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Abstract

Although many novel phase I designs have been developed in recent years, few studies

have discussed how to incorporate external information into dose-finding designs. In this

paper, we first propose a new method for developing a phase I design, Bayesian optimal

interval design (BOIN)[Liu S et al. (2015), Yuan Y et al. (2016)], for formally incorporating

historical information. An algorithm to automatically generate parameters for prior set-up is

introduced. Second, we propose a method to relax the fixed boundaries of the BOIN design

to be adaptive, such that the accumulative information can be used more appropriately. This

modified design is called adaptive BOIN (aBOIN). Simulation studies to examine perfor-

mances of the aBOIN design in small and large sample sizes revealed comparable perfor-

mances for the aBOIN and original BOIN designs for small sample sizes. However, aBOIN

outperformed BOIN in moderate sample sizes. Simulation results also showed that when

historical trials are conducted in settings similar to those for the current trial, their perfor-

mance can be significantly improved. This approach can be applied directly to pediatric can-

cer trials, since all phase I trials in children are followed by similar efficient adult trials in the

current drug development paradigm. However, when information is weak, operating charac-

teristics are compromised.

1 Introduction

In the field of drug development, there is high interest in conducting clinical trials using

designs that can enable the incorporation of external information, such as prior or historical

information, with trial data to save sample sizes, improve the power, and expedite the trial pro-

cess. Several studies have focused on developing designs that incorporate external information

for phase II or III trials, for example, meta-analytic power prior–based multiple historical

sources [1], hierarchical shrinkage method for basket trials [2–4], calibrated power prior for

biosimilar trials [5], and Bayesian designs for confirmatory trials [6, 7]. All the above research

designs have focused on phase II trials and beyond. Very few studies have discussed how to
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incorporate external information for phase I trials, though it is known that phase I trials are

crucial because all appropriate evaluations of promising new agents in phase II or III trials

have to rely on well-conducted phase I trials. On the other hand, in some settings wherein his-

torical information is available (e.g., pediatric clinical trials), the suggested starting dose is 80%

of the dose recommended for adults. Due to ethical constraints and a typically small number

of patients in pediatric trials, it is essential to know how to formally incorporate prior knowl-

edge from adult trials. Petit et al. [8] proposed a method to extrapolate pharmacokinetic infor-

mation from the adult population to the pediatric population in dose-finding trials. Their

method focused on phase I/II trials that jointly modeled toxicity and efficacy by using the con-

tinual reassessment model (CRM). In contrast to that study, our study considers how to use

historical information to inform the prior elicitation for phase I trials only. Our proposed

method is based on the Bayesian optimal interval design (BOIN) framework [9, 10].

The BOIN design’s escalation/de-escalation decisions are based on two boundaries. Given

the DLT target, the two boundaries are fixed (derived by minimizing the overall decision

error rate). However, in some situations, we might need to have an unbalanced control of mis-

allocation of patients to under-toxic and over-toxic dose levels. By having accumulative infor-

mation, we could have a better understanding of the toxicity rate for each dose level tried;

fixed boundaries cannot reflect these dynamics. The second goal of this study is to propose

flexible boundaries that can change during the trial process. This design is termed as adaptive

BOIN (aBOIN).

The rest of the paper gives a brief introduction to the BOIN design, followed by a methodol-

ogy proposed to incorporate external information based on the BOIN design framework.

Next, an approach for extending the BOIN with fixed boundaries to the aBOIN design with

non-fixed boundaries is proposed. Empirical findings are shown by comprehensive simula-

tions with derivation of the theoretical properties. The paper ends with a final discussion.

2 Brief introduction to the BOIN design

The BOIN design proposed by Liu and Yuan in 2015 [9] is simple to implement and is similar

to the 3+3 design, but is much more flexible, and its operating characteristics are superior to

those of more complex model-based methods. An R package (BOIN), a stand-alone graphical

user interface–based software, and Shiny app (www.trialdesign.org) have been developed,

which are freely accessible to users.

The BOIN design can be summarized as follows:

(a). Patients in the first cohort are treated with the lowest or a pre-specified dose level.

(b). Let p̂j be the observed toxicity rate at the current dose. To assign a dose to the next

cohort of patients,

• if p̂j � l1, we escalate the dose level to j + 1,

• if p̂j � l2, we de-escalate the dose level to j – 1, or

• otherwise, i.e. l1 < p̂j < l2, we retain the same dose level, j.
To ensure that dose levels of treatment always remain within the pre-specified dose range,

the dose escalation or de-escalation rule needs to be adjusted for the lowest or highest lev-

els of j; for example, if j = 1 and p̂j � l2 or j = J and p̂j � l1, the dose remains at the same

level, j.

(c). This process continues until the maximum sample size is reached or the trial is termi-

nated because of excessive toxicity, as described next.
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The selection of interval boundaries λ1 and λ2 is critical, because two parameters essentially

determine the operating characteristics of the design. The BOIN design is optimal in the sense

that it selects λ1 and λ2 to minimize incorrect decisions of dose escalation and de-escalation

during the trial.

By using pj to denote the true toxicity probability of dose level j for j = 1, . . ., J, three point

hypotheses are formulated:

H0j : pj ¼ �;

H1j : pj ¼ �1;

H2j : pj ¼ �2;

where ϕ1 denotes the highest toxicity probability that is deemed sub-therapeutic (i.e., below

the MTD) such that dose escalation is required, and ϕ2 denotes the lowest toxicity probability

that is deemed overly toxic, such that dose de-escalation is required.

Under the Bayesian paradigm, each hypothesis was assigned an equal prior probability,

denoted as pkj ¼ prðHkjÞ, k = 0, 1, 2. The probability of making an incorrect decision (the deci-

sion error rate) is minimized when

l1 ¼
log 1� �1

1� �

� �

logf�ð1� �1Þ

�1ð1� �Þ
g

ð1Þ

l2 ¼
log 1� �

1� �2

� �

logf�2ð1� �Þ

�ð1� �2Þ
g
: ð2Þ

Details can be found in [9, 10].

3 BOIN design with incorporating external information

Viele et al. [11] said, “Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts

of clinical data are available prior to the start of a study”. Although the phase I trial is consid-

ered the first-in-human study for identifying the MTD, there is still possible information that

we can use to enhance our understanding of the toxicity profile for experimented drugs, for

example, in the aforementioned phase I pediatric trials or rare diseases occurring in limited

patient populations. Another point of view is that well-conducted phase I studies can increase

the precision of phase II dose recommendation. High failure rates for late-phase studies can be

due to flawed phase I studies. Efficiently using the prior or historical information provides an

opportunity to improve the phase I study.

By using the BOIN design framework, prior information can be incorporated naturally via

only modifying (1) and (2) by using the following formula:

l1 ¼
log 1� �1

1� �

� �
þ n� 1

j log p1j
p0j

� �

logf�ð1� �1Þ

�1ð1� �Þ
g

ð3Þ
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l2 ¼
log 1� �

1� �2

� �
þ n� 1

j log p1j
p0j

� �

logf�2ð1� �Þ

�ð1� �2Þ
g

: ð4Þ

Comparing (3) and (4) to (1) and (2), prior parameters are incorporated in the above for-

mulas by using prior probabilities of the 3-point hypotheses: π0j, π1j, and π2j.

By notations, assuming there are J dose levels, for each dose level j, j = 1, � � �, J, we have

three prior probability vectors for π0,j, π1,j and π2,j, j = 1, � � �, J, associated with three point

hypotheses H0j, H1j, H2j, j = 1, � � �, d, which are defined in BOIN introduction. All the prior

probabilities can be presented explicitly by the following Table 1:

On the basis of data in Table 1, we propose an approach to elicit values for these cells prior

to the trial study. If there is strong confidence that dose Dj is closest to the target DLT rate, we

assign a larger probability to π0,j (e.g., 0.6) and then assign π1,j, π2,j to be equally half of the rest

of the probability (e.g., 0.4/2 = 0.2). Here, we believe a priori with 60% confidence that dose Dj

would be the MTD and 20% confidence that this dose would be under-dosing or over-dosing.

We define oddsj to be
p1;j
p2;j

.

By eliciting values of the remaining cells in Table 1, we pre-specify a probability vector for

H0, that is, (π0,1, � � �, π0,J). We emphasize here that pre-specification of the probability vector

for H0 is feasible. For example, if we have strong evidence that one dose is near to the MTD,

as in pediatric trials, because MTDs in children and adults correlate strongly and 80% of the

adult dose is recommended as the starting dose for children, the investigator can effortlessly

select with high confidence the dose that can be the MTD and also other doses. If there is weak

prior knowledge, equally likely probabilities can be assigned to this vector.

When eliciting values for two probability vectors of H1 and H2, the two vectors need to be

in decreasing and increasing orders, respectively. This is because H1 refers to the under-dosing

hypothesis; therefore, probabilities of believing in H1 would decrease when dose level increases

and vice versa for the probability vector for H2. For example, for a trial with five dose levels, if

we assign the probability vector to H0 to be π0,1 = 0.05, π0,2 = 0.15, π0,3 = 0.6, π0,4 = 0.15, π0,5 =

0.05, then π0,1 = 0.05 it means we have very low confidence that the first dose is the MTD.

Since the first dose is the lowest dose among the five doses, the π1,1 should be the highest

among (π0,1, π1,1, π2,1), since it is the safest dose level; that is, we have high confidence that the

first dose will lie in the interval defined by the hypothesis H1, which corresponds to the under-

dose interval. As an example, let us assign values (π0,1 = 0.05, π1,1 = 0.85, π2,1 = 0.10) to them

by considering the constraint π0,j + π1,j + π2,j = 1, 8, j. For the second dose, since π0,1 = 0.15,

this again means that we have little confidence that this dose is the MTD and, similarly, π1,2

should still be the highest dose among (π0,2, π1,2, π2,2). However, the probability of π1,2 to be in

H1 should now be lower than that for π1,1, since dose 2 has a higher toxic rate than dose 1. For

example, if we assign the probabilities as (π0,2 = 0.20, π1,2 = 0.60, π2,2 = 0.20), there should be a

Table 1. Prior probabilities of each dose for three point hypotheses.

Priors D1 D2 � � � Dj � � � Dd−1 DJ

H0 π0,1 π0,2 � � � π0,j � � � π0,J − 1 π0,J

H1 π1,1 π1,2 � � � π1,j � � � π1,J − 1 π1,J

H2 π2,1 π2,2 � � � π2,j � � � π2,J − 1 π2,J

Prob 1 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0237254.t001
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decreasing trend in the probability vector of H1 and an increasing trend in the probability vec-

tor of H2. Similarly, a decreasing trend will be observed for a vector probability of H2.

