing dopaminergic 
neurons and induces ethanol self-administration (104). These 
neurons coexpress MC3R, and agonism of these neurons with 
γ-MSH increases motivation to work for sucrose reward in a 
dopamine-dependent fashion (105). Indeed, it appears that the 
level of glucose increase in response to food intake induces 
excitatory synaptic plasticity in a subpopulation of POMC 
neurons, which may enhance some of these downstream dopa-
minergic responses (106).

Thus, the multiple combinations of POMC cleavage products, 
the heterodimerization and allosteric-binding configurations of 
MCRs, and the differences in activity dependent on brain region 
all indicate that further evaluation of intracellular signaling 
pathways is needed. However, a possible synthesis may be as fol-
lows. MC4R signaling reduces ongoing feeding via its action on 
D1R MSNs in the NAc, with a naturally decaying signal because 
of the development of LTD. Simultaneously, in other regions and 
neuronal subpopulations, MC3R and MC4R enhance synaptic 
plasticity to encode future responses to that food reward—hence, 
knockdown of these receptors reduces reward consumption. 
The balance of melanocortin-mediated LTP and LTD in striatal 
neurons is important to halt ongoing food consumption, but 
appropriately encourage future responsiveness to rewarding 
food cues. One demonstration of this phenomena arises when 
hyperphagic MC4R knockout mice have induced second dele-
tion of synapse-associated protein 90/post-synaptic density pro-
tein 95-associated protein 3 (SAPAP3) in the striatum (90). This 
double deletion both cures the compulsive grooming behavior 
of these mice and normalizes their weight. Deletion of SAPAP3 
induces excessive LTD formation, and one may postulate that 
this helps reduce the excessive excitatory synapses formed in 
the VTA by unchecked MC3R signaling that in turn promote 
feeding behavior (107).

FOOD-ReLATeD HORMONeS iNFLUeNCe 
DOPAMiNeRGiC ACTiviTY AND 
SeNSiTiviTY TO RewARD

The above discussion has focused on the interaction between 
neurons encoding hunger and satiety and the reward system. 
However, these are all interoceptive and are responsible for 
the integration of internal and external sensory information to 
produce unified behaviors. As is to be expected, the sensory input 
into this system is both neuronal (gut distention, pain, olfaction, 
taste, etc.) and endocrine. While the vast majority of endocrine 
pathways are altered in some way in response to variations in 
energy stores and the presence or absence of food in the gut, the 
best studied of these which appear to act directly on the reward 
system are the hunger hormone ghrelin and the satiety hormone 
leptin.

Ghrelin
Ghrelin is a peptide hormone first discovered as an endogenous 
ligand of the growth hormone secretagogue receptor (GHS1R), 
produced in the oxyntic glands of the stomach (108). Copies 
of ghrelin mRNA and ghrelin immunoreactivity are found in 
abundance in the antrum and fundus of the stomach and to a 
lesser degree in the duodenum, jejunum, ileum, and pancreas 
(109–111). Both peripheral and intracerebroventricular injec-
tions of ghrelin produce feeding in mice, and knockout of neu-
ronal GHS1R prevents the development of diet-induced obesity; 
this places the CNS activity of ghrelin as a primary mediator of 
ghrelin’s orexigenic effect (112, 113).

The mechanics governing ghrelin release and the neuronal 
response to ghrelin are complex and deserve some consideration. 
Ghrelin secretion occurs in ultradian pulses, peaking immediately 
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before onset of meals and declining soon after, with the great-
est rise occurring overnight preceding breakfast (114). Several 
neurotransmitters, hormones, and metabolic signals also affect 
ghrelin release; acetylcholine, CCK, gastrointestinal peptide, and 
low glucose concentration enhance it, whereas insulin, gastrin, 
somatostatin, GLP-1, and increasing glucose concentration 
inhibit its release (115–117). Once ghrelin is produced, it can 
undergo post-translational modification with fatty acid linkage 
(octanoylation). This appears to affect ghrelin transport across 
the BBB; human octanoylated ghrelin and mouse des-octanoyl 
ghrelin are preferentially transported into the brain, whereas 
mouse octanoylated ghrelin (with two amino acid differences) 
is preferentially transported into the blood (118). The rate of 
BBB transport is enhanced by elevated serum triglycerides 
and fasting and blunted in aging, indicating physiological state 
modulation of this mechanism (119). There is also some evidence 
suggesting that a subpopulation of ghrelin-producing neurons 
may exist within the hypothalamus itself, which would not be 
affected by BBB transport and would have entirely unique, as 
yet undescribed, regulation (38). Finally, GHS1R-Gq-induced 
calcium flux (i.e., the signal strength) is attenuated by its heter-
odimerization with serotonin (specifically 5-HT2C), dopamine 
(D1R), and melanocortin (MC3R) receptors (120). Given that 
GHS1R possesses one of the highest levels of basal Gq activity 
of any GPCR, this dimerization may be important for reducing 
basal signaling except in the presence of the appropriate ligands 
for each receptor, potentiating the signal strength of the ghrelin-
GHS1R active conformation or increasing GHS1R Gq-signaling 
via dedimerization after dopamine-D1R or serotonin-5-HT2C 
interactions (121).

After integrating the influences of pulsivity, BBB transport, and 
heterodimerization considered, ghrelin induces feeding behavior 
by depolarizing neurons expressing GHS1R. Chief among these, 
AgRP/NPY neurons express GHS1R-Gq-coupled signaling; this 
produces feeding behavior and reduced thermogenesis (112, 
122). Thus, in the absence of any food cues, ghrelin actually 
reduces sensitivity to reward, acting via AgRP/NPY neurons 
and inhibiting the VTA and NAc as described earlier. However, 
GHS1R is also found in the VTA and laterodorsal VTA, a source 
of midbrain acetylcholine; injecting ghrelin into either of these 
places increases locomotor activity, food consumption, and NAc 
dopamine levels (123). Indeed, ghrelin enhances the rewarding 
value of high fat diet in ad libitum-fed mice (124). If no food is 
consumed after VTA ghrelin injection, VTA GABAergic neurons 
increase activity and reduce the release of dopamine into the NAc 
(123). These effects occur both due to ghrelin action on the VTA 
cell body and by alteration of pre-synaptic activity, especially the 
LH as orexin-deficient mice are resistant to the effect of ghrelin 
(40, 124–126).

These effects may be cross-sensitive for non-food rewards 
such as alcohol and amphetamines. In recovering alcoholics, 
ghrelin injection increases craving for alcohol; coincident with 
this, ghrelin receptor blockade attenuates both alcohol and 
amphetamine-induced locomotion sensitization (127–130). 
However, once sensitization has occurred, blockade of ghrelin 
transport into the brain does not appear to alter alcohol-induced 
locomotor activity or expression of conditioned place preference 

in rats (131). Thus, ghrelin may act to enhance learning of non-
food rewards, but not be necessary to express this preference 
(132). Notably, GHS1R is found in the hippocampus; here it may 
enhance dopamine-induced synaptic plasticity within the hip-
pocampus, promoting retention of the food-related reward via 
GHS1R-D1R heterodimer interactions (133).

Ghrelin action in gaging reward sensitivity can be summarized 
in three ways. First, by acting on AgRP/NPY neurons, it selects 
for food-seeking and food-consuming behavior and ignoring of 
other rewards. Second, by acting on the VTA, it increases the 
amplitude of dopamine release once cue-mediated silencing of 
AgRP/NPY neurons disinhibits these regions. Third, by acting on 
the hippocampus, it promotes dopamine-induced synaptic plas-
ticity and future salience of the reward cue. Given the complexity 
and numerous levels of signal modification in the ghrelin system, 
future research will undoubtedly expand upon this story.

Leptin
Leptin is a signal of positive energy balance and appears to 
exert a dampening effect on the reward system. Leptin is a 
protein hormone released by white adipose tissue in pulses, 
highest around midnight in humans; the amplitude of each pulse 
directly correlates with the total amount of adipose tissue (114, 
134). Glucose, insulin, glucocorticoids, TNF-alpha, and IL-6 all 
increase leptin release (134). Leptin acts on its receptors (leptin 
receptor, LepR), which are located in the CNS, particularly the 
hypothalamus. It can influence neuronal activity from the blood 
via action on the circumventricular organs and vagal afferents 
and is also translocated across the BBB via the action of tanycytes 
(135). The Arc, ventromedial and dorsomedial hypothalamus, 
LH, and NTS most densely express LepRs, and leptin action can 
be either inhibitory or excitatory on these neurons to inhibit food 
consumption and induce satiety (136). LepR also exists within the 
VTA on the dopaminergic projections to the extended central 
amygdala; exciting these neurons reduces food intake (137–139). 
This is consistent with the central amygdala’s role in mediating 
the stress response.

