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Abstract

Detailed, well-dated palaeoclimate and archaeological records are critical for understanding

the impact of environmental change on human evolution. Ga-Mohana Hill, in the southern

Kalahari, South Africa, preserves a Pleistocene archaeological sequence. Relict tufas at the

site are evidence of past flowing streams, waterfalls, and shallow pools. Here, we use laser

ablation screening to target material suitable for uranium-thorium dating. We obtained 33

ages covering the last 110 thousand years (ka) and identify five tufa formation episodes at

114–100 ka, 73–48 ka, 44–32 ka, 15–6 ka, and ~3 ka. Three tufa episodes are coincident

with the archaeological units at Ga-Mohana Hill dating to ~105 ka, ~31 ka, and ~15 ka.

Based on our data and the coincidence of dated layers from other local records, we argue

that in the southern Kalahari, from ~240 ka to ~71 ka wet phases and human occupation are

coupled, but by ~20 ka during the Last Glacial Maximum (LGM), they are decoupled.

Introduction

A key question in human origins research is how climate change impacted early Homo sapiens
population distributions across Africa. It has been hypothesized that humans did not always

have the capacity to survive in arid environments [1, 2], that early human distributions were

modulated by distance to [3] and availability of water [4], that people were largely restricted to

wetter refugia during glacial periods [5–7], and that the occupation of arid regions was coinci-

dent with interglacial periods [8, 9]. We see this view manifested slightly differently in different

regions of the African continent. For example, in eastern Africa, favourable climatic conditions

and increasing water availability during MIS 5 is associated with greater mobility of Homo
sapiens and their occupation of a wide variety of sites, not restricted to oases such as lake mar-

gins [7]. In North Africa, the idea of a ‘Green Sahara’ during ~130–75 ka is contested by Scerri

et al. [10] who use a palaeoenvironmental model to highlight that the region was not a uniform
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oasis, noting that pockets of aridity persisted as barriers to mobility, even during periods of

increased humidity, and that human dispersal at this time occurred along corridors connected

by palaeohydrological networks. While evidence for human mobility and dispersal is generally

linked to water availability [10, 11], there are some exceptions, for example, occupation at the

North African site of Uan Tabu between ~60–90 ka is associated with evidence of an arid cli-

mate [12]. With recent advances in the application of dating techniques e.g. U-Th and OSL

methods, to archaeological and palaeoclimate proxy deposits, improved chronological reliabil-

ity and resolution allows for questions relating to human-environment interactions to be

refined [13, 14].

The Kalahari Basin, in the interior of southern Africa, is a semi-arid region that has experi-

enced significant climatic fluctuations with abundant records of both palaeoenvironment and

archaeology. As such, this region provides a unique opportunity to further explore early

human-environment interactions [15]. For example, in the southern Kalahari, multiple lines

of evidence point to very different, much wetter periods during much of the Pleistocene [16].

Paleoenvironmental records from macrobotanical and faunal remains, pollen, and stable iso-

tope compositions of mammalian tooth enamel, ostrich eggshells and speleothