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Abstract: Sepsis in the young population, which is particularly at risk, is rarely studied. O-
GlcNAcylation is a post-translational modification involved in cell survival, stress response and
metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is
physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc
stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve
sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysac-
charide injection (E. Coli O111:B4, 20 mg·kg−1) and compared to control rats (NaCl 0.9%). One
hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy
(NaCl 0.9%, 10 mL·kg−1) ± NButGT (10 mg·kg−1) to increase O-GlcNAcylation levels. Physiological
parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry
was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock
with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT,
contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP
citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimula-
tion improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are
mainly involved in cellular metabolism.
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1. Introduction

Sepsis is a dysregulated response of the host to an infectious pathogen whose response
varies according to the pathogen and host. It is the result of a systemic inflammatory
response syndrome (SIRS) following an infection [1–4]. Most studies focus on septic shock
in adults, however, the populations most affected by septic shock are young children and
elderly people [5–8]. Sepsis is an important but potentially preventable cause of pediatric
death worldwide, with a mortality range from 4% to 50%. It causes 28% of mild disability
in Europe [8]. Early identification, appropriate resuscitation and management are the key
to optimizing outcomes for children with sepsis [9].

Unfortunately, a difficulty for the diagnosis of septic shock in pediatrics is related to the
variability of physiological values according to age and pathophysiological characteristics.
Unlike adults, in which septic shock is generally biphasic with an early phase of vasoplegia
followed by a late phase of low cardiac output, a particular hemodynamic profile is
observed in the younger population. In children, septic shock is a dynamic process
with heterogeneous hemodynamic stages over the first 48 h [10]. Although the child’s
pathophysiology is different (lower cardiac reserve, lower basal blood pressure), there is
a general lack of pediatric studies. Many conclusions are transposed from the studies on
adults. Although pediatric guidelines have recently been published [9], gaps in knowledge
remain for these patients [11].

O-linked-N-acetyl glucosaminylation, more simply called O-GlcNAcylation (O-GlcNAc),
is a post-translational modification consisting of a monosaccharide (β-D-N-acetylglucosamine)
addition on serine or threonine residues [12]. This modification is regulated by a single pair
of enzymes: the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA) which add and
remove the GlcNAc moiety, respectively [13]. Due to its implication in response to stress
and cell survival, the O-GlcNAcylation is a potential new therapeutic strategy [14–16].
We and others have demonstrated that acute O-GlcNAc stimulation by pharmacological
agents improves hemodynamic parameters and survival during sepsis in adult rats [17,18].
However, the O-GlcNAcylation levels vary throughout development with higher levels
in the young rat [19]. In addition, recent studies showed that over stimulation of O-
GlcNAcylation levels is associated with adverse effects [20]. According to these data,
the promising results observed in adults cannot be directly transposed to children and
further studies are needed before considering clinical trials. In this context, we evaluated
the impact of O-GlcNAc stimulation in young rats and identified proteins involved in
the process. We demonstrate that O-GlcNAc stimulation efficiently improves the pups’
response to endotoxemic shock and that ATP-citrate lyase (ACLY) represents a specific
target of interest in this context.

2. Results
2.1. O-GlcNAcylation Levels Decrease during the Early Stage of Life

We have previously demonstrated that O-GlcNAcylation varies throughout aging [19].
Therefore, the first step was to evaluate O-GlcNAcylation levels right after weaning and
compare them to adulthood. The global O-GlcNAcylation level significantly increased
at D28 compared to D84 in the heart (D28/D84 ratio: 2.54 ± 0.16; p < 0.05) (Figure 1A).
This reduction was associated with a significant decrease in the protein level of the two
isoforms of glutamine fructose-6-phosphate amidotransferase (GFAT). Those enzymes
are rate limiting enzymes of the hexosamine biosynthesis pathway which produces UDP-
GlcNAc, the sugar donor for OGT. OGT decreased at D28 compared to D84 in the heart,
while OGA was not significantly modified (p = 0.09) (Figure 1B).



