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Simple Summary: In this literature review, we will provide a short overview of the role of nuclear
medicine in the diagnosis of obstetric and gynecological cancers.

Abstract: Nuclear medicine is defined as the diagnosis and the treatment of disease using radio-
labeled compounds known as radiopharmaceuticals. Single-photon emission computed tomogra-
phy/computed tomography (SPECT/CT) and positron emission tomography/computer tomography
(PET/CT) based radiopharmaceuticals have proven reliable in diagnostic imaging in nuclear medicine
and cancer treatment. One of the most critical cancers that also relies on an early diagnosis is gyneco-
logical cancer. Given that approximately 25% of all cancers in developing countries are a subset of
gynecological cancer, investigating this cancer subtype is of significant clinical worth, particularly
in light of its high rate of mortality. With accurate identification of high grade distant abdomi-
nal endometrial cancer as well as extra abdominal metastases, 18F-Fluorodeoxyglucose ([18F]FDG)
PET/CT imaging is considered a valuable step forward in the investigation of gynecological cancer.
Considering these factors, [18F]FDG PET/CT imaging can assist in making management of patient
therapy more feasible. In this literature review, we will provide a short overview of the role of nuclear
medicine in the diagnosis of obstetric and gynecological cancers.

Keywords: gynecology; radiopharmaceutical; positron emission tomography/computer tomography
(PET/CT); single-photon emission computed tomography/computed tomography (SPECT/CT)

1. Introduction

Gynecological malignancies include ovarian, cervical, and endometrial cancer, and
greatly affect female health and quality of life worldwide [1]. Despite promising advance-
ments in the detection and the treatment of cancers, there are still uncertainties in the
diagnostic methods, which in turn can contribute to patient mortality. Epidemiological
population-based data from 1990 until 2019 have shown that breast cancer is the most
frequent type of cancer in females, followed by cervical cancer, and then ovarian and
uterine cancers [2,3]. Nuclear medicine based diagnostic imaging has played a considerable
role in many aspects of the management of treatment planning, such as in predicting and
staging the malignancies and in patient responses to treatment [4]. Several radiopharma-
ceuticals have been developed for diagnostic investigations of gynecological cancers, with
encouraging results. For example, [18F]-fluorodeoxyglucose ([18F]FDG) is a promising
radiopharmaceutical with extensive application in oncology [5]. Compared to benign
tissues with lower rates of glycolysis and other normal tissues, [18F]FDG preferentially
accumulates in malignant neoplasm with high rates of glycolytic activity [6,7].
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Given that there is a significant increase in protein synthesis in these malignancies [8],
following in-vivo amino acid consumption during protein synthesis could be very in-
formative. It is hypothesized that the amino acid methionine plays a critical role as a
primer member of proteins [9]. Carbon-11 radiolabeled methionine ([11C]C-MET) has been
shown to be potentially useful as a positron emission tomography/computed tomography
(PET/CT) tracer for imaging of various cancers [10–14]. Evidence suggests a possibly
favorable effect of [11C]C-MET over [18F]FDG. For example, in a study on prostate cancer,
[11C]C-MET more clearly detected lesions when compared to [18F]FDG [15]. Another ad-
vantage of [11C]C-MET over [18F]FDG is the lack of concentration of the former in infections
and inflammations since protein synthesis does not take place in the above mentioned
conditions compared to glucose metabolism [16], the primary target of [18F]FDG imaging.
Additionally, it is also hypothesized that [11C]C-MET would show greater specificity in
detecting gynecological malignancies [16]. The full potential for [11C]C-MET in imag-
ing gynecological and obstetric malignancy, however, remains to be empirically verified.
Further studies have also shown that 1-(2-hydroxy-3-[18F]fluoropropyl)-2-nitroimidazole
([18F]FMISO), a tumor hypoxia PET/CT tracer, could be a potent prognostic radiopharma-
ceutical for the evaluation of pre-therapeutic oxygen status in gynecological cancer [10].

Substantial progress has been made in the field of nuclear medicine in relation to gyne-
cological neoplasms, which are one of the most common and fatal cancers worldwide [17].
Staging of these cancers is strongly dependent on the successful evaluation of primary
lymph node (LN) status in the determination of distant metastases [17]. Notably, numerous
technetium-99m (99mTc) based colloidal radiopharmaceuticals have been developed and
successfully applied for lymphoscintigraphy of gynecological cancers [18]. The most critical
gynecological neoplasms include cervix uteri neoplasms and ovarian cancers, followed by
endometrial cancers [19]. Less serious are vulvar and vaginal cancer, as well as localized
melanomas in the female reproductive system, which typically lead to mortality in rare
cases only [19]. In this review article, we aim to summarize the diagnostic progress in
nuclear medicine in the context of gynecological cancers (Figure 1). We further discuss
hypoxia radiopharmaceuticals, which play a key role as monitoring tracers for gyneco-
logical cancers and the fact that, despite greater availability of single-photon emission
computed tomography/computed tomography (SPECT/CT) compared to PET/CT, more
potential PET tracers have been used in clinical trials for gynecological abnormalities that
are discussed in the following review.
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Figure 1. List of commonly applied radiopharmaceuticals in gynecology. [18F]FLT =
[18F]Fluorothymidine, [18F]FES = 16a-[18F]-fluoro-17b-estradiol, [89Zr]Zr-MMOT0530A =
89Zr-labeled Monoclonal Antibody, [18F]FAZA = [18F]Fluoroazomycin-arabinoside, ([18F]FETNIM
= [18F]Fluoroerythronitroimidazole, [18F]HX4 = [18F]Flortanidazole [64Cu]Cu-ATSM = [64Cu]Cu-
Diacetyl-bis(N4-methylthiosemicarbazone), [60Cu]Cu-ATSM = [60Cu]Cu-Diacetyl-bis(N4-
methylthiosemicarbazone), 99mTc-colloids = 99mTc-Sulfur Colloid.
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2. Cervical Cancer

Globally, cervical cancer is the second most serious gynecological malignancy in terms
of mortality in patients under 35 years of age [20,21]. As a result, numerous studies have
been conducted in order to understand its epidemiology and possible etiology [22–24].
A main consideration in the management of cervical cancer is the appropriate staging of
access to effective treatment methods and patients’ prognosis [21]. One such consideration
is that the detection resolution of PET/CT for staging of primary tumors of cervical cancers
is limited [21]. Consequently, the use of MRI for imaging tumor volume, size, and the
extent of parametrial invasion may be superior, acting as a gold standard for evaluating
the locoregional extension of cervical cancer [21,25]. Nevertheless, [18F]FDG PET, provides
metabolic information by depicting glycolytic tumor activity, and it can also obtain addi-
tional information in the staging of primary cervical cancers [25]. Pawar et al. assessed
the success rate of PET/CT in a retrospective study of 56 patients with gynecological
malignancy including cervix carcinomas (23 patients). It was shown that PET/CT offers
a high diagnostic accuracy, both in the evaluation of suspected tumor recurrence and in
persistent disease [26]. The authors concluded that PET/CT has particular value in primary
cervical cancer, which is related to the diagnosis of extra-pelvic abnormalities, the detection
of recurrence, and the monitoring of patients after treatment [26]. In another retrospective
analysis of the accuracy of [18F]FDG PET/CT, the rate of success in the initial stages of
cervical tumors was estimated to be 100% [27]. Further studies and clinical observations
have demonstrated that the combined PET/CT has greater accuracy compared to PET
imaging alone [28,29]. Generally, it has been concluded that [18F]FDG PET/CT is a choice
modality for investigations of pretreatment staging and post-treatment surveillance of
cervical cancer (Figure 2) [30]. One of the most considerable and adverse criteria of cervical
cancer is tumor hypoxia [31,32]. Hypoxia is defined as oxygen insufficiency in cells, and it
can be used as a prognostic indicator. Hypoxia has shown particular utility in therapeutic
cancer management, including responses to chemotherapy or radiation therapy [33–36].
Another noteworthy aspect of hypoxia is the prediction of metastases in tumor cells which
are related to hypoxia’s role in deoxyribonucleic acid (DNA) mutations and malignant,
atypical cells [10]. Given these observations, the evaluation of hypoxia in treatment man-
agement is essential, particularly for locally advanced stages and local recurrences, which
occur more than expected in cervical cancer [37].
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Figure 2. A 66-year-old female presented with a pelvic mass and vaginal bleeding. Cervical squamous
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node metastases, in addition to lung metastases (E). (Pictures with courtesy from Department of
Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran).
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Hypoxia Imaging Radiopharmaceuticals for Cervical Cancer

