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Background: Individual patient data (IPD) meta‐analysis allows for the

exploration of heterogeneity and can identify subgroups that most benefit from

an intervention (or exposure), much more successfully than meta‐analysis of

aggregate data. One‐stage or two‐stage IPD meta‐analysis is possible, with the

former using mixed‐effects regression models and the latter obtaining study

estimates through simpler regression models before aggregating using standard

meta‐analysis methodology. However, a comprehensive comparison of the two

methods, in practice, is lacking.

Methods: We generated 1000 datasets for each of many simulation scenarios

covering different IPD sizes and different between‐study variance (heterogene-

ity) assumptions at various levels (intercept and exposure). Numerous simula-

tion settings of different assumptions were also used, while we evaluated

performance both on main effects and interaction effects. Performance was

assessed on mean bias, mean error, coverage, and power.

Results: Fully specified one‐stage models (random study intercept or fixed

study‐specific intercept; random exposure effect; and fixed study‐specific effects

for covariate) were the best performers overall, especially when investigating

interactions. For main effects, performance was almost identical across models

unless intercept heterogeneity was present, in which case the fully specified

one‐stage and the two‐stage models performed better. For interaction effects,

differences across models were greater with the two‐stage model consistently

outperformed by the two fully specified one‐stage models.

Conclusions: A fully specified one‐stage model should be preferred (account-

ing for potential exposure, intercept, and, possibly, interaction heterogeneity),

especially when investigating interactions. If non‐convergence is encountered

with a random study intercept, the fixed study‐specific intercept one‐stage

model should be used instead.
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1 | INTRODUCTION

What is already known?

• One‐stage and two‐stage approaches to IPD
are known, and software to perform them is
routinely available.

• Some comparative advantages are known, but
very little is known about how they compare
in terms of performance on key metrics.

What is new?

• A comprehensive and consistent comparison
shows that a fully specified one‐stage model
should be preferred, especially when
investigating interaction terms

• The fully specified one‐stage model should
include random study intercept or fixed study‐
specific intercept; random exposure effect; and
fixed study‐specific effects for a covariate.

• The random study intercept model may not
converge, and in that case, the fixed study‐
specific intercept model should be used instead.

Potential impact for RSM readers outside
the author's field:

• Individual patient data meta‐analysis is on the
rise, and these findings should provide
guidance when conducting such analyses.
Exploring heterogeneity between studies and identifying the
subgroup or subgroups that benefit the most from a success-
ful intervention or exposure should be a key aim of every sys-
tematic review and meta‐analysis. Traditionally, this has
been achieved through meta‐regressions, which use pub-
lished results and are easy to perform, but also tend to be
underpowered and prone to ecological bias and confound-
ing.1,2 Individual patient data (IPD) meta‐analysis provides
a potential solution to these problems, along with great
modelling flexibility and numerous other advantages, like
dealing with missing data at the patient level.3 However, an
important disadvantage of IPD meta‐analysis is the need
for access to the original patient‐level data. Thus, there are
logistical challenges that need to be overcome; analyses
methods are more complex, while only a subset of the iden-
tified datasets are usually obtained since it is common for the
authors of the original studies to refuse to share data. Neces-
sarily, IPD analyses can only focus on a self‐selected subsam-
ple of the identified relevant studies, which, however, tend to
be more recent and of higher quality.

Meta‐analysts wishing to perform an IPD analysis face a
choice between one‐stage and two‐stage approaches. The
one‐stage approach uses mixed‐effects multilevel regressions
to model within‐ and between‐study variances (ie, heteroge-
neity) and quantify the effect or association of interest in a
single analytical model. The association of interest may be a
main or an interaction effect, while the regression model
can be linear, logistic, Poisson, or other, depending on the
outcome type. An alternative IPD approach involves model-
ling in two stages. In the first step, study‐level estimates (main
or interaction effects/associations) are obtained using simple
regression models. In the second step, the commonmethods
of meta‐analysis summary results are utilised to obtain an
overall estimate across all studies. Usually, a random‐effects
DerSimonian‐Laird model is used in the second step,4 which
has been shown to be more conservative and better
performing in the presence of heterogeneity,5 even when
the normality assumption for the effect(s) is violated.6