Int. J. Mol. Sci. 2021, 22, 9236 3 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 15 
 

 
Figure 1. Impact of aging and septic shock on O-GlcNAcylation. Evaluation by Western blot of O-
GlcNAcylation levels of cardiac proteins (A) and involved protein levels (B) in animals aged 28 and 
84 days (D28 (young) and D84 (adult). Statistical significance was assessed by Mann–Whitney test 
(**: p < 0.01; ***: p < 0.001). Evaluation by Western blot of O-GlcNAcylation levels of cardiac proteins 
(C) and involved protein levels (D) in CTRL, LPS, LPS+R and NButGT group. Statistical significance 
was assessed by Kruskal–Wallis test with uncorrected Dunn’s post-test (*: p < 0.05; #: p < 0.05 vs. LPS; 
$: p < 0.05 vs. CTRL). Quantification was performed in relation to stain free. Results are expressed as 
mean ± SEM. CTRL: control group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R: subcutaneous ad-
ministration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented with NButGT (10 
mg/kg). n = 7–9. 

2.2. O-GlcNAcylation Levels Increase in Response to Sepsis in Young Rats 
In adult rats (12 weeks of age), the O-GlcNAcylation levels remained stable during 

sepsis and the NButGT-mediated increase in O-GlcNAcylation levels during the early 
phase of septic shock was beneficial [17]. Similarly, in young rats, cardiac O-GlcNAcyla-
tion levels did not significantly vary between CTRL, LPS and LPS+R groups (Figure 1C). 
NButGT treatment induced a significant increase in O-GlcNAcylation levels, indicating 
that NButGT is also efficient at a younger age (O-GlcNAcylation levels relative to CTRL: 
LPS: 1.29 ± 0.07; LPS+R: 1.64 ± 0.08; NButGT: 2.46 ± 0.14; p < 0.05) (Figure 1C). In contrast 
to adult rats, the enzymes involved in O-GlcNAcylation are subject to significant varia-
tions in young rats. GFAT1 expression was increased in the LPS+R group compared to the 
LPS group, while GFAT2 expression was fivefold higher with LPS injection compared to 
CTRL. OGA decreased with LPS injection. NButGT treatment did not impact the expres-
sion of GFAT1, GFAT2 and OGA. OGT did not vary between the different groups (Figure 
1D).  

  

Figure 1. Impact of aging and septic shock on O-GlcNAcylation. Evaluation by Western blot of
O-GlcNAcylation levels of cardiac proteins (A) and involved protein levels (B) in animals aged 28 and
84 days (D28 (young) and D84 (adult). Statistical significance was assessed by Mann–Whitney test
(**: p < 0.01; ***: p < 0.001). Evaluation by Western blot of O-GlcNAcylation levels of cardiac proteins
(C) and involved protein levels (D) in CTRL, LPS, LPS+R and NButGT group. Statistical significance
was assessed by Kruskal–Wallis test with uncorrected Dunn’s post-test (*: p < 0.05; #: p < 0.05 vs.
LPS; $: p < 0.05 vs. CTRL). Quantification was performed in relation to stain free. Results are
expressed as mean ± SEM. CTRL: control group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R:
subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented with
NButGT (10 mg/kg). n = 7–9.
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2.2. O-GlcNAcylation Levels Increase in Response to Sepsis in Young Rats

In adult rats (12 weeks of age), the O-GlcNAcylation levels remained stable during
sepsis and the NButGT-mediated increase in O-GlcNAcylation levels during the early phase
of septic shock was beneficial [17]. Similarly, in young rats, cardiac O-GlcNAcylation levels
did not significantly vary between CTRL, LPS and LPS+R groups (Figure 1C). NButGT
treatment induced a significant increase in O-GlcNAcylation levels, indicating that NButGT
is also efficient at a younger age (O-GlcNAcylation levels relative to CTRL: LPS: 1.29± 0.07;
LPS+R: 1.64 ± 0.08; NButGT: 2.46 ± 0.14; p < 0.05) (Figure 1C). In contrast to adult rats,
the enzymes involved in O-GlcNAcylation are subject to significant variations in young
rats. GFAT1 expression was increased in the LPS+R group compared to the LPS group,
while GFAT2 expression was fivefold higher with LPS injection compared to CTRL. OGA
decreased with LPS injection. NButGT treatment did not impact the expression of GFAT1,
GFAT2 and OGA. OGT did not vary between the different groups (Figure 1D).

2.3. O-GlcNAc Stimulation Significantly Improves Blood Pressure

Heart rate (HR) and blood pressure are key physiological parameters to ensure the
animal’s general health during shock. In our study, the HR was similar in all groups (CTRL:
461 ± 9; LPS: 454 ± 7; LPS+R: 456 ± 7; NButGT: 478 ± 9; beats per minute; Figure 2A).
Nevertheless, both basal systolic blood pressure (SBP) (Figure 2B) and mean arterial
pressure (MAP) (Figure 2C) were lower after LPS injection. Our resuscitation protocol
(LPS+R group) did not improve the SBP and MAP (+8 and +5 mmHg; p = 0.84 and p = 0.37,
respectively) compared to the LPS group. Interestingly, NButGT restored values to those of
the CTRL group (SBP: LPS+R: 74 ± 3; NButGT: 93 ± 4; mmHg; p < 0.05); (MAP: LPS+R:
55 ± 2; NButGT: 72 ± 4; mmHg; p < 0.05).
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Figure 2. Impact of endotoxemic shock and O-GlcNAc stimulation on heart rate, systolic blood
pressure and mean arterial pressure in young rats. To study the impact of endotoxemic shock
and treatments, measures of heart rate (A), systolic blood pressure (B) and mean arterial pressure
(C) were performed. Statistical significance was assessed by Kruskal–Wallis test with uncorrected
Dunn’s post-test (*: p < 0.05). CTRL: control group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R:
subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented with
NButGT (10 mg/kg). Results are expressed as mean ± SEM. n = 9–11.

2.4. O-GlcNAc Stimulation in the Young Population Does Not Correct Circulating Parameters

The plasma lactate concentration was significantly increased in the LPS group com-
pared to the CTRL group, in accordance with the septic shock definition. Three hours
after shock induction in pups, neither fluid therapy nor NButGT treatment decreased
lactates concentration (CTRL: 3.92 ± 0.25; LPS: 6.42 ± 0.45; LPS+R: 6.02 ± 0.34; NButGT:
6.34 ± 0.29; mmol·L−1; p < 0.05) (Figure 3A).
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Figure 3. Impact of endotoxemic shock and O-GlcNAc stimulation on circulating parameters, adapted
PRISM score and survival time. To study the impact of endotoxemic shock and treatments, the levels
of lactates (A), pH (B), glycemia (C), leukocytes (D) and markers of organ function (Troponin T,
Creatinine and Aspartate transaminase (ASAT) (E) were measured in venous blood collected from
rats anesthetized with isoflurane. Statistical significance was assessed by Kruskal–Wallis test with
uncorrected Dunn’s post-test (*: p < 0.05, relative to CTRL). (F) Adapted PRISM score was realized
with behavior score, physiological and circulating parameters. Statistical significance was assessed
by Kruskal–Wallis test with uncorrected Dunn’s post-test (*: p < 0.05). n = 5–7. (G) Survival analysis
is presented using a Kaplan–Meyer curve. Statistical significance was assessed by Mantel–Cox test
(***: p < 0.001, relative to LPS+R). n = 16 per group. CTRL: control group, LPS: i.v. injection of LPS
(20 mg/kg), LPS+R: subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation
supplemented with NButGT (10 mg/kg).

This hyperlactatemia is associated with metabolic acidosis (pH < 7.2). Endotoxemic
shock results in a significant decrease in pH compared to the CTRL group. The pH is
unchanged between the other studied groups (CTRL: 7.27 ± 0.02; LPS: 7.15 ± 0.02; LPS+R:
7.17 ± 0.13; NButGT: 7.18 ± 0.01; p < 0.05) (Figure 3B).
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Hypoglycemia was observed in the LPS group compared to the CTRL group, and
was restored neither by fluid therapy nor NButGT (CTRL: 11.67 ± 0.31; LPS: 2.68 ± 0.60;
LPS+R: 3.05± 0.66; NButGT: 2.49± 0.47; p < 0.05; mmol·L–1; Figure 3C). Severe leukopenia
was observed in the LPS group compared to the CTRL group and neither fluid therapy nor
NButGT induced an improvement in leukocyte levels (CTRL: 5.67 ± 0.76; LPS: 1.83 ± 0.26;
LPS+R: 1.79 ± 0.32; NButGT: 1.52 ± 0.32; p < 0.05; 103 µL–1; Figure 3D).

Septic shock leads to multivisceral failure. Our LPS model resulted in a significant
increase in troponin T, creatinine and ASAT compared to the control group. Fluid ther-
apy treatment with or without NButGT did not improve markers of organ dysfunction
(Figure 3E).