Given the above premise, we propose the following algorithm that can automatically imple-

ment the assignment of horizontal probability vectors in Table 1. However, in reality, there

will be infinite alternatives to elicit three probability vectors by satisfying the above increasing

or decreasing monotone constraints. Our proposed alternative shows just one of the possible

cases.

Step 1. Assign each dose a probability for H0, that is, a prior probability vector of (π0,1, � � �, π0,J),

to best “guess” which of these J doses to be the MTD.

This step is not so challenging if clinicians have strong confidence on which dose is clos-

est to the MTD target. For example, in pediatric trials, we can often choose the MTD

for adult patients or a starting MTD dose for pediatric patients. In this step, clinicians

can also choose a set of skeletons for the CRM.

Step 2. If the dose j is believed to be close to the MTD, then let
p1;j
p2;j
¼ 1, that is, oddsj = odds

(π1,j, π2,j) = 1 to assign probabilities to π1,j and π2,j given π0,j in Step 1. Also, let

the lowest dose have odds1 = odds(π1,1, π2,1) = 10 and the highest dose have

oddsJ ¼ oddsðp1;d; p2;JÞ ¼
1

10
. We can have probabilities for π1,1, π2,1 and π1,J, π2,J. If

the lowest or highest dose levels are believed to be the MTD, then the odds for it is set

to be 1.

Step 3. Use extrapolation method (see details in Appendix) to elicit prior probabilities for the

rest of two vectors (π1,1, � � �, π1,J) and (π2,1, � � �, π2,J) can be easily derived.

The above algorithm is easy to use since it only requires the investigator to provide proba-

bility guesses for H0s for each investigated dose level. All the other remaining probabilities in

Table 1 can be automatically computed, which substantially reduces the burden on investiga-

tors and improves the “guess” precision. See details of the algorithm and a numerical example

to show the algorithm in the Appendix.

4 aBOIN design with adaptive boundaries

This section discusses the extension of the BOIN to aBOIN design with adaptive boundaries.

For interval-based designs, the first step is to specify an indifference interval defined by two

fixed boundaries to differentiate under-dose from over-toxic dose levels. Based on these

boundaries, decision rules of dose assignment are developed. (See Introduction for the BOIN

design.) The BOIN design is also categorized as a model-assisted design from the perspective

of the modeling approach and how accumulative data are used [10]. The BOIN design derives

two underlinefixed boundaries to make the dose escalation/de-escalation decision from its

theories, denoted by λ1 and λ2, which are indirectly linked to the under- and over-dose

hypotheses introduced earlier. If we denote the MTD toxicity rate as ϕ and use the authors’

recommendation of ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ, the two boundaries can be written as a function

of ϕ1 and ϕ2.

The BOIN design also has useful theoretical properties, such as minimizing the decision-

making error, long-term memory coherence, and convergence to the MTD dose. In this sec-

tion, we first demonstrate that the proposed aBOIN design also inherits theoretical properties

from the BOIN design and then conduct simulation studies to see whether this extension

could improve the original BOIN design.
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4.1 Adaptive BOIN design with shrinking boundaries

Extensive simulation studies have shown that the BOIN design is simple but has excellent

operating characteristics comparable with those of the more complicated model-based CRM

designs [12].

Adaptive shrinking boundaries can possibly be used to further control the misallocation of

patients to over-toxic doses. In the BOIN design framework, we reconstruct the ϕ1 and ϕ2 to be

�1 ¼ � �
D1

ð
ffiffiffi
nj
p

Þg1
and �2 ¼ �þ

D2

ð
ffiffiffi
nj
p

Þg2
. Here, nj is the cumulative number of patients treated

at a dose level of j during the trial and 0< g1, g2 < 1 are discounting parameters to control the

shrinking speed of the two boundaries. Parameters Δ1, Δ2 can be interpreted as pre-specified

effect sizes to construct the decision intervals in the BOIN design as given above. Obviously, by

doing so, the two fixed boundaries of the original BOIN design now depend on the dynamic

number njs, which is number of patients treated at the dose level j. This way of construction

would clearly make ϕ1 and ϕ2 converge to the MTD target ϕ as ϕ1 increases to ϕ; in other words,

the interval (ϕ1, ϕ2) is bound to converge to the MTD as sample sizes increase. This construction

is also very flexible for designing trials. For example, if safety of the design is a very big concern,

we can make the upper boundary ϕ2 to shrink faster than the lower boundary ϕ1 by using dis-

counting factors g1 < g2 to penalize assignment of patients to dose levels beyond the MTD.

Based on the above redefinition of ϕ1 and ϕ2, we have the updated three-point hypotheses

of the BOIN design as

H0j : pj ¼ �;

H1j : pj ¼ �1 ¼ � �
D1

ð
ffiffiffiffinj
p
Þ
g1
;

and

H2j : pj ¼ �2 ¼ �þ
D2

ð
ffiffiffiffinj
p
Þ
g2
;

The above definition of ϕ1 and ϕ2 is reminiscent of boundaries of an optimal symmetric

group sequential design by Eales & Jennison (1992) [13]. However, they are primarily used to

ensure type I and type II error rates for confirmatory trials.

In a similar vein of deviations for the BOIN design, the optimal λ1j and λ2j minimize the deci-

sion error rate can be derived as λ1(Δ1, nj) and λ2(Δ2, nj) with �1 ¼ � �
D1

ð
ffiffiffi
nj
p

Þg1
, �2 ¼ �þ

D2

ð
ffiffiffi
nj
p

Þg2

plugging into (1) and (2), respectively:

l1ðD1; njÞ ¼

log 1þ
D1

ð1� �Þ
ffiffiffi
nj
p g1

� �

log
1þ

D1
ð1� �Þ

ffiffiffinj
p g1

� �

1�
D1

�
ffiffiffinj
p g1

� �

8
<

:

9
=

;

ð5Þ

l2ðD2; njÞ ¼

log � 1 1 �
D2ffiffiffi

nj
p g2 ð1� �Þ

� �

log
1þ

D2
�
ffiffiffinj
p g2

� �

1�
D2

ð1� �Þ
ffiffiffinj
p g2

� �

8
<

:

9
=

;

:
ð6Þ
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Different from the original BOIN design, λ1(Δ1, nj) and λ2(Δ2, nj) is presently depend on

accumulative sample size nj along the trial process instead of constants. We can show that the

aBOIN design still enjoys the following theoretical properties

Theorem 1. The proposed aBOIN design has (1) long-term memory coherence, (2) converges
to the MTD, and (3) λ1 < ϕ, λ2 > ϕ.

See Appendix for proofs.

4.2 Practical implementation of the adaptive BOIN design

To use the proposed aBOIN design in practice, we need to specify the values of Δ1 and Δ2,

which determine the ϕ1, ϕ2 and subsequently the values of λ1, λ2. Since the original BOIN

design recommends ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ, we recommend that Δ1 = Δ2 = 0.4ϕ, which is

exactly the same as the original BOIN design when nj = 1.

In practice, we also introduce a lead-in process in which we follow the procedure given in

the original BOIN design for a pre-specified number of patients, for example, N1, and the trial

then switches to the aBOIN design with adaptive shrinking boundaries.

Our exploratory simulations (not shown here) with a maximum sample size of 30 show

negligible differences in the performance of the trial when N1 = 6 or N1 = 9 is used. Hereafter,

we will use N1 = 6 in simulation studies for the lead-in period.

Note that by adopting the accelerating parameter g1 and g2, hypotheses of H1j and H2j are

no longer symmetric. However, including accelerating parameters g1 and g2 does not influence

the asymptotic properties of the aBOIN design. Furthermore, different g1 and g2 may satisfy

practical needs; for example, if we want a tighter control of the over toxicities, we can let g2 >

g1, which means that the upper boundary would shrink quicker than the below boundary.

Additionally, the aBOIN design that incorporates external information can be derived

straightforwardly to have the following form:

l1jðnjÞ ¼

log 1þ
D1

ð1� �Þð
ffiffiffi
nj
p

Þg1

� �

þ n� 1
j log p1j

p0j

� �

log
1þ

D1

ð1� �Þð
ffiffiffi
nj
p

Þg1

� �

1 �
D1

�ð
ffiffiffi
nj
p

Þg1

� �

8
>><

>>:

9
>>=

>>;

ð7Þ

l2jðnjÞ ¼

log � 1 1 �
D2

ð
ffiffiffi
nj
p

Þg2 ð1� �Þ

� �

þ n� 1
j log p0j

p2j

� �

log
1þ

D2

�ð
ffiffiffi
nj
p

Þg2

� �

1 �
D2

ð1� �Þð
ffiffiffi
nj
p

Þg2

� �

8
>><

>>:

9
>>=

>>;

ð8Þ

5 Simulation studies

In this section, we explore the operating characteristics of the proposed aBOIN design with

and without incorporating prior information by comparing it to the original BOIN design.

The aims of the simulation study are twofold: (i) to explore the behavior of the aBOIN design

that incorporates prior information compared with that of the original BOIN design and the
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aBOIN design that does not incorporate prior information, and (ii) explore the operating char-

acteristics of the original BOIN and aBOIN designs.

Simulation setting

We consider trials with five dose levels and a maximum sample size of 30 patients, with a

cohort size of three patients. Twenty different scenarios (one half with dose-limiting toxicity

(DLT) rates of 20%, and the other half with DLT rates of 30%) with various locations and DLT

rates are shown in Table 2. We will use them to examine properties of the proposed designs.

For each scenario, we simulated 10,000 trials. We implemented the BOIN design using the

R package BOIN with its default design parameters. For the aBOIN design, we specified the

accelerating factors as g1 = 0.4, g2 = 0.9, which were derived by trial and error, and we only acti-

vated the adaptive shrinking mechanism in at least six patients who had been treated (referred

to as the lead-in period). As introduced in [10], four metrics to measure the performance of a

design have been considered: (1) the percentage of correct selection (PCS) of the true MTD in

10,000 simulated trials; (2) the average number of patients allocated to the MTD across 10,000

simulated trials; (3) the risk of overdosing, defined as the percentage of simulated trials in

which a large percentage (e.g., more than 60% or 80%) of patients are treated at doses above

the MTD (i.e., how likely it is that the design treats more than 60% or 80% of patients at doses

above the MTD); and (iv) the risk of under-dosing, which is defined as the percentage of simu-

lated trials in which more than 80% of patients are treated at doses below the MTD (potential

sub-therapeutic doses). For comparing the aBOIN design with or without prior information,

we focus on the PCS of the true MTD by comparing the proposed design to the original BOIN

design.

5.1 Simulation 1: Adaptive BOIN design with incorporating prior

information

To incorporate prior information, we first specify a probability vector for H0 row in Table 1. In

our simulations, we assign one set of probability vectors for all 20 scenarios in Table 2, because

this enables us to check whether the performance of the aBOIN design with prior information

is robust or not through various locations of MTDs in Table 2. To be specific, we assign H0

with probabilities (π0,1, � � �, π0,5) = (0.2, 0.45, 0.7, 0.45, 0.2) for all scenarios, and the other two

probability vectors are derived by using the procedure introduced above to be (π1,1, � � �, π1,5) =

(0.72, 0.44, 0.15, 0.12, 0.08) and (π2,1, � � �, π2,5) = (0.08, 0.11, 0.15, 0.43, 0.72). Considering

Table 2. Ten true toxicity scenarios with the target DLT rate of 20% and 30%.

Scenario Dose Level

DLT 20% DLT 30%

1 2 3 4 5 1 2 3 4 5

1 0.20 0.22 0.23 0.25 0.27 0.30 0.33 0.34 0.35 0.36

2 0.18 0.20 0.22 0.23 0.25 0.27 0.30 0.33 0.34 0.35

3 0.17 0.18 0.20 0.22 0.23 0.26 0.27 0.30 0.33 0.34

4 0.1 0.15 0.18 0.20 0.22 0.15 0.2 0.27 0.30 0.33

5 0.08 0.1 0.15 0.18 0.20 0.1 0.15 0.2 0.27 0.30

6 0.20 0.3 0.35 0.4 0.45 0.30 0.4 0.45 0.5 0.55

7 0.1 0.20 0.3 0.35 0.4 0.2 0.30 0.4 0.45 0.5

8 0.05 0.1 0.20 0.3 0.35 0.1 0.2 0.30 0.4 0.45

9 0.01 0.05 0.1 0.20 0.3 0.05 0.1 0.2 0.30 0.4

10 0.01 0.05 0.08 0.1 0.20 0.05 0.1 0.15 0.2 0.30

https://doi.org/10.1371/journal.pone.0237254.t002
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these specific settings, this means that we have 70% confidence that dose level 3 could be the

MTD and 45% confidence that dose level 2 or 4 could be the MTD.

Simulation results of the PCS (%) for the BOIN and the aBOIN design with or without

incorporating prior information are shown in Table 3. For example, with a DLT rate of 20%

for the PCS (%) metric, there are 10 scenarios. The first row with “BOIN” refers to the PCS (%)

of the original BOIN design. For instance, for scenarios 1, 3, and 8, the corresponding PCSs

(%) are 37.15%, 16.1%, and 45.41% with MTD locations at dose levels 1, 3, and 3, respectively.

The second row with aBOIN1 refers to PCS (%) of the aBOIN design without incorporating

prior information. Similarly, for scenarios 1, 3, and 8, the corresponding PCSs (%) are 32.22%,

16.75%, and 43.82% with MTD locations at dose levels 1, 3, and 8, respectively. The third row

with aBOIN2 refers to the PCS (%) of the aBOIN design incorporating prior information. The

corresponding PCS (%) for scenarios 1, 3, and 8 are 26.03%, 22.61%, and 47.65%, respectively.

Because the prior has placed high confidence on dose level 3 being the MTD, and scenarios 3

and 8 are scenarios with MTD locations at dose level 3, for scenarios 3 and 8, aBOIN2 has

Table 3. Percentage of correctly selection percentage of MTD for ten scenarios in Table 1.

Scenario 1 2 3 4 5 6 7 8 9 10 Average

DLT rate 20%

PCS(%)

BOIN 37.15 22.81 16.1 16.38 27.3 55.11 48.96 45.41 46.27 56.69 37.22

aBOIN1 32.22 20.67 16.75 18.17 34.33 51.08 46.32 43.82 46.63 60.05 37.0

aBOIN2 26.03 23.39 22.61 14.99 33.12 51.07 45.2 47.65 39.1 57.28 36.04

# of Patients at MTD

BOIN 16.81 8.1 4.78 4.02 4.98 20.4 13.62 11.22 10.11 10.93 10.49

aBOIN 14.48 8.13 5.49 4.89 6.67 18.24 12.82 10.81 10.15 11.92 10.36

Risk of overdosing 60%

BOIN 31.44 16.53 6.59 3.71 0 16.84 10.69 6.77 3.67 0 9.62

aBOIN 40.5 23.63 9.77 2.59 0 22.85 14.81 7.46 2.14 0 12.38

Risk of underdosing 60%

BOIN 0 32.67 55.45 70.38 80.93 0 23.82 35.38 41.35 59.09 39.91

aBOIN 0 24.86 43.54 60.42 74.36 0 19.85 29.79 33.25 53.75 33.98

DLT rate 30%

PCS(%)