Variousmodelling choices are possible within the 1‐stage
IPD approach, under different assumptions for the intercept
(random, fixed common, or fixed study specific) and similarly
for the exposure effect and any covariates, including any
baseline information. It is known that the correct specifica-
tion of the 1‐stagemodel is critical,7,8 and guides and software
to aid researchers in this are available.9-11 Fewer modelling
options are available for two‐stage analysis, and they are
mainly around the choice of the second step model, fixed
effect, or one of the numerous random‐effects options.12,13

A well‐developed implementation of a two‐stage analysis is
available in Stata,14 with the less flexible ipdmeta command,
which can only analyse a continuous outcome, available in R
software.15 One‐stage analyses rely on widely used mixed‐
effects models and are considered more flexible,16 but they
are more challenging in both conducting and communicat-
ing the findings, especially regarding visualisation with the
hallmark forest plot, although software solutions are avail-
able.10 These challenges with the one‐stage approach drive
meta‐analysts to the two‐stage approach, which ismore prev-
alent,17 although other challenges like power calculations,18

or multiple imputation,19-21 are common across both
approaches.

An algebraic comparison of one‐stage and two‐stage
IPD demonstrated that in the presence of covariates, which
is typically the case, the two approaches completely agree
only in scenarios of unrealistically simplifying assump-
tions.22 Often, results are found to be similar in real
datasets, but 1 stage is recommended as a more exact statis-
tical approach that accounts for parameter correlation,
although estimation issues affect both approaches (unstable
two‐stage estimates and convergence issues for fully speci-
fied 1‐stage models).23 However, it has recently been
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suggested that one‐stage analyses of interactions can lead to
deluded evaluations in certain scenarios, namely, when the
covariate of interest is grossly imbalanced across trials (for
example, when assessing the interaction between gender
and the intervention of interest, but some studies have only
enrolled men).24 But it has also been argued that most dif-
ferences between the two approaches arise because of dif-
ferent modelling assumptions, rather than the choice of
one‐stage or two‐stage itself.11

Nevertheless, practical recommendations on the model-
ling choice between one‐stage and two‐stage meta‐
analyses are lacking, based on performance metrics in real‐
world settings. Asymptotically, the methods may well be
equivalent or very close,11 although it has been shown that
in the common scenario when covariates are present, the
two approaches coincide only under extreme simplifying
assumptions, which are somewhat unrealistic in practice.22

Nevertheless, little is known about practical performance of
these methods in widely used models, especially when num-
bers are small, or when the focus is on interaction terms,
which are typically the primary outcome in IPD. The aim
of the paper is to comprehensively evaluate one‐stage vs
two‐stage IPD across numerous scenarios and provide practi-
cal recommendations for these widely used methods.
2 | METHODS

2.1 | One‐stage

As previously mentioned, mixed‐effects models for all
types of outcomes are relevant in the IPD context. We
will focus on linear models and a continuous outcome
for simplicity (reasonable computation time and fewer
convergence issues), both in the notation and the simula-
tion set‐up to be described in a later section. Detailed
descriptions of such models for various outcomes have
been described elsewhere.9,25,26 The simplest specification
assumes a common intercept across studies, fixed effect
for the covariate (assuming one is present and for which
we wish to adjust the models), and a random effect for
the exposure, where we use gammas and betas to describe
fixed and random effects, respectively:

Yij ¼ γ0 þ β1j·groupij þ γ2·xij þ εij; (1)

β1j ¼ γ1 þ u1j: (2)

Where error ε and centred random‐effects component
u are usually assumed to be normally distributed:

εijeN 0; σ2j
� �

; (3)

u1jeN 0; τ21
� �

; (4)
where i is the patient, j the study, Y the continuous out-
come, γ0 the fixed common intercept, β1j the random
exposure effect for study j, γ1 the mean exposure effect,
group the binary exposure variable (ie, 0 = control and
1 = treatment), γ2 the fixed covariate effect, x the covari-
ate, τ21 the between‐study variance for the exposure, and
σ2j the within‐study variance for study j.