2.5. The General Condition and Survival of Young Animals Is Improved by Nbutgt Treatment

The Pediatric Risk of Mortality (PRISM) score used in pediatric intensive care units
has been adapted for application to the animal. For this purpose, we have established
threshold values based on the measured means and standard deviation of the control
animals for the different parameters presented in Table S1. This score considers the score
for assessing the health status of the animals, based essentially on the observation of the
animal’s behavior [17], hemodynamic variables (e.g., heart rate, arterial pressure) and
circulating parameters (e.g., lactates, glycemia). As for patients, the higher the PRISM score,
the worse the animal’s overall health.

To evaluate the impact of endotoxemic shock and treatments on health status, an
adapted PRISM score was performed. Rats were monitored frequently throughout the
study. The global health status was analyzed by a behavior score (A). Physiological
functions and circulating parameters were measured (B). By summing these data, a PRISM
score can be determined all animals. AHAS: Animal Health Assessment Score; SBP: systolic
blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate;
RR: respiratory rate; ASAT: aspartate aminotransferase.

The PRISM score was increased in the LPS group compared to the CTRL group. Fluid
therapy induced a limited improvement of the PRISM score compared to the LPS group.
Rats in the NButGT group had a significantly lower PRISM score compared to the LPS+R
group (CTRL: 2.1 ± 0.8; LPS: 15.8 ± 0.4; LPS+R: 13.2 ± 0.7; NButGT: 9.7 ± 0.6; p < 0.05;
Figure 3F).

Finally, NButGT resulted in a significant prolongation of survival time (NButGT: 36.00;
LPS+R: 13.65; p < 0.001; median survival in hours; Figure 3G).

2.6. Identification of Putative Cardiac O-GlcNAcylated Proteins by O-GlcNAcylomic

Untargeted O-GlcNAcylomic mass spectrometry was performed on whole heart
samples to identify putative cardiac O-GlcNAcylated proteins. This approach allowed us
to identify 1327 putative cardiac O-GlcNAcylated proteins (Table S2). With our quality
criteria, 48 putative cardiac O-GlcNAcylated proteins were identified (Figure 4A,B and
Table S3). Among these proteins, only 33 are differentially O-GlcNAcylated amongst all
the groups (Figure 4A,D). Through protein–protein interaction analysis, we highlighted
that most of these proteins are involved in cardiac metabolism, structure and DNA-RNA
processing (Figure 4C). Strikingly, only one protein, the ATP-citrate lyase (ACLY), is less
O-GlcNAcylated after NButGT treatment (Figure 4B). Among the 33 proteins, we selected
those not described in the literature and with a major role in heart structure or function, for
further study. After applying this last filter, two proteins were selected to be more closely
studied: troponin C (Tnnc1) and mitochondrial 2-oxoglutarate/malate carrier protein
(Slc25a11). The Log2FC profil of the three protein of interest is showed with black arrow.



Int. J. Mol. Sci. 2021, 22, 9236 7 of 15
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 15 
 

 
Figure 4. Flow chart and proteins of interest. (A) Flowchart of mass spectrometry analysis (B) Log2(fold change) of O-
GlcNAcylation levels of selected proteins. (C) Protein-protein network analysis (STRING network) of proteins with a 
Log2(fold change) >0.9 or <−0.9. (D) Log2(fold change) of O-GlcNAcylation levels of proteins differentially O-GlcNAcylated 
in the LPS, LPS+R and NButGT groups. CTRL: control group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R: subcutaneous 
administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented with NButGT (10 mg/kg). n = 2. 

While protein expression of troponin C remained constant in all the condition stud-
ied (Figure 5A-ii), the level of O-GlcNAcylation was increased in the LPS group, reduced 
with fluidotherapy and increased with NButGT treatment (Figure 5A-i). Western blot 
analysis of Slc25a11 revealed a lower expression in the LPS group and no variation in the 
LPS+R and NButGT group (Figure 5B-ii). Interestingly, O-GlcNAcylation of Slc25a11 fol-
lows a completely different pattern and was increased in the LPS group, reduced with 
fluidotherapy and increased with NButGT treatment (Figure 5B-i). Taken together, these 
results highlight the potential role of O-GlcNAcylation of these proteins during shock. 
The ATP-citrate lyase is less O-GlcNAcylated in the NButGT group (Figure 5C-i). To con-
firm that the observed variation of O-GlcNAcylation was not due to changes in protein 
expression, we analyzed ACLY total protein levels. Interestingly, the protein expression 
remained stable in all groups (Figure 5C-ii). 

Figure 4. Flow chart and proteins of interest. (A) Flowchart of mass spectrometry analysis (B) Log2(fold change) of
O-GlcNAcylation levels of selected proteins. (C) Protein-protein network analysis (STRING network) of proteins with a
Log2(fold change) >0.9 or <−0.9. (D) Log2(fold change) of O-GlcNAcylation levels of proteins differentially O-GlcNAcylated
in the LPS, LPS+R and NButGT groups. CTRL: control group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R: subcutaneous
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While protein expression of troponin C remained constant in all the condition studied
(Figure 5A-ii), the level of O-GlcNAcylation was increased in the LPS group, reduced
with fluidotherapy and increased with NButGT treatment (Figure 5A-i). Western blot
analysis of Slc25a11 revealed a lower expression in the LPS group and no variation in
the LPS+R and NButGT group (Figure 5B-ii). Interestingly, O-GlcNAcylation of Slc25a11
follows a completely different pattern and was increased in the LPS group, reduced with
fluidotherapy and increased with NButGT treatment (Figure 5B-i). Taken together, these
results highlight the potential role of O-GlcNAcylation of these proteins during shock.
The ATP-citrate lyase is less O-GlcNAcylated in the NButGT group (Figure 5C-i). To
confirm that the observed variation of O-GlcNAcylation was not due to changes in protein
expression, we analyzed ACLY total protein levels. Interestingly, the protein expression
remained stable in all groups (Figure 5C-ii).
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Figure 5. O-GlcNAcylation and expression of troponin C, mitochondrial 2-oxaloacetate/malate transporter protein and ATP-
citrate lyase. Log2(fold change) of O-GlcNAcylation of troponin C (A-i), mitochondrial 2-oxaloacetate/malate transporter
protein (B-i) and ATP-citrate lyase (C-i) between different groups. n = 2. Evaluation by Western blot of the expression of
troponin C (A-ii), mitochondrial 2-oxaloacetate/malate transporter protein (B-ii) and ATP-citrate lyase (C-ii) in different
groups. Statistical significance was assessed by Kruskal–Wallis test with uncorrected Dunn’s post-test (*: p < 0.05).
Quantification was in relation to stain free. Results are expressed as mean ± SEM. CTRL: control group, LPS: i.v. injection of
LPS (20 mg/kg), LPS+R: subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented
with NButGT (10 mg/kg). n = 6–7.

2.7. ATP-Citrate Lyase Is Less O-GlcNAcylated in the NButGT Group

In our set of proteins, the ATP-citrate lyase is the only protein with a reduction in
O-GlcNAcylation level in the NButGT group (Figure 4B).

Serine and threonine are the two amino acids potentially O-GlcNAcylated and/or
phosphorylated. The phosphorylation of ACLY on threonine 447 and serine 451 is un-
changed with LPS challenge (Figure 6A) while the phosphorylation of serine 455 is in-
creased with LPS injection (Figure 6B). Strikingly, neither fluidotherapy nor NButGT
treatment affected these phosphosites (Figure 6A,B).



Int. J. Mol. Sci. 2021, 22, 9236 9 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 15 
 

 
Figure 5. O-GlcNAcylation and expression of troponin C, mitochondrial 2-oxaloacetate/malate transporter protein and 
ATP-citrate lyase. Log2(fold change) of O-GlcNAcylation of troponin C (A-i), mitochondrial 2-oxaloacetate/malate trans-
porter protein (B-i) and ATP-citrate lyase (C-i) between different groups. n = 2. Evaluation by Western blot of the expres-
sion of troponin C (A-ii), mitochondrial 2-oxaloacetate/malate transporter protein (B-ii) and ATP-citrate lyase (C-ii) in 
different groups. Statistical significance was assessed by Kruskal–Wallis test with uncorrected Dunn’s post-test (*: p < 0.05). 
Quantification was in relation to stain free. Results are expressed as mean ± SEM. CTRL: control group, LPS: i.v. injection 
of LPS (20 mg/kg), LPS+R: subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation supplemented 
with NButGT (10 mg/kg). n = 6–7. 

2.7. ATP-citrate Lyase Is Less O-GlcNAcylated in the NButGT Group 
In our set of proteins, the ATP-citrate lyase is the only protein with a reduction in O-

GlcNAcylation level in the NButGT group (Figure 4B). 
Serine and threonine are the two amino acids potentially O-GlcNAcylated and/or 

phosphorylated. The phosphorylation of ACLY on threonine 447 and serine 451 is un-
changed with LPS challenge (Figure 6A) while the phosphorylation of serine 455 is in-
creased with LPS injection (Figure 6B). Strikingly, neither fluidotherapy nor NButGT 
treatment affected these phosphosites (Figure 6A,B). 