The two major categories of radiolabeled hypoxia imaging agents are nitroimidazole
derivatives and diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) analogues [38]. Among
the nitroimidazoles, [18F]FMISO has been widely used in recent clinical trials; [18F]FMISO
can identify hypoxic tumor sub-volumes and track their spatio-temporal dynamics [39,40].
In one study, sixteen patients with histopathologically verified and locally advanced cer-
vical cancer underwent [18F]FDG/[18F]FMISO PET/magnetic resonance imaging (MRI)
scans [41]. Results indicated that a [18F]FDG/[18F]FMISO PET/MRI scan is feasible in
cervical cancer cases, providing complementary information about tumor biology and het-
erogeneity while identifying hypoxic tumor sub-volumes which are resistant to treatment
methods [41]. All detected lesions involved in the hypoxic condition were identified, as
was a strong functional correlation between [18F]FDG and [18F]FMISO [42]. Two other
hypoxia imaging agents with variable pharmacokinetics compared to [18F]FMISO [38] are
[18F]F-fluoroazomycin-arabinoside ([18F]FAZA) and [18F]F-fluoroerythronitroimidazole
([18F]FETNIM); and, [18F]FETNIM has shown lower tumor to non-target accumulation
in lung cancer patients [43]. Since lipophilicity of [18F]FMISO is high, it can pass cell
membranes through passive diffusion. However, this passive diffusion causes a slow
clearance and also a poor tumor to normal tissue ratio [44]. A less lipophilic hypoxia agent
([18F]FAZA) has also been evaluated in clinical trials. A comparison of [18F]FMISO and
[18F]FAZA demonstrates extensive functional correlations, suggesting its comparable utility
in the detection and the specification of hypoxic tumor volumes using PET/CT [45]. In a
pilot study of uterine cervix cancer patients undergoing MRI guided adaptive radiotherapy,
it was further demonstrated that [18F]FAZA PET/CT for the detection of radio-resistance
related to hypoxia is practical [46], compared to morphologic repetitive MRI. However,
according to clinical results in non-small-cell lung carcinoma (NSCLC), [18F]FMISO may
be superior to [18F]FAZA, and it remains the gold standard for volume detection of tu-
mor hypoxia [45]. This result was supported by a simulation study which introduced a
new hypoxia agent named [18F]F-flortanidazole ([18F]HX4) [47]. According to the results,
[18F]HX4—the third generation of hypoxia imaging agents—showed the fastest clearance
rate, highest image contrast, and lowest background signals compared to [18F]FMISO and
[18F]FAZA. On the other hand, [18F]HX4 showed the highest variance between patients
in both clearance and contrast [47,48]. In sum, each hypoxia tracer has distinct strengths
and weaknesses. While [18F]FMISO is reported as the most reproducible, albeit with a
lower image contrast [48], this is in contrast to [18F]FMISO, the first generation of hypoxia
imaging agents [49].

Extensive studies have been performed on [64Cu]Cu-Diacetyl-bis(N4-methylthiosemicarbazone)
([64Cu]Cu-ATSM), another hypoxia tracer that has numerous advantages over the above
mentioned hypoxia tracers. For example, [64Cu]Cu-ATSM exhibits more convenient syn-
thetic methods that make radiolabeled ATSM derivatives accessible; a higher hydrophilicity
due to the chemical structure of [64Cu]Cu-ATSM that makes shorter diagnostic proce-
dures possible as clearance from non-target tissues is faster; and a simpler method for
quantification [50]. These factors make [64Cu]Cu-ATSM a more favorable tumor hypoxia
radiopharmaceutical. Moreover, evidence from clinical studies has shown superior image
quality with [64Cu]Cu-ATSM relative to [60Cu]Cu-ATSM, which is likely due to the unique
physical properties of copper-64, leading to a higher signal to noise ratio in obtained images
(Figure 3) [50].