An alternative specification is generally recom-
mended, since the common intercept and fixed covariate
assumptions may not be easy to justify, which involves
study‐varying fixed intercept and fixed covariate effects9:

Yij ¼ γ0j þ β1j·groupij þ γ2j·xij þ εij; (5)

where β1j is as in (2), γ0j the fixed intercept for study j,
and γ2j the fixed covariate effect for study j. A more com-
plex specification involves random effects for the study
intercepts:

Yij ¼ β0j þ β1j·groupij þ γ2j·xij þ εij; (6)

β0j ¼ γ0 þ u0j; (7)

where we assume a non‐zero correlation ρ between the
exposure and intercept random effects:

u0jeN 0; τ20
� �

; (8)

cov u0j; u1j
� � ¼ ρ·τ0·τ1; (9)

where τ20 is the between‐study variance for the intercept.
Additional random effects can be added, in this context
for the covariate, although convergence issues may limit
the practical usefulness of such models.10 Finally, in some
cases, the focus may be on interactions, and in such a sce-
nario, we would expand (6) to

Yij ¼ β0j þ β1j·groupij þ γ2j·xij þ γ3·groupij·xij þ εij: (10)

Estimation of all these multilevel models is achieved
using maximum likelihood or restricted maximum likeli-
hood algorithms.
2.2 | Two‐stage

In the two‐stage approach, study‐varying fixed effects are
necessarily used for all parameters of interest, intercept,
exposure, and covariate:

Yij ¼ γ0j þ γ1j·groupij þ γ2j·xij þ εij: (11)

For each study j, γ1j is estimated using a simple regres-
sion model. The aim of two‐stage meta‐analysis of aggre-
gate results is to pool the estimates of the study exposure



TABLE 1 Lower and higher level simulation sizes

Total Number
of Patients

Number
of Studies

Mean Number of
Patients in Each Studya

5000 10 500

2000 4 500

1000 2 500

5000 20 250

2000 8 250

1000 4 250

5000 50 100

2000 20 100

1000 10 100

aDrawn from a uniform distribution within the ipdpower command (more

information on the process is available in the ipdpower help file).
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effects γ1j and estimate the overall true mean effect θ.
Under a random‐effects model that allows γ1j to vary
across studies to within‐ and between‐study variances,
we have

γ1j ¼ θj þ ej; (12)

ejeN 0; σ2
j

� �
: (13)

And

θj ¼ θþ εj; (14)

εjeN 0; τ2
� �

; (15)

where τ2 is the between‐study variance. Numerous esti-
mators exist for τ2,12,13 with the one most commonly used
proposed by DerSimonian and Laird4:

bτ2DL ¼ Qbw− k−1ð Þ

∑
k

j¼1
bwj−∑

k

j¼1
bw2
j =∑

k

j¼1
bwj;

(16)

Qbw ¼ ∑
k

j¼1
bwj bγ1j−bγ1Þ2;
�

(17)

where bwj ¼ 1=σ2j , k is the number of studies, and

bγ1 ¼ ∑
k

j¼1
bwj

�Y j

∑
k

j¼1
bwj

is the overall exposure effect estimate

under a fixed‐effect approach with �Y j ¼ θþ ej.
2.3 | Data generation

Various data scenarios were generated using the ipdpower
command in Stata, which allows modelling between‐
study variability and thus can generate IPD with different
levels of statistical heterogeneity for the parameters of
interest.18 Some aspects of the data generation design
were the same across all simulation scenarios, in which
we specified numerous permutations for the number of
studies, the (mean) number of patients within a study,
the between‐study variance (heterogeneity) for the inter-
cept, and the between‐study variance (heterogeneity) for
the exposure. The simulated sizes for patients and studies
are displayed in Table 1, and each of these was repeated
for different combinations of intercept and exposure het-
erogeneity (as measured by I2, a ratio of within‐ and
between‐study variability, with up to 25% considered
modest, 25% to 50% moderate, and over 50% substantial
heterogeneity): 0% and 0%; 50% and 0%; 0% and 50%;
33% and 33%; 50% and 50%; and 67% and 67%.
2.3.1 | Simulation setting 1

The data generation model followed what was described
in Section 2.1 and Equation (10) with a continuous out-
come Y, a binary exposure group, a continuous covariate
x, and an interaction term between the exposure and
the covariate. The hypothesised parameters were γ0 = 1
(intercept), γ1 = 0.5 (exposure), γ2 = 0.3 (covariate), and
γ3 = 0 (interaction). The design was balanced with a 0.5
exposure probability, while the distribution of the contin-
uous covariate did not vary across studies. The standard
deviation σ for the residual error ε was set to 1 across
all studies (the within‐study variance), against which
the between‐study variances τ0 and τ1 were set to produce
data at various heterogeneity levels using I2 = τ2/
(τ2 + σ2).
2.3.2 | Simulation setting 2

Here, we introduced a small‐study effect scenario, by
dropping a set percentage of small studies with low esti-
mates for the exposure (γ1 ≈ 0 or γ1 < 0). This was meant
to serve as a proxy for publication bias, arguably the big-
gest threat to conducting meta‐analysis, and it is known
that the weighting of studies in two‐stage meta‐analysis
under a fixed‐effect or random‐effects model is important
in this context. Random‐effects meta‐analyses use
inverse‐variance weighting, under which the weights
assigned to smaller studies, the ones that are the most
affected by publication bias, are larger compared with
weights assigned under the fixed‐effect model. Thus, eval-
uating whether two‐stage performance deteriorates in the
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presence of publication bias, compared with the one‐stage
approach, seems relevant—especially since detecting and
accounting for publication bias can be challenging.
Within each simulation generated by ipdpower, smaller
studies have greater variability in the key parameter of
interest β1j, so the simulation set‐up is suitable for this
investigation. Studies were ranked on size and effect size,
with 20% of the studies ranked the lowest on both param-
eters (small size and effect) being dropped.
2.3.3 | Simulation setting 3

The standard deviation σ of the residual error ε was set to
vary across studies. The mean of σ was set to 1 with a
standard deviation was 0.5, allowing perhaps a more real-
istic variation of within‐study variance across studies.
2.3.4 | Simulation setting 4

Here, we introduced moderate levels of skewness
(skew = 1; kurtosis = 4) in the distribution of all ran-
dom‐effects components, which previously followed nor-
mal distributions (Equations (4) and (8)).
2.3.5 | Simulation setting 5

Including an interaction term between the binary expo-
sure and continuous covariate, which would be the focus
of the investigation, the hypothesised parameters in this
setting were γ0 = 1 (intercept), γ1 = 1 (exposure),
γ2 = 0.5 (covariate), and γ3 = 0.4 (interaction). This set-
ting allows us to evaluate performance on quantifying
effect heterogeneity (interaction) rather than the main
effect. It should be noted that Equation (10) is known to
be problematic in decomposing within‐ and between‐
study interactions, and centring the continuous covariate
at the study level is essential.7 However, in the simula-
tion, deviations from zero for the means of the generated
covariate at the study level are very small and down to
statistical error, since they are generated from N(0, 1).
2.3.6 | Simulation setting 6

Including a binary rather than a continuous covariate,
with a balanced 0.5 probability, this allows for the
investigation of a binary by binary interaction. The
hypothesised parameters are as in simulation setting 4.
2.3.7 | Simulation setting 7

Here, we used the same set‐up as for simulation 6, but
also allowed the levels of the binary covariate to vary
greatly across studies from 0% to 100%, this does happen
in practice (for example, studies enrolling only men or
only women), although it was more common in the past.
The focus in again on the interaction tem.
2.3.8 | Simulation setting 8

We used the same settings as in simulation setting 6, but
included heterogeneity for both the covariate (I2 = 50%)
and the interaction term (I2 = 50%), effectively, this sce-
nario includes between‐study heterogeneity for each com-
ponent (intercept, exposure, covariate, and interaction
term), to evaluate whether modelling approaches can
practically separate between the various heterogeneity
levels in estimating the interaction effect.
2.4 | Analysis

The simulated datasets were analysed in Stata using the
mixed command, for one‐stage mixed‐effects modelling,
and the ipdmetan command, for two‐stage modelling.
Three mixed‐effects models of an increasing order of
complexity were used, which have been practically
described in this context elsewhere, and call on the
built‐in mixed command for multilevel mixed‐effects lin-
ear regression that was fitted through the default maxi-
mum likelihood10: (a) fixed common intercept, random
exposure effect, and fixed effect for the covariate (Equa-
tion (1)); (b) fixed study‐specific intercepts, random expo-
sure effect, and fixed study‐specific effects for the
covariate (Equation (5)); and (c) random study intercept,
random exposure effect, and fixed study‐specific effects
for the covariate (Equation (6)). A fourth regression model
(d) was called through ipdmetan, pooling study results
using a restricted maximum likelihood random‐effects
meta‐analysis model. Interaction terms were only included
in the models analysing data from simulation settings 5 to
7. For simulation setting 8 alone, we included more
complex models that included random effects for the
interaction: (e) fixed study‐specific intercepts, random
exposure effect, fixed study‐specific effects for the
covariate, and random interaction effect; ( f ) random study
intercept, random exposure effect, fixed study‐specific
effects for the covariate, and random interaction effect;
and (g) random study intercept, random exposure effect,
random covariate effect, and random interaction effect.
2.5 | Performance measures