 
Figure 6. Impact of septic shock and NButGT treatment on ACLY phosphorylation. Evaluation by 
Western blot of the phosphorylation of ACLY on threonine 447, serine 451 (A) and serine 455 (B). 
Scheme 0. Results are expressed as mean ± SEM. CTRL: control group, LPS: i.v. injection of LPS (20 
mg/kg), LPS+R: subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT: resuscitation sup-
plemented with NButGT (10 mg/kg). n = 5–9. 

Figure 6. Impact of septic shock and NButGT treatment on ACLY phosphorylation. Evaluation by Western blot of the
phosphorylation of ACLY on threonine 447, serine 451 (A) and serine 455 (B). Statistical significance was assessed by
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group, LPS: i.v. injection of LPS (20 mg/kg), LPS+R: subcutaneous administration of 10 mL/kg of NaCl 0.9%, NButGT:
resuscitation supplemented with NButGT (10 mg/kg). n = 5–9.

3. Discussion

Our study focused on the impact of septic shock treatment in young animals. We
found that, despite higher O-GlcNAcylation levels in young rats, increasing these levels
is an interesting strategy to improve blood pressure and time of survival in septic shock.
In addition, using a mass spectrometry approach, we identified proteins involved in
metabolism that are differentially O-GlcNAcylated in our treated condition.

3.1. Cardiac O-GlcNAc throughout Aging

We first confirmed that O-GlcNAcylation levels are higher in cardiac tissues from
young compared to adult rats. Our previous results demonstrated that O-GlcNAcylation
levels vary in a tissue- and time-specific manner, suggesting that O-GlcNAcylation lev-
els may play an important role in development [19]. This result challenges the current
paradigm that associates prolonged high levels of O-GlcNAcylation with deleterious ef-
fects [21]. Indeed, a previous study demonstrated that overstimulation of O-GlcNAcylation
levels may be associated with adverse effects in a brain infarct model [20].

3.2. Validation of the Septic Shock Model in Young Rats

Using several shock models, we have previously shown that increasing O-GlcNAcylation
levels improve the health status of adult rats [17]. In order to validate these observations in
young rats, it was necessary to adapt the model to 28-day-old rats. As expected, based on
the definition of septic shock, the injection of LPS causes hypotension and filling-resistant
increase in lactate associated with metabolic acidosis. However, unlike adult rats, young
rats do not exhibit tachycardia. Young rats also have limited cardiac reserve and may
not benefit hemodynamically from an increased heart rate in the same manner as adults
do. Resting HR of young rats is higher than in adults and tachycardia may not allow for
adequate diastolic filling [11,22]. As previously described, in the young population the
heart decompensates quickly with sustained bradycardia and drop of cardiac output [22].
This observation is in accordance with results provided in a neonatal septic shock model in
pigs, showing an early increase in HR, followed by a rapid decrease in HR associated with
a decrease in MAP prior to death [23]. Similarly, a high mortality rate is observed early in
our model. This model of septic shock in young rats could be considered as representative
of the clinical symptomatology of pediatric septic shock.
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3.3. Impact of O-GlcNAcylation Stimulation in Septic Shock in Young Rats

To evaluate the impact of our treatment on the proteins involved in the regulation of
O-GlcNAc levels, GFAT1, GFAT2 (the rate limiting enzyme of the hexosamine biosynthetic
pathway), OGA and OGT were evaluated by Western blot. As described in the literature,
GFAT2 expression is increased in response to LPS in all groups and NButGT treatment
does not significantly reduce its expression [24]. Interestingly, and as previously described,
NButGT treatment increases O-GlcNAc levels without affecting enzyme expression [17].
However, when compared to the LPS+R group, GFAT1 expression tends to decrease
(p = 0.07) in the NButGT group, potentially indicating a negative feedback on its expression.