BOIN 41.08 24.5 18.8 21.57 38.92 55.17 45.65 43.29 43.92 59.06 39.2

aBOIN1 39.08 26.3 19.7 21.16 36.14 54.1 46.52 41.51 42.37 56.85 38.37

aBOIN2 31.01 27.29 25.67 19.97 39.64 53.23 46.25 45.31 38.39 58.8 38.56

# of Patients at MTD

BOIN 17.66 9 5.49 5.4 7.25 20.47 13.4 11.16 10.01 11.66 11.15

aBOIN 17.58 9.19 5.59 4.97 5.97 20.32 12.58 10.17 9.21 9.68 10.53

Risk of overdosing 60%

BOIN 35.29 18.63 6.25 1.92 0 23.08 15.19 8.55 2.17 0 11.11

aBOIN 29.36 12.01 4.1 0.78 0 16.73 8.24 4.71 0.78 0 7.67

Risk of underdosing 60%

BOIN 0 33.07 54.08 62.45 71.54 0 23.77 33.04 37.28 52.5 36.77

aBOIN 0 29.07 56.42 70.05 82.23 0 21 38.26 45.8 68.17 41.1

aBOIN1: adaptive BOIN design without incorporating prior information.

aBOIN2: adaptive BOIN design with incorporating prior information.

https://doi.org/10.1371/journal.pone.0237254.t003
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highest PCSs (%) among the three designs. For the remaining scenarios, the PCS (%) of

aBOIN2 is comparable to or lower than that of the BOIN and aBOIN1 designs. For example,

for scenario 3 of DLT with a 20% toxicity rate, the PCS (%) of the aBOIN2 is 22.61%, whereas

those of the BOIN and aBOIN1 are 16.1% and 16.75%, respectively, because for scenario 3 with

the MTD located at dose level 3, the prior guess also has the strongest confidence at dose level

3. However, if we check scenario 1 with the MTD located at dose level 1, we put only 20% con-

fidence into dose level 1 and find that the aBOIN2 design has the worst performance in terms

of the PCS% (26.03%), whereas BOIN and aBOIN1 have a higher PCS% (37.15% and 32.22%,

respectively). At a DLT rate of 30%, similar patterns can be observed.

From these results, we infer that when the prior guess for the MTD location is close to the

truth, the aBOIN version incorporating prior information performs the best in terms of the

PCS metric; in other scenarios, its results vary widely and can sometimes even be very inaccu-

rate. Given these observations, we recommend that in actual practice, the aBOIN incorporat-

ing prior information should be used only when the investigator has strong confidence or

there is prior or historical information on which dose is or approximate to the MTD.

5.2 Simulation 2: Adaptive BOIN design without incorporating prior

information

In this subsection, we investigate the aBOIN1 design, that is, the aBOIN design without incor-

porating prior information. However, in this subsection, we still call this version aBOIN for

brevity. We closely examine not only the PCS% but also the other three metrics, percentages of

patients allocated to a true MTD during the trial (MTD%), and the mean number of observed

DLTs throughout the trial (# of DLTs). Results are shown in Table 3 and Figs 1 and 2.

Results. For a DLT rate of 20%, Table 3 and Fig 1 show that the PCS (%) of the aBOIN

design for scenarios such as 1, 2, 6, 7, 8, and 10 is comparable to or lower than that for the

BOIN design. For the remaining scenarios, performance of the aBOIN design by PCS (%) as a

metric is comparable with that of the original BOIN design. Findings are similar for the crite-

rion “# of Patients at MTD.” However, for the criterion “Risk of Overdosing 60 (%),” in almost

across all scenarios, the risks associated with the aBOIN design are higher than for the BOIN

design. Nevertheless, for the criterion “Risk of Underdosing 60 (%),” the BOIN design per-

forms poorer than the aBOIN design. For a DLT rate of 30%, Table 3 and Fig 1 show that the

BOIN and aBOIN designs have comparable performances for the criteria “PCS (%)” and “# of

Patients at MTD.” However, at a DLT rate of 20%, for the criterion “Risk of Overdosing 60

(%),” overall the aBOIN design is associated with lower risks than for the BOIN design across

all scenarios but higher risks than that for the BOIN design for the criterion “Risk of Under-

dosing 60(%).”

We also examined the convergence rate with the PCS (%) metric for asymptomatic proper-

ties for both designs. We present partial results for the first four scenarios for DLT rates of

20% and 30%. Fig 3 shows that for DLT rates of 20%, in all explored scenarios the curve of the

aBOIN design is eventually above that of the original BOIN design. This indicates that as the

sample size increases, the aBOIN design performs better than the BOIN design in terms of the

PCS metric. Although we know that phase I trials usually have small sizes (approximately 30

patients), asymptotic findings show that the idea of shrinking boundaries comes into effect

only when the sample size is larger, and therefore this idea has little practical use although it is

asymptotically or theoretically meaningful. In summary, for the finite sample, the aBOIN and

BOIN designs have comparable performances with respect to the four criteria. For large sam-

ples, the aBOIN design performs better than the original BOIN design, but it has little practical
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use due to limited sample size in practice, and the corresponding simulated results can be seen

in Fig 4.

Note that if investigators have vague or less confidence about prior experience or informa-

tion, we still suggest that they use the BOIN design without prior information.

6 Discussion

We have developed two extensions of the BOIN design. The first one develops an accessible

approach to allow the incorporation of prior or historical information in the phase I trial. The

Fig 1. Operating characteristics of ten scenarios on the left panel (DLT 20%) of Table 2 by two competing methods BOIN and aBOIN.

https://doi.org/10.1371/journal.pone.0237254.g001
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second extension proposes adaptive shrinking boundaries (aBOIN design), whereas the origi-

nal BOIN design has fixed boundaries. The aBOIN design uses accelerating factors to control

the shrinking speed rates of lower and upper boundaries. Theoretical properties were derived

for the aBOIN design.