Although [18F]FDG PET/CT is known as the gold standard diagnostic method in
nuclear medicine, there remain some limitations possibly due to a lack of anatomical
landmarks or the suboptimal specificity of metabolic imaging [50,51]. One considerable
deficiency of [18F]FDG is the inability to determine primary tumor volumes as well as
assessment of stromal invasion, parametrial involvement, and <1 cm invasion to adjacent
organs (vagina, bladder, and rectum) [52,53]. Based on these observations, the development
of more specific gynecological radiopharmaceuticals seems necessary.
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3. Ovarian Cancer

In recent years, ovarian cancer has become the fifth most common cause of death
among women all over the world [53]. Early detection of ovarian cancer (stage I) leads to
successful treatment in more than 90% of cases. However, this percentage dramatically
decreases to 20–25% in later stages (III, IV) [54]. Various diagnostic modalities provide
diverse clinical information for the diagnosis of the disease [53]. Molecular imaging
modalities including SPECT/CT and PET/CT possess functional information about the
biochemistry of tissues [53]. Molecular PET imaging agents reflect general information
about energy consumption through glucose metabolism ([18F]FDG) or the proliferation of
DNA synthesis ([18F]F-fluorodeoxythymidine ([18F]FLT)) [55]. For more specific targeting of
the cell surface, components like hormone receptors, receptor tyrosine kinases, angiogenesis
components, and immunotherapy components would be invaluable [55]. Many studies
have been conducted to optimize the effective diagnosis and treatment of ovarian cancer. In
a comparison study of 51 patients with peritoneal lesions arising from ovarian cancer, it was
demonstrated that the obtained visual results of [18F]FDG PET/CT in association with other
semi-quantitative parameters were effective in the detection of ovarian cancer [56]. This
result was based on the observed differentiation potency of [18F]FDG PET/CT in malignant
and benign lesions [56]. In another study, results showed that CA125 acted as a sensitive
tumor marker of recurrent ovarian cancer in 175 patients with recurrent refractory ovarian
cancer and increased carcinoma antigen 125 (CA125). Specifically, it was demonstrated that
the detection rate of [18F]FDG PET/CT scan is 90% for elevated CA125 and 53% for a low
(<30) but measurable amount of CA125 [57]. These findings show that [18F]FDG PET/CT
can detect active lesions despite a low level of CA125, and this can be useful for the early
detection and treatment of recurrent cases [57]. Undoubtedly, with increased CA125 (≥35)
the diagnostic value of [18F]FDG PET/CT has been well established in numerous studies
on ovarian cancer [58,59]. Generally, it can be argued that [18F]FDG PET/CT is a valuable
detection method in suspected recurrent cases, and it acts as a viable prediction tool for the
progression of advanced ovarian cancer (Figure 4) [60–64]. Despite these beneficial aspects
of [18F]FDG PET/CT, however, this procedure doesn’t show reliable diagnostic value in
the primary stages of ovarian cancer [55].
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Figure 4. A 50-year-old female with a history of ovarian cancer, seven months post total abdominal
hysterectomy with bilateral salpingo-oophorectomy (THA-BSO) with complaints of abdominal pain
end measures of elevated tumor markers. (A) Anterior maximal intensity projection (MIP) [18F]FDG
PET/CT image. (B) transvers, (C) coronal and (D) Sagittal abdominopelvic fused PET/CT images
showed disseminated intraperitoneal hypermetabolic tumor seeding in abdomen and pelvic cavity
as well as hypermetabolic omental thickening (omental cake) and ascites. (Image with courtesy
of the Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences,
Tehran, Iran).

3.1. DNA Synthesis and Proliferation Imaging Radiopharmaceuticals for Ovarian Cancer

The radiopharmaceutical, [18F]FLT, is a tracer for proliferation activity. After in-
ternalization, [18F]FLT undergoes phosphorylation by thymidine kinase 1, resulting in
sequestrated intracellular radioactivity [65]. Thymidine kinase participates in DNA synthe-
sis and therefore reflects the proliferation rate in tissues. Evidence from both preclinical and
clinical studies shows a decrease in [18F]FLT uptake after ovarian cancer treatment [66–68].
Moreover, a pilot study demonstrated that prior to the debulking surgery of ovarian cancer
in six patients, [18F]FLT showed a higher uptake in tumors compared to normal tissues [68].
Additionally, clinical studies have reported that, due to a high background in liver and
bone marrow, administration of [18F]FLT for pretreatment assessments would not be recom-
mended given that it may cover the metastases located adjacent to the mentioned organs
with a high background [69].

3.2. Estrogen Receptor Imaging Radiopharmaceuticals for Ovarian Cancer

Previous studies have shown that in estrogen receptor (ER) positive early breast
cancer patients, endocrine therapeutic procedures reduce recurrences and the mortality
rate, regardless of whether chemotherapy is also applied [70]. Previous clinical trials have
also demonstrated that endocrine therapy for ovarian cancer can improve the response
to treatment and prolong survival in platinum-resistant ovarian cancer patients [71–74].
Based on these findings, ER receptors could be a valuable predictor for patients who may
benefit from endocrine hormonal therapy [75].

The 16a-[18F]-fluoro-17b-estradiol ([18F]FES) PET/CT has been successfully applied in
breast and ovarian cancer; and [18F]FES uptake has shown a high correlation with estrogen
receptor (ER) expressions in previous studies [76,77]. In a clinical study on estrogen-
receptor-positive primary breast cancer patients, hormonal therapy failure in [18F]FES
negative cases was investigated [77]: [18F]FES sensitivity and specificity for detection
of ER positive lesions was estimated at 84% to 94% for breast cancer and 79% to 100%
for ovarian cancer, respectively [53]. Additionally, [18F]FES has been demonstrated in
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leiomyoma as well as epithelial ovarian cancer [77,78]. In 15 patients with suspected
ovarian cancer, 88% exhibited lesions measurable with CT and that could be diagnosed
with [18F]FES PET/CT. The remainder were non-quantifiable due to a high radioactivity
uptake of adjacent tissues [78]. These findings support the beneficial role of [18F]FES in
hormonal therapy.

The tumor antigen mesothelin is also frequently overexpressed in ovarian cancer
compared to normal tissues, making it a viable target for the diagnosis or the treatment
of ovarian cancer [79]. Previous studies have shown MMOT0530A as an appropriate
antibody for mesothelin was radiolabeled with zirconium-89 [80], while phase I clinical
trials have shown accumulation of the radiolabeled antibody in both primary and metastatic
lesions [80]. Further studies are needed to validate more specific and sensitive tracers,
many of which are currently undergoing preclinical trials.

3.3. Endometrial Cancer

Endometrial cancer is the most common cancer of the genital tract and the fourth
most common malignancy among women in developed countries [81]. Endometrial cancer
exhibits a more positive prognosis in that it can often be diagnosed earlier and, for localized
occurrences, a five-year survival rate is usually expected (96% of cases) [82]. Nevertheless,
overall survival declines to 57% in patients with regional metastasis in pelvic lymph nodes
(PLN), and 49.4% in those with metastasis to para-aortic lymph nodes (PALN), with or
without positive PLN [83]. Numerous studies have emphasized the unique role of [18F]FDG
PET/CT in the assessments of staging, restaging, monitoring, and planning of therapeutic
procedures in uterine cancers [84–87]. The reliability of [18F]FDG PET/CT in the detection
of pelvic and/or para aortic lymph nodes metastasis in patients with untreated endometrial
cancer was evaluated in several clinical studies [88–91], generally showing high efficacy.
Furthermore, a meta-analysis [89] also highlighted the utility of [18F]FDG PET/CT in the
diagnosis of lymph node metastasis (LNM) in pre-operational investigations and post-
operative recurrences of endometrial cancers. In order to verify the post-operational effect
of [18F]FDG, 90 patients with endometrial cancer history were involved in a clinical study
designed to investigate residual tumors after curettage [92]. The results support that
[18F]FDG PET/CT can be used for exact determination of residual tumors in endometrial
cancers [92]. Furthermore, it was concluded that in patients with low grade carcinomas and
lesion sizes <1.35 cm, [18F]FDG uptake would be low, possibly leading to false negative
results [92]. In a notable study with coupled [18F]FES and [18F]FDG PET, it was shown
that both approaches are advantageous for the differentiation of malignant and benign
uterine tumors [93,94]. It was further demonstrated that the estrogen dependency and
the glucose tendency of tumor cells decrease and increase respectively, each correlating
with tumor aggression in endometrial carcinomas [94]. Moreover, this observation also
highlighted the differences in the [18F]FES and the [18F]FDG accumulation rates, as related
to estrogen expression and glucose consumption [94]. Considering these differences, the
[18F]FDG–to–[18F]FES ratio may be the most informative index reflecting tumor aggressive-
ness [94]. Taken together, these findings may assist in developing non-invasive methods for
guiding decisions regarding the early detection of and the optimal therapeutic processes
for gynecological cancers.

4. Vulvar Cancer

Vulvar cancer is a comparatively rare type of neoplasm accounting for 1–5% of the total
cancer types in women, and it is more frequent in older women [95]. Distant metastases
are very rare in vulvar cancer while lymph node dissemination is observed in 30% of
patients [96]. Sentinel node biopsy (SNB) is a gold standard method for staging vulvar
cancer without lymphatic spread, and it is useful in preventing postsurgical morbidity [18].
One pervasive issue, however, is the imaging of metastatic LNs. In a clinical trial carried
out by Crivellaro et al., 29 patients (mean age 69 years, range 51–88) with vulvar cancer
(clinical apparent stage I-II) underwent a pre-operative [18F]FDG PET/CT scan [97]. The
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results showed that [18F]FDG PET/CT had low sensitivity and moderate specificity in nodal
staging; and, thus, it was not an optimal tool for nodal status assessment. Furthermore,
PET/CT may not be cost-effective in detecting the rare event of distant metastases in early
stages. Nevertheless, further studies on larger samples are essential to clarify the exact role
of [18F]FDG PET/CT scans for this purpose.

Finally, 99mTc-labeled colloids have been considered for detection of sentinel node
(SLN) using planar scintigraphy and, more recently, SPECT or SPECT/CT [98–101]. There
is evidence from studies in vulvar cancer patients that indocyanine green (ICG)-[99mTc]Tc-
nanocolloid SPECT/CT can be used for personalized lymphatic mapping, possibly provid-
ing detailed information about the number and the anatomical location of SNs for adequate
surgical guidance [98,102,103].

5. Vaginal Cancer

Vaginal cancer accounts for approximately 1–2% of gynecological malignancies, among
which squamous cell carcinomas and melanoma (less than 4% of vaginal tumors) are the
most common [104]. The use of SLN mapping with radiocolloids is beneficial for both
diagnosis as well as therapy [105,106]. The most common procedure for detection of LNs
is preoperative lymphoscintigraphy using [99mTc]Tc-colloids, following a simultaneous
intraoperative blue dye procedure and gamma probe [107]. Clinical trials have shown that,
in patients undergoing joint lymphoscintigraphy and blue dye procedures, there was a
detection rate of 82% SLN, while just 9% of LNs were detected when using each method
separately [108]. In 14 patients with vaginal cancers (including 7 squamous cell carcinomas,
5 vaginal melanomas, 1 adenocarcinoma, and 1 undifferentiated carcinoma), at least one
lesion was detectable in 79% of all patients and in each case [108]. Many case reports have
also demonstrated that SPECT/CT lymphoscintigraphy is a feasible and an ideal method
for pre-operative mapping in vaginal cancer [109–116]. However, in several studies, false
negative cases have also been reported [117–119].

In sum, it can be argued that, although SLN detection is not a standard of care to
date, efforts are being made to develop non-invasive and effective methods to reduce
surgical morbidity without impacting its efficacy in patients affected by vaginal cancers.
Further studies are needed, however, to confirm the reliability and the accuracy of SLN
mapping by blue dye as well as radiopharmaceuticals in gynecologic oncology. How-
ever [18F]FDG PET/CT could be still a gold standard for imaging purpose of vaginal
malignancies (Figure 5) [120–122] .
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Figure 5. 21-year-old female, known case of vaginal rhabdomyosarcoma, referred for staging.
(A) anterior and right lateral MIP [18F]FDG PET/CT images. (B) coronal, (C) sagittal, (D) transvers
pelvis fused [18F]FDG PET/CT images and (E) corresponding transvers pelvis CT image showed hy-
permetabolic primary tumor without evidence of regional lymphadenopathy or distance metastasis.
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6. Recent Advances of [68Ga]Ga-FAPI in Various Gynecological Cancers

The current and most frequently used PET/CT diagnostic radiotracer ([18F]FDG) in
oncology, accumulates based on glucose consumption. Therefore, [18F]FDG uptake is
influenced by glucose level, physical movement, and nutrition [123,124]. However, there
are considerable limitations to this method including high physiological background activ-
ity, low glucose transporter density, and varying hexokinase activity in some malignant
tissues, which can lead to a decreased specificity when making a diagnosis [124,125]. The
radiolabeled fibroblast activation protein inhibitor (FAPI) is a novel class of radiopharma-
ceuticals that has shown promising diagnostic results for various tumor types [126,127].
A type II serine protease, the fibroblast activation protein (FAP) is expressed by cancer
associated fibroblasts (CAFs), and CAFs are associated with stroma in many tumors with
poor prognosis [128–130]. With respect to the limitations of [18F]FDG, it can be argued that
radiolabeled FAPIs for PET/CT diagnosis would be superior in gynecological cancers and
also in many malignant and non-malignant tissues [131]. In a cohort study, 31 patients
(median age 59.5) from two centers with several gynecological tumors (breast cancer; ovar-
ian cancer; cervical cancer; endometrial cancer; leiomyosarcoma of the uterus; tubal cancer)
underwent [68Ga]Ga-FAPI PET/CT [131]. In 8 patients, primary tumors were detectable,
and in all 31 patients metastases were identified. Notable outcomes resulted from a com-
parison between the biodistribution of [18F]FDG and [68Ga]Ga-FAPI in normal organs.
The results showed that mean SUVmax of FAPI was significantly lower in most normal
organs [131]. Mean SUVmax showed a statistically significantly lower uptake for [68Ga]Ga-
FAPI compared to [18F]FDG in brain parenchyma ([68Ga]Ga-FAPI vs. [18F]FDG: 0.1 vs.
10.8; p = 0.005), oral mucosa (1.9 vs. 2.8; p = 0.028), parotid gland (1.4 vs. 2.0; p = 0.044),
myocardium (1.5 vs. 3.2; p = 0.017), blood-pool (mean SUVmax 1.8 vs. 2.3; p = 0.009),
liver (1.3 vs. 3.0; p = 0.005), pancreas (1.4 vs. 2.0; p = 0.021), spleen (1.4 vs. 2.5; p = 0.012),
kidney cortex (2.1 vs. 2.7; p = 0.007), gastrointestinal tract (measured in colon transversum:
1.3 vs. 2.0; p = 0.008), spinal canal (0.7 vs. 1.0; p = 0.028), and bone tissue (1.1 vs. 2.3;
p = 0.028) [131].

Moreover, 68Ga-FAPI PET/CT scans can be accomplished with no requirement for
patients to rest or to fast, nor are they affected by blood glucose level. This procedure can
also be completed comparatively quickly, with lower off-target accumulation relative to
[18F]FDG [132,133]. In a clinical study by Wang et al., the comparison of diagnostic results
achieved through [18F]FDG and [68Ga]Ga-FAPI-04 showed that physiological accumulation
of [68Ga]Ga-FAPI-04 in the ovaries is not affected by the menstrual cycle. This finding
was in contrast to the reported effects of [18F]FDG, which exhibited accumulation in both
malignant and functional ovarian lesions. This is a clear indicator of [68Ga]Ga-FAPI as a
differentiation radiotracer in gynecological malignancies [134].

Notably, radiolabeled FAPI may also be used as a theranostic tracer, which is highly
promising for staging, re-staging, and follow-up of gynecological malignancies. How-
ever large prospective studies are needed to gain more information about the specificity,
sensitivity, and accuracy of [68Ga]Ga-FAPI PET/CT in gynecological cancers [131].

7. Conclusions

In this review, we have provided a detailed summary of various radiopharmaceuticals
that are used to assist in the accurate diagnosis of gynecological malignancies. However,
these concepts can also be extended to other oncological conditions. Nuclear medicine,
in combination with radiological modalities, gives extra information for diagnosis, prog-
nosis, staging, treatment management, and the evaluation of responses to therapy in a
non-invasive manner. Based on these descriptions, nuclear medicine plays a key role
in the clinical evaluation of oncological malignancies. Given the extraordinary effects
of gynecological cancers on female health worldwide, the need for the development of
more specific radiopharmaceuticals is absolutely essential. Finally, though the use of these
techniques in gynecological and obstetric cancers is valuable, it should also be noted that
their availability may be currently limited. For example, while the use of Cu-64 ATSM has
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been approved by the United States Food and Drug Administration (and are therefore the
only radiopharmaceuticals next to FDG which are widely available for patients in the US),
availability of this and other such radiopharmaceuticals will vary across different countries
or territories and the local regulatory framework. As a result, further clinical studies are
critical to quantify and to determine the exact potential of these radiopharmaceuticals in
the diagnosis and the treatment of gynecological and obstetric malignancies.
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