In this study, we have demonstrated that NButGT treatment leading to increasing
O-GlcNAcylation levels (~1.5 fold) and restoring SBP and MAP is effective in young rats
despite physiologically higher O-GlcNAcylation levels. NButGT treatment also tends to
increase heart rate, which could compensate for the low cardiac reserve. However, NButGT
does not reduce lactatemia and correct metabolic acidosis. The new definition of septic
shock includes the notion of multiple organ failure, which is found in this model with
heart, kidney and liver failure [9]. NButGT treatment does not decrease cardiac troponin
T (Tc) and creatinine levels as we previously reported in adult rats [17]. However, the
increase in blood troponin Tc and creatinine levels is smaller in young rats. In a mice model
of LPC, despite equivalent cardiac troponin I and T levels, adult mice exhibited more
severe cardiac damage than young mice [25]. The relevance of an increase in troponins
is currently discussed in children in sepsis [26,27]. Finally, our study demonstrated that
NButGT improves the adapted PRISM score used by clinicians as a predictive marker
of mortality and decreases mortality as previously described in adult rats [17]. These
results are supported by a recent study in pediatric intensive care units in which a low
glutamine level in plasma (essential for the formation of UDP-GlcNAc via the hexosamines
biosynthesis pathway) (<420 µmol/L) at admission is associated with an increased risk
of multivisceral failure [28]. In addition, glutamine supplementation tends to reduce
morbidity and mortality following sepsis [29].

Our results show for the first time that a difference in O-GlcNAcylation levels between
the basal levels and the post-stimulation levels is more beneficial in stress situations than
intrinsic O-GlcNAcylation levels by themself. Thus, an early treatment to increase the
levels of O-GlcNAcylation of proteins at any basal level may be effective.

3.4. O-GlcNAcylomic Analysis

To date, no studies have evaluated the O-GlcNAcylome during septic shock in
young rats or humans. O-GlcNAcylomic analysis allowed us to identify new cardiac
O-GlcNAcylated proteins. We focused our attention on three proteins: Tnnc1, Slc25a11 and
ACLY.

Troponin complex (troponin T, C and I) is a key modulator of muscle contraction
through interaction with tropomyosin and inhibition of the ATPase activity of the acto-
myosin complex [30]. Sepsis has been associated with a decrease in contractility [31] and an
increase in O-GlcNAcylation of troponin Tc has been reported in a rat model of myocardial
infarction [32]. Stimulation of O-GlcNAcylation of cardiac troponin I has been associated
with a decrease in contractility [32]. For the first time, via untargeted mass spectrometry,
we have identified troponin C as being O-GlcNAcylated in the heart. The functional impact
of O-GlcNAcylation on troponin C remains to be explored.

In addition to cardiac contraction, septic shock also affects cardiac metabolism. The mi-
tochondrion, a key organelle in metabolism, is affected during sepsis and is involved in the
multiple organ dysfunction [33]. Slc25a11 is a mitochondrial solute carrier involved in sev-
eral pathways among which are gluconeogenesis from lactate, the oxoglutarate-isocitrate
shuttle and the malate-aspartate shuttle [34,35]. Slc25a11 has also been described to be
involved in apoptosis and insulin secretion [36,37]. Acute stimulation of O-GlcNAcylation
of mitochondrial proteins has been associated with cardioprotective effects [38,39]. Deci-
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phering the impact of O-GlcNAcylation on Slc25a11 may lead to a better understanding of
the impairment of mitochondrial metabolism during sepsis.

ATP-citrate lyase (ACLY) is responsible for the conversion of citrate to acetyl-CoA
and oxaloacetate [40]. We reported here a unique O-GlcNAcylation profile of ACLY. The
O-GlcNAcylation level decreases when OGA is inhibited by NButGT. This particular
O-GlcNAc signature may be the proof of the key role played by O-GlcNAcylation of
ATP-citrate lyase in response to metabolic change and stress. Recently, ATP-citrate lyase
inhibition has been proposed as a potential treatment track for cancer and/or metabolic
diseases [41].

Interestingly, we found that phosphorylation of serine 455 of ACLY, which is an
activating phosphorylation [42], is increased in the LPS group. This result is supported
by recent studies that demonstrated that LPS-mediated activation of ATP-citrate lyase
is essential for the macrophage inflammatory response via nitric oxide, reactive oxygen
species, prostaglandin E2 inflammatory mediators′ production [43] and inflammatory
gene induction [42]. More recently, an increase in ACLY has been reported specifically in
children surviving sepsis [44]. All these data pinpoint the involvement of ATP citrate lyase
in sepsis and open a new therapeutic avenue.

4. Limits

Our study was carried out on animals aged 28 days, which corresponds to the end of
weaning in rats. However, we have studied only this specific period of time while we have
shown that O-GlcNAcylation levels are highly variable with age [19]. We cannot exclude
that the observed effects would be different at younger (neonatal) or older ages. In our
LPS model, treatments (fluidotherapy and NButGT) were administered subcutaneously
because the penile vein is not accessible at 28 days unlike the 84-day study. The intravenous
route allows a faster administration and diffusion of the active ingredients, which could
improve the beneficial effects.