We evaluated the performance of the 4 models in all sce-
narios and simulation settings previously described, over
1000 iterations. The estimates of interest were the expo-
sure effect γ1 (main effect) in simulation settings 1 to 4
and the interaction effect γ3 in simulation settings 5 to 7.
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To allow for a comprehensive comparison, performance
was assessed on a range of metrics: mean error, mean bias,
coverage probability, and power. Mean error is an aggre-
gate of the absolute difference in the estimate to the true

parameter expressed as
1

1000
∑
1000

i¼1
∣z−bzi∣ where z is the true

association of interest. Mean bias is an aggregate of the dif-
ference in the estimate to the true parameter, or
1

1000
∑
1000

i¼1
z−bziÞð . The coverage probability is the proportion

of 95% confidence intervals for the estimate that contain
the true parameter across the 1000 iterations, which theo-
retically should be close to 95%. To balance the fact that
methods that return very wide confidence intervals will
score highly on coverage, we also calculated power
(although potentially problematic in the presence of bias).
Over the 1000 iterations, we calculated power as a function
to detect the probability for each effect estimate to be sta-
tistically different to zero (models 1‐4) or 0.2 (models 5‐
7). We varied the hypothesis to allow for meaningful levels
of obtained power that help discriminate methods.
3 | RESULTS

We focus on results from simulation setting 1 and the
main effect (Figures 1–3) and also simulation setting 6
and the interaction effect (Figures 4–6). Complete results
from all 8 simulation settings are presented in Appendix
S1, including information on model convergence.
Information on interpreting the figures is provided in
Table 2.
3.1 | Mean bias

Patterns of mean bias were very low and comparable
across all 4 models, with the exception of high heteroge-
neity at both levels and very small IPD, of 1000 patients
over two studies (Figure 1). In that particular scenario,
the two‐stage model (d) and 1‐step model (b) were the
best performers. In general, there was very little to sepa-
rate the models, with only one‐stage model (a) lagging
somewhat in performance.
FIGURE 1 Mean bias, simulation

setting 1 (main effect) [Colour figure can

be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 2 Mean error, simulation

setting 1 (main effect) [Colour figure can

be viewed at wileyonlinelibrary.com]
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3.2 | Mean error

Mean error was almost identical across all 4 models for
no heterogeneity and exposure only heterogeneity
(Figure 2). However, as intercept heterogeneity increases,
the performance of model (a) deteriorated, in relation to
that of models (b), (c), and (d), especially for smaller
IPD. Performance of one‐stage models (b) and (c) and
the two‐stage model (d) was almost indistinguishable.
3.3 | Coverage and power

Coverage and power are interlinked, and it makes sense
to assess simultaneously. Model performance is almost
identical when heterogeneity is absent, both in terms of
coverage and power (Figures S3 and S4). However, model
performance diverges when heterogeneity is introduced
withmodel (a) generally having higher coverage and lower
power thanmodels (b) to (d), often above the nominal 95%,
especially for large samples and when heterogeneity for
the intercept is introduced. To more reliably assess
performance across both metrics, we plotted coverage and
power together (Figure 3) where we observe that models
(b) to (d) outperform model (a) in the presence of intercept
heterogeneity (which is not surprising since the latter does
not account for study‐varying intercepts). Comparing the
1‐stage models (b) and (c) with the two‐stage model (d),
there are small differences but one‐stage model (c) seems
to be performing slightly better, overall. Inmost cases, how-
ever, model (b) and model (c) performance was identical.
3.4 | Convergence

The two‐stage model (c) was the only model that con-
verged in all cases (Figure S6). One‐stage models (a)
and (b) always converged except when heterogeneity
was not modelled, and then only a handful of cases did
not converge. As expected, the fully specified model (c)
was the most susceptible to non‐convergence but only
in one case did the convergence rate fall below 80% (very
small IPD and high heterogeneity on both levels). In gen-
eral, the larger the IPD, the higher the convergence rate

http://wileyonlinelibrary.com


FIGURE 3 Coverage and power (%),

plotted together [(coverage + power)/2],

simulation setting 1 (main effect) [Colour

figure can be viewed at wileyonlinelibrary.

