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ABSTRACT We report the draft genome sequence of the promising fish probiotic Bacillus
subtilis YBS29. This strain exhibits in vitro antimicrobial activity against Aeromonas veronii
and enhances growth and disease resistance in the Indian major carp species Labeo rohita
against motile Aeromonas septicemia (MAS). Its genome contains a gene cluster encoding
multiple bacteriocins and lacks genes for virulence factors. These genomic features signify
potential for safe use as a probiotic in aquaculture.

B acillus subtilis YBS29 was isolated from a marine sponge species (Hemimycale columella)
and identified as described previously by Paul et al. (1). It exhibits in vitro inhibitory activity

against pathogenic Aeromonas veronii, prevents MAS in Labeo rohita, and is considered a
promising fish probiotic candidate (1). Prior permission was received from the IBGE ethical
review committee for the animal experiments (approval number IBGE-ERC-008).

High-quality genomic DNA of B. subtilis YBS29 was extracted from an overnight culture
in Zobell broth at 28°C using a GeneJET genomic DNA purification kit (Thermo Fisher
Scientific, USA), and the quality and quantity of the DNA were checked using a NanoDrop
spectrophotometer (Thermo Fisher Scientific). The bacterium was identified as B. subtilis
(GenBank accession number MT605348.1) based on 16S rRNA gene sequence homology,
as described previously (1). A DNA library was prepared using the Nextera XT library prep
kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions (2). Sequencing
(600 cycles) was performed using the MiSeq benchtop sequencer (Illumina, Inc.) (3, 4) and
yielded 2,392,312 paired-end reads. The Bacterial Analysis Pipeline SpeciesFinder v2.0 was
used for the initial identification of the bacterium (5). Sequence adaptors were removed
using Trimmomatic v0.38 (6), and quality filtering was conducted using PRINSEQ v0.20.3 (7).
De novo assembly was performed using SPAdes v3.9.0 (8), and quality evaluation of the
assembled genome sequence was carried out using QUAST v5.0.2 (9). Genome annotation
was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (10). Default
parameters were used for all software unless otherwise specified.

The de novo assembly resulted in an estimated chromosome size of 4,064,081 bp
(49 contigs), with 43.6% G1C content from 2,392,312 paired-end reads and a total of
986,379,456 bases sequenced, providing 243� coverage. The genome contains 4,272
coding sequences and 106 RNA genes as predicted using PGAP (81 tRNA, 20 rRNA, and 5
noncoding RNA [ncRNA] genes). RAST analysis (11) predicted 332 subsystems and 1,692 pro-
tein-coding genes in putative functional categories. The N50 and L50 values of the assembly
were 153,460 bp and 7, respectively. The largest and smallest contigs were 438,409 bp and
547 bp, respectively. No remarkable antibiotic-resistant genes, no genes encoding putative
virulence factors, and no plasmids were identified in the genome using ResFinder v4.1 (12),
VirulenceFinder v2.0 (13), and PlasmidFinder v2.1 (14), respectively, with default parameters.
Using antiSMASH v5.1.2, the genome was determined to encode several orthologs of intrinsic
genes of antimicrobial peptides, including surfactin, subtilin, bacillibactin, bacilysin, subtilosin
A, bacillaene, fengycin, and plipastatin (15). The genome encodes bacitracin stress response
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genes (BceA, BceB, BceR, and BceS) and denitrifying reductase genes (NorD and NorQ).
Additionally, bacteriocin synthesis gene clusters coding for salivaricin D, flavucin, entianin,
ericin A and S, mejucin, nisin (A, F, Q, U, and Z), and subtilosin (SboX) were detected in the
genome using BAGEL4 (16). The presented genome information will assist further studies of
this strain to exploit its probiotic potential.

Data availability. The whole-genome shotgun project of B. subtilis strain YBS29 has
been deposited at GenBank under the accession number JANTOL000000000. The raw
sequence reads are available under the SRA accession number SRX15796884, BioProject
accession number PRJNA796512, and the BioSample accession number SAMN24891510.
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