5. Conclusions

Our data suggest that increasing O-GlcNAcylation in the early phase of septic shock is
an interesting therapeutic strategy to reduce the septic shock burden for children. Further
studies are necessary to confirm its putative therapeutic interest and the follow-up of
O-GlcNAcylation levels in patients will be necessary to consider designing new treatment
in clinic. Proteins identified in mass-spectrometry and more specifically ACLY have to
be explored extensively to understand the role of acute O-GlcNAc stimulation in stress
response.

6. Methods

Additional details on the animal model, tissue preparation and methods used are
provided in an online data supplement.

6.1. Reagents

O-GlcNAcase inhibitor NButGT was synthesized using Matthew S. Macauley meth-
ods [45].

6.2. Animal Model and Measures

Rats were housed under standard conditions of temperature (21–24 ◦C), humidity
(40–60%) and 12 h light/dark cycle with light period starting at 07:00 a.m. Food and water
were available ad libitum.

Thirty minutes before shock induction, rats received intravenous buprenorphine
(0.03 mg/kg). Rats were anesthetized with an O2–/isoflurane mixture (induction: 5%
isoflurane, flow rate 1L/min; maintenance: 2% isoflurane, flow rate 0.5 L/min). En-
dotoxemic shock was induced in twenty-eight-day-old male Wistar rats (Charles River,
Saint-Germain-Nuelles, France) by lipopolysaccharides (LPS) injection (E. Coli O111:B4,
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20 mg·kg−1) (Sigma-Aldrich, Saint Louis, MI, USA) and was compared to control rats
(injection of NaCl 0.9%—CTRL). One hour after LPS injection, rats were randomly assigned
to: no therapy (LPS), fluidotherapy (NaCl 0.9%, 10 mL·kg–1 – LPS+R) ± NButGT (NButGT,
10 mg·kg−1—NButGT) to increase O-GlcNAcylation levels (n = 11 per group). Two hours
later, physiological functions, blood gas parameters and plasmatic markers of sepsis sever-
ity were measured, enabling us to calculate an adapted Pediatric Risk of Mortality score
(PRISM score) (Figure S1; Table S1A,B). Animals were euthanized with a lethal dose of
pentobarbital (Dolethal®, Vetoquinol, Paris, France) and hearts were immediately freeze-
clamped to preserve post-translational modifications. In another group, the impact of
treatment was evaluated on survival (n = 16 per group). During this period, animals were
prematurely euthanized with a lethal dose of pentobarbital if they met specific criteria:
incapacity to move, decubitus position, difficulty in breathing.

6.3. Tissue Preparation and Protein Extraction

Frozen hearts were crushed to obtain a powder as previously described [19] (Table S4).

6.4. Western Blot

Western blotting experiments were performed as previously described [46] (Table S5).
Analysis was performed using Image Lab software (Image Lab 6.1, Bio-Rad, CA, USA).
#: dilutions carried out in 3% BSA; *: dilutions carried out in 5% milk.

6.5. Proteomic Study

Proteomic analyses were performed as previously described [19]. Peptides were
identified and quantified by HR/AM LC-MS/MS on an Orbitrap Tribrid Fusion Lumos as
described [47]. The relative abundances of 5593 putative O-GlcNAcylated proteins were
evaluated by label-free quantification within Proteome Discoverer from MS1 intensities
(Table S6). Profiles of abundances were analyzed using RStudio software (RStudio 3.12.0,
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA,
USA) and protein–protein networks were analyzed using STRING database (v11) [48].

6.6. Statistical Analyses

Results were expressed as an average ± SEM of n different rats. Analyses of Western
blots were expressed in relation to the average of the stain free and then reduced to the aver-
age of the control samples (D84 or CTRL). For D28-D84 Western blots, data were analyzed
by a Mann–Whitney test. For CTRL-LPS-LPS+R-NButGT Western blots, physiological
and biological parameters and PRISM score, data were analyzed by a Kruskal–Wallis test.
Survival analysis is presented using a Kaplan–Meyer curve and was evaluated using a
Mantel–Cox test. A value of p < 0.05 was considered significant. All statistical calculations
and graphs (except those performed with R software) were performed using GraphPad
PRISM software (version 7.00).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179236/s1.
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