Other populations of LepR expressing dopaminergic neurons 
have their activity inhibited by leptin and produce a general 
reward-dampening effect. Direct administration of leptin into 
the VTA and into the Arc increases the threshold for brain self-
stimulation reward and decreases food intake (140). Conversely, 
knockdown or inhibition of LepRs within the VTA increases 
dopamine release onto the NAc and enhances cocaine-condi-
tioned place preference (13). LepR depletion within the NAc 
core mediates the same effect (13). Interestingly, it also prevented 
D2R agonism from reducing cocaine reinforcement, implying 
that there is some synergy between LepR inhibitory action and 
D2R’s reduction of synaptic plasticity mechanisms (13). This may 
occur via LepR activation of the signal transducer and activator 
of transcription 3 signaling pathway in the VTA, which reduces 
both feeding behavior and motivation to exercise (141). Finally, 
the hyperleptinemia of diet-induced obesity is also sufficient to 
produce the generalized reward-dampening effects described 
above. Mice with diet-induced obesity have reduced drive to 
self-administer cocaine, express less amphetamine conditioned 
place preference, and are less likely to express operant response 
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to sucrose (142, 143). These mice are demonstrated to have 
reduced dopamine turnover in the NAc (142, 143). Interestingly, 
alcohol consumption does not appear to follow this paradigm. 
Leptin administration significantly increased the consumption 
of ethanol in mice exposed to an ethanol deprivation-then-
reinstatement procedure (144). High leptin levels at onset of 
alcohol withdrawal in humans were predictive of cravings and 
alcohol relapse; anti-opioid receptor drugs used to prevent 
relapse reduced leptin levels (145). Future research is necessary 
to understand how alcohol bypasses the dopaminergic reward 
system pathway to induce opioid release in a leptin-potentiated 
manner. Nevertheless, leptin clearly induces satiety by directly 
reducing activity of both the hunger system and the reward 
system, with generalizable reduction of the salience and value of 
both food and non-food rewards.

LiMiTATiONS iN THe STUDY OF THe 
iNTeRFACe beTweeN THe HUNGeR AND 
RewARD SYSTeMS

The above reviewed evidence is not comprehensive, as the 
relationship between the hunger system and reward system is of 
great interest and under active research with exciting new evi-
dence unveiled daily. Given the ancient association of these two 
systems and the necessity of proper balance of food consumption 
to sustain life, it is understandable that nearly every neuronal 
and endocrine system appears to alter food consumption and 
manipulate the reward system in some way. Furthermore, the 
developmental activity of these systems may differ from their 
adult activity, and disruptions to these systems may result in 
significant compensation over the developmental period. The 
techniques utilized to study feeding and reward behavior are also 
limited by the necessity of overactivation, for an extended period, 
a single node within the feeding system. Given the interconnected 

nature of these neuronal circuits within the hunger system, 
continuous activation of any part likely engages the other por-
tions and produces the unified behavioral response. However, it 
is likely that each neuronal pathway described above does not 
independently induce or inhibit food or reward consumption, 
but instead activates a certain portion of a “reward consumption 
sequence.” A clear example of this is how LH-VTA GABAergic 
activation induces gnawing and licking behaviors, but not sucrose 
seeking (62). The nature of this reward consumption sequence 
remains to be uncovered, and will likely require further molecu-
lar characterization of each of these components of the reward 
sequence, in vivo recording of their activity, and more advanced 
optogenetic and chemogenetic stimulation techniques to better 
approximate physiological activity.

CONCLUSiON

The hunger system manipulates the reward system to increase 
the salience and value of food and enhance future response to 
rewarding food cues. Ghrelin and AgRP neurons prime the 
reward system to activate only in the presence of food cues. LH 
fast neurotransmitters and orexin neurons produce food-seeking 
paradigm in response to a learned cue. Other LH GABAergic 
neurons and MCH neurons increase food consumption, reduc-
ing reward seeking behavior and producing reward consuming 
behavior by their action on the VTA and NAc. Early satiety 
signals like GLP1 and CCK put the brakes on food consump-
tion by dampening reward system activity, reducing its value. 
POMC neuronal activity produces a balanced synaptic plasticity 
to respond effectively to future food stimulus, while gradually 
inducing satiety. Late satiety signals like leptin dampen reward 
system activity generally to reduce effort for acquiring food or 
other rewards while in a positive energy state. A summary of 
these effects is presented in Table 1.
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With this paradigm in mind, we can return to the super-
stimulus concept and observe how extreme rewards may bypass 
this balanced relationship of hunger systems enhancing food 
rewards to increase food consumption, and satiety systems 
reducing food rewards to reduce consumption. Highly palat-
able foods can induce food consumption in fed mice, even with 
adult ablation of AgRP neurons—a disruption which typically 
produces starvation (146). This relies on dopaminergic tone 
to produce the feeding response. A natural extension of this 
finding is this: if the reward’s learned value is high enough to 
stimulate a large dopamine spike upon sighting, overcoming the 
reward-dampening influence of satiety circuits and hormones, 
this triggers the feeding sequence. It can be speculated that 
normally, AgRP neurons via their aversive, inhibitory action 
sensitize the reward system so that when it is finally released, 
even an intrinsically low-value food cue produces a large spike 
in dopaminergic activity. This is in keeping with the old saying 
that “hunger is the best sauce.” Thus, it may not be that there 
are separate hedonic and homeostatic feeding mechanisms, but 

instead that highly palatable foods bypass the natural inhibition 
of the reward system by the hunger system.
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