Performances of the proposed methods were discussed by simulations. When setting up the

location for the MTD a priori that was close to the MTD, the aBOIN design incorporating

prior information showed better performance than the original BOIN design. However, if the

prior deviated from the truth, performance of the aBOIN design was inferior to that of the

BOIN design. This is understandable, since there were very few sample sizes and therefore it

Fig 2. Operating characteristics of ten scenarios on the left panel (DLT 30%) of Table 2 by two competing methods BOIN and aBOIN.

https://doi.org/10.1371/journal.pone.0237254.g002
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was hard to dominate the estimation procedure for deciding the dose. Therefore, we caution

practitioners to use prior information in real trials unless there is strong confidence. The sec-

ond extension of the proposed aBOIN design was examined numerically by using a finite sam-

ple and a large sample. For finite sample sizes, performances were similar when comparing the

aBOIN without incorporating prior information to the BOIN design. Although the proposed

aBOIN design outperforms in asymptotic properties, it has limited use in actual phase I trials

due to the small sample size. In summary, the original BOIN design can be improved only if

very informative historical information is available.

Fig 3. Percentage of correctly selection percentage of MTD of the first four scenarios on the left panel (DLT rate 20%) in Table 2 by using the two

competing methods BOIN and aBOIN with a large sample.

https://doi.org/10.1371/journal.pone.0237254.g003
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Appendix 1: Proof of theoretical properties

Proof. Coherence. Since λ1j< ϕ and λ2j> ϕ, we can easily obtain the coherence:

prðdose escalationjp̂j > �Þ ¼ prðp̂j < l1jjp̂j > �Þ ¼ 0;

prðdose deescalationjp̂j < �Þ ¼ prðp̂j > l1jjp̂j < �Þ ¼ 0:

Thus, the aBOIN is long-term memory coherent.

Fig 4. Correctly selected percentage of the maximum tolerated dose for the first four scenarios in the right panel at a DLT rate of 30% in Table 2

by using original BOIN and aBOIN designs in a large sample.

https://doi.org/10.1371/journal.pone.0237254.g004
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Proof By the definition of ϕ1 and ϕ2, we can get λ1! ϕ, λ2! ϕ, as nj tends to1. By the

L’hopital’s rule, we get

lim
�1!�

l1 ¼ lim
�1!�

log ð
1 � �1

1 � �
Þ= logf

�ð1 � �1Þ

�1ð1 � �Þ
g

¼ lim
�1!�

� 1

1� �1

� �

�ð1� �1Þ
� 1� �

�1ð1� �Þ

¼ lim
�1!�

� 1

1� �1

� 1

1� �1
� 1

�1

¼ lim
�1!�

� �1

� �1 � 1þ �1

¼ lim
�1!�

�1 ! �

ð9Þ

The proof of λ2! ϕ as nj!1 is similar as above.

That is, both λ1 and λ2 shrink toward the MTD target ϕ.

Proof. λ1 < ϕ and λ2 > ϕ). Prove λ1 < ϕ.

Since we have proved that λ1 converges to ϕ(>0), if we prove λ1 is an increasing

function of ϕ1, then we can prove λ1 < ϕ. Let l1 ¼ f ð�1Þ ¼
log 1� �1

1� �ð Þ
log f�ð1� �1Þ

�1ð1� �Þ
g

and
df ð�1Þ

d�1
¼

� 1
1� �1

½ log �þ log ð1� �1Þ� log �1 � log ð1� �Þ� ½ log ð1� �1Þ� log ð1� �Þ�½ � 1
1� �1

� 1
�1
�

½ log �þ log ð1� �1Þ� log �1 � log ð1� �Þ�2
The numerator ¼

log �1 � log �þ1� �1

ð1� �1Þ�1
>

�1 � 1

�1
�
�� 1
�
þ1� �1

ð1� �1Þ�1
¼

1� �þ�1�

ð1� �1Þ�
2
1
�
> 0 (using inequality log ðxÞ > x� 1

x for all x> −1)

(since 0< ϕ, ϕ1 < 1)

Thus,
df ð�1Þ

d�1
> 0, that is, λ1 = f(ϕ1) is an increasing function of ϕ1 with limit at ϕ.

Hence, we have λ1 < ϕ.

Similarly, we can prove λ2 > ϕ.

Proof. Convergency. Denote the event A ¼ p̂j 2 ðl1; l2Þ. We only need to show that when nj

is large enough, pr(A) = 1. Since limnj!1λ1/ϕ1 = 1 and limnj!1λ2/ϕ2 = 1, for g1, g2 < 1 by

the CLT, we can get

prð lim
nj!1

AÞ ¼ prð lim
nj!1

p̂j 2 ðl1; l2ÞÞ ¼ prð lim
nj!1

p̂j 2 ð�1; �2ÞÞ

¼ prð lim
nj!1

� �
D1

ð
ffiffiffiffinj
p
Þ
g1
< p̂j < �þ

D2

ð
ffiffiffiffinj
p
Þ
g2
Þ

¼ prð lim
nj!1
�

D1

ffiffiffiffinj
p

ð
ffiffiffiffinj
p
Þ
g1�ð1 � �Þ

<

ffiffiffiffinj
p
ðp̂j � �Þ

�ð1 � �Þ
<

D2

ffiffiffiffinj
p

ð
ffiffiffiffinj
p
Þ
g2�ð1 � �Þ

Þ

¼ Fð1Þ � Fð� 1Þ ¼ 1:

Then, the proof provided by Oron, Azriel, and Hoff (2011) can be directly used to obtain

the result.

Appendix 2: Algorithm of generating priors in Table 1

Assuming J dose levels, we firstly elicit a prior vector probability for hypothesis H0, that is,

guessing which dose would possibly be the MTD, denoted as π0,1, � � �.π0,j, � � �, π0,J. We can also

assume odds of H1 to H2 at dose level 1, since at the lowest dose, it would have high confidence

that this first dose would be under-dosing than over-dosing, thus, we let odds1 ¼
p1;1

p2;1
can be

any large number, for instance, odds1 ¼
p1;1

p2;1
¼ 10 in our algorithm, and, vice versa, the odds of

H1 to H2 at dose level J, would be a small number, for instance, we let oddsJ
p1;J
p2;J
¼ 1

10
. If dose

level j is assigned highest probability, that is, dose j is believed to be closet to the MTD prior to
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the study and we assume there has equal chance to be under- or over-dose at this dose level,

that is, oddsJ
p1;j
p2;j
¼ 1.

Based on the above odds1 and oddsJ, we use the definition of the odds to evaluate the prior

probabilities for H1 at dose levels 1 and J as:

p1;j� ¼
ð1 � p0;j� Þ � oddsj�

1þ oddsj�
; j� ¼ 1 or J ð10Þ

then, the prior probabilities for H2 at dose levels 1 and J are:

pJ;j� ¼ 1 � p1;j� � p0;j� ; j� ¼ 1 or J ð11Þ

Now, we have the prior probabilities of the first row for H0 and first and last (J-th) columns

in Table 1. Based on these information, we then use an interpolation technique to assign prob-

abilities for the rest cells in Table 1.

To be specific, for computing probabilities of H1 for dose levels from 2 to j − 1, the following

linear interpolation formula is used:

p1;j0 ¼
ðp1;1 þ p1;jÞ

j0
; 2 � j0 � j � 1 ð12Þ

For computing probabilities of H1 for dose levels from j + 1 to J, the following linear inter-

polation formula is used:

p1;j0 ¼
ðp1;j þ p1;JÞ

j0
; jþ 1 � j0 � J ð13Þ

Thus, based on the above steps, we assign probabilities for the first (H0) and second rows

(H1) in Table 1. Probabilities for third row (H2) are:

p2;j0 ¼ 1 � p0;j0 � p1;j0 ; 1 � j0 � J ð14Þ

We provide a numerical example for showing the above procedure. Assuming there are 5

dose levels and, without losing generality, assuming the 3rd dose level is closest to the MTD

prior to the study. For example, the prior probability vector is set to be (π0,1, � � �, π0,5) =

(0.2,0.45,0.7,0.45,0.2), that is, this is the 1st row in Table 1. To be specific, we think that the

dose level 3 may be close to the MTD with 70% confidence, and then dose level 2 and 4 with

45% confidence to be the MTD while the first dose level and last dose level have the minimal

confidence to be the MTD with 20% for each. Since the odds (defined by the algorithm) for the

dose level 3 is odds3= 1, so we have π1,3 = π2,3 = 0.15 since π0,3 = 0.7 now. By the algorithm, we

also know that odds for the first and last dose levels are as odds1 = 10 and odds5 ¼
1

10
.

By using the above formula (10) and (11), we can have

p1;1 ¼
ð1 � p0;1Þ � odds1

1þ odds1

¼
ð1 � 0:2Þ � 10

1þ 10
¼ 0:72;

p1;5 ¼
ð1 � p0;5Þ � odds5

1þ odds5

¼
ð1 � 0:2Þ � 1=10

1þ 1=10
¼ 0:08;

Then, we can have π2,1 = 1 − π1,1 − π0,1 = 1 − 0.72 − 0.2 = 0.08 and π2,5 = 1 − π1,5 − π0,5 = 1

− 0.08 − 0.2 = 0.72.

PLOS ONE Phase I design with adaptive shrinking boundaries and incorporation of historical information

PLOS ONE | https://doi.org/10.1371/journal.pone.0237254 August 27, 2020 16 / 18

https://doi.org/10.1371/journal.pone.0237254


Thus, by using the formula (13) and (14), we have

p1;2 ¼
ðp1;1 þ p1;3Þ

2
¼
ð0:72þ 0:15Þ

2
¼ 0:44

p1;4 ¼
ðp1;3 þ p1;5Þ

2
¼
ð0:15þ 0:08Þ

2
¼ 0:12

thus, for the second row (H1) in Table 1, we have assigned prior probabilities as (π1,1, π1,2, π1,3,

π1,4, π1,5) = (0.72, 0.44, 0.15, 0.12, 0.08).

Then, for the third row (H2), we have (π2,1, π2,2, π2,3, π2,4, π2,5) = 1 − (π0,1 + π1,1, π0,2 + π1,2,

π0,3 + π1,3, π0,4 + π1,4, π0,5 + π1,5) = (0.08, 0.11, 0.15, 0.43, 0.72).
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