com]
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for model (c), while interestingly non‐convergence issues
appeared to be more resistant to sample size increases
when only one level of heterogeneity was modelled
(intercept or exposure but not both or neither).
3.5 | Sensitivity analyses for the main effect

All results are presented in detail in Appendix S1. Model
convergence was almost identical unless otherwise stated.
3.5.1 | Simulation setting 2: publication bias

Mean bias was much higher than in simulation setting 1,
as expected, while levels of mean error were only slightly
higher. Coverage and power levels were similar to what
was seen in the main results. Relative model performance
was very similar across models (b) to (d), with the fully
specified one‐stage model (c) performing very similarly
to one‐stage model (b), and only slightly outperforming
the two‐stage model (d) in terms of cumulative coverage
and power (Figures S7‐S12).
3.5.2 | Simulation setting 3: varying
within‐study variance levels across studies

There were practically no differences to the main results
in all 4 metrics, and relative model performance was the
same (Figures S13‐S18).
3.5.3 | Simulation setting 4: skew‐normal
distribution for the random effects

Results were almost identical to the main results (Figures
S19‐S24).
3.6 | Interaction effect

In simulation settings 5 to 8, we focused on the interac-
tion term, rather than the main effect, and we investi-
gated a binary by continuous (setting 5) and a binary by
binary interaction term (settings 6‐8). Results were
broadly similar to what we observed for the main effect,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 4 Mean bias, simulation

setting 6 (interaction effect) [Colour figure

can be viewed at wileyonlinelibrary.com]
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with some differences that are discussed below, for each
simulation setting.
3.6.1 | Simulation setting 5: binary (expo-
sure) by continuous (covariate) interaction

Mean bias levels were almost zero, as in the analyses for
the main effect, but consistently so even for very small
IPD of high heterogeneity. Mean error was also very
low but higher in the two‐stage model (d) for small
IPD of exposure only heterogeneity and, especially, when
no heterogeneity was modelled. When intercept
heterogeneity was modelled, models (a) and (b) were
the worst performers on mean error, as expected. Cover-
age was almost at nominal levels for all models in all
simulation scenarios, but there was great variation in
power with one‐stage models (b) and (c) being the best
performers overall and two‐stage model (d) the worst
performer in most no intercept heterogeneity scenarios
and consistently outperformed by (b) and (c) (Figures
S25‐S30).
3.6.2 | Simulation setting 6: binary (expo-
sure) by binary (covariate) interaction

Mean bias results were similar to what was observed in
simulation setting 5, but mean error results were higher
(Figures 4 and 5). Nevertheless, relative performance was
the same across both metrics with the only difference being
the slightly better performance of one‐stage models (b) and
(c) compared to two‐stagemodel (d) in all settings, especially
in small IPD. Coverage and power results were very close to
what was observed in simulation setting 5, with one‐stage
models (b) and (c) being the best performers overall
(Figure 6). Complete results for this scenario are also pre-
sented in Figures S31 to S36.
3.6.3 | Simulation setting 7: binary (expo-
sure) by binary (covariate) interaction with
varying covariate levels across studies

Model differences in mean bias were generally very small,
although they spiked for very small meta‐analyses of high

http://wileyonlinelibrary.com


FIGURE 5 Mean error, simulation

setting 6 (interaction effect) [Colour figure

can be viewed at wileyonlinelibrary.com]

426 KONTOPANTELIS
heterogeneity at both levels for model (a). One‐stage
models (b) and (c) were the best performers in terms of
bias (which was considerable in this scenario) and better
than two‐stage model (d) in all scenarios except very
small IPD of high or very high heterogeneity at both
levels. In terms of cumulative power and coverage, one‐
stage models (b) and (c) were again the best performers
in the vast majority of scenarios, greatly outperforming
two‐stage model (d) in no heterogeneity, exposure only
heterogeneity, and intercept only heterogeneity scenarios.
Convergence was also affected in this setting, especially
for model (d) that fell to around 90% for many small
IPD scenarios (Figures S37‐S42).
3.6.4 | Simulation setting 8: binary (expo-
sure) by binary (covariate) interaction,
including heterogeneity for the covariate
and the interaction term

In this scenario, one‐stage models (a) to (c) that did not
account for the heterogeneity in the interaction term
greatly underperformed compared with the two‐stage
model on all metrics. However, when a random‐effects
term for the interaction was included in one‐stage models
(e) to (f), performance became similar across the three
one‐stage models, and it was frequently marginally higher
than in the two‐stage model—except for the smallest
datasets we investigated (1000 cases and up to 4 studies).
Convergence did not appear to be an issue with the more
complex one‐stage models (Figures S43‐S54).
4 | DISCUSSION

Our results showed that a fully specified one‐stage model
that accounts for study‐varying intercepts (either as fixed
or random effects) and a two‐stage approach are very
close in terms of performance, irrespective of heterogene-
ity levels and IPD sizes. However, some small yet consis-
tent differences were observed. In terms of evaluating the
main effect, although there was practically no difference
in mean bias or mean error, the fully specified one‐stage
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FIGURE 6 Coverage and power (%),

plotted together [(coverage + power)/2],

simulation setting 6 (interaction effect)

[Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Interpreting the Y axis labels on all figures

Level What Is It Additional Information

One The total number of patients and studies 1000/2, implies a total of 1000 patients over 2 studies

Two I2 levels for the intercept and exposure 0%‐50%, implies no heterogeneity for the intercept and I2 = 50% for the exposure

Legend The 4 models used (three 1‐stage,
one 2‐stage)

One‐stage A: fixed common intercept, random exposure effect, and fixed effect for the
covariate

One‐stage B: fixed study‐specific intercepts, random exposure effect, and fixed study‐
specific effects for the covariate

One‐stage C: random study intercept, random exposure effect, and fixed study‐specific
effects for the covariate.

Two‐stage: called through ipdmetan, pooling study results using a restricted maximum
likelihood random‐effects meta‐analysis model
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models performed slightly better overall in the cumula-
tive of coverage and power. This difference in the cover-
age‐power cumulative (mainly driven by differences in
power) was evident and more pronounced when investi-
gating interaction terms, arguably the focus of IPD meta‐
analysis. In addition, when evaluating interaction terms,
mean error rates were generally lower for the fully
specified one‐stage approaches, especially for small IPD
and for a binary by binary interaction with varying
covariate levels across studies (which is a rather common
scenario). In the presence of high heterogeneity for the
interaction term, which does not seem like a common
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scenario, the fully specified one‐stage approaches that
included a random effect for the interaction slightly
outperformed the two‐stage approach.
4.1 | Strengths and limitations

We generated realistic data across numerous assumptions
and scenarios to extensively compare one‐stage and two‐
stage approaches in IPD meta‐analysis. Nevertheless,
some limitations exist. First, although realistic and
numerous, our simulated scenarios are not exhaustive
and results may vary in alternative scenarios. However,
the patterns of results are consistent across all simulation
settings, and we would expect the methods to perform
similarly in other scenarios, at least relatively to each
other, and our conclusions not to be affected. Second,
the precision obtained with simulations of 1000 iterations
is not ideal but the models we executed are complex and
require considerable computational time—especially due
to the more complex one‐stage models. Although one‐
stage models are computationally more expensive, this
is irrelevant in the context of a single analysis with a
modern computer, and each model converges in seconds
(for example, it may take up to 20 s for a one‐stage model
when a two‐stage model may converge in under a sec-
ond). Third, we focused on a continuous outcome when
dichotomous or count outcomes are common. This is
because computational time for logistic or Poisson regres-
sions is higher (much higher for the latter) and non‐con-
vergence is much more prevalent, an issue that
necessarily limits comparisons to larger IPD. It is likely
that the relative performance of the methods will be sim-
ilar, although absolute performance levels could be quite
different. Nevertheless, more research is needed to vali-
date this. Finally, on the surface, our analysis may appear
to be an unfair comparison of numerous one‐stage
models vs one two‐stage model. However, one‐stage
models are much more complex, with many more param-
eters to consider and model. In the two‐stage model, the
main issue is the way to model heterogeneity and it has
been shown that all random‐effects approaches are
broadly similar and share the same limitations.6,27
4.2 | Practical recommendations

When investigating main effects, and in the absence of
heterogeneity for the intercept, there is practically noth-
ing to separate the 4 models we investigated. Heterogene-
ity is almost always an unknown, however, despite the
fact that levels of heterogeneity (or unexplained
between‐study variance) tend to be lower in IPD com-
pared with traditional meta‐analyses because of more
focused research questions and covariates that are
included in the models (eg, age and sex). Therefore,
we recommend the use of a fully specified one‐stage
model (Equations (5) and (6)), and if convergence
issues are encountered, the two‐stage model should be
used instead.

When investigating interaction effects of any type, we
also recommend the use of a fully specified one‐stage
model, which outperformed the other models in the most
challenging settings of small IPD with intercept heteroge-
neity. Non‐convergence in one‐stage models is possible,
especially for the fully specified model with random inter-
cepts. In the rare situation when neither of the fully spec-
ified one‐stage models converges, the alternative choice
should depend on intercept heterogeneity expectations.
If considerable intercept heterogeneity is expected, then
the two‐stage model should be used, but if that is not
the case, then a simpler common intercept assuming
one‐stage model should be preferred. Finally, in the pres-
ence of considerable heterogeneity for the interaction
term, which does not seem like a common scenario, fully
specified one‐stage models should be preferred, provided
that a random effect for the interaction is included.

Of particular interest in investigating interactions was
simulation setting 7, with a binary covariate of varying
levels across studies and of considerable heterogeneity,
when consequently within‐study investigations are not
possible in all studies (for example, if the covariate of
interest is sex yet studies that enrol a single sex are com-
mon). This aimed to evaluate claims that in such scenar-
ios, the focus should be on within‐study interactions
alone, and all studies in which such evaluations are not
possible should be excluded, pointing towards the use of
a two‐stage model.24 Yet our findings show that even in
that challenging context, a fully specified one‐stage model
is still the best choice (and even more so compared to
other simulation settings). In addition, as evidenced in
simulation setting 8 where numerous heterogeneity com-
ponents were modelled, a fully specified one‐stage model
can provide a reliably estimate of the interaction term
and can practically distinguish between various within‐
and between‐study components. Returning to simulation
setting 7, completely excluding studies greatly affects
power and if we recommend the use of a fully specified
1‐stage model and the inclusion of all studies, unless
underlying bias (confounding) is suspected in the associ-
ation between the distribution/level of the covariate and
the effect size. As discussed in Section 1, one‐stage
approaches, if not appropriately modelled, can be suscep-
tible to confounding and analysts need to be careful when
implementing them in this context.7

Besides performance, other practical implications
need to be considered when deciding between a one‐stage
and a two‐stage IPD model. One‐stage models can
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directly use multiple imputation techniques since they
are standard mixed‐effects models. Although heterogene-
ity makes the imputation challenging and different
approaches have been proposed,20,21,28-30 missing data at
the patient level are common in such investigations and
the flexibility of the one‐stage model is invaluable in this
context. In addition, evaluating study‐level covariates and
their interactions with exposure, although challenging, is
only possible through one‐stage models.

Whether using one‐stage or two‐stage models, IPD
meta‐analyses will not manage to collect patient data
from all identified studies, but a self‐selected sample of
usually newer and location‐clustered studies (due to the
fact IPD collaborations are partly driven by personal rela-
tionships). Therefore, a comparison between the exposure
estimate in the IPD sample and in all studies (usually
reported in an aggregate data meta‐analysis) is always
recommended. However, two‐stage models can use
reported study‐level estimates from studies for which
patient data are not available, and seamlessly incorporate
them in the analyses. This approach can be very helpful
when investigating main effects but less so when the
focus is on interactions, since interactions are much less
likely to be reported. Nevertheless, authors who were
unwilling to share their data may be willing to run such
an analysis and share the results.
4.3 | Conclusions

Fully specified one‐stage models that account for possi-
ble exposure and intercept heterogeneity (random study
intercept or fixed study‐specific intercept; random
exposure effect; and fixed study‐specific effects for a
covariate—and additionally, random interaction effect
in the presence of interaction heterogeneity), and
which have been practically described elsewhere,10 were
the best performers across the simulation scenarios we
generated. This was true when estimating main effects
or, especially, interaction effects, but on the assumption
there exists no underlying confounding in the associa-
tion between the confounder and the effect size.
Although non‐convergence is not uncommon for the
random study intercept one‐stage model, it is unlikely
for the fixed study‐specific intercept (at least for a contin-
uous outcome), and analysts should prefer one of these
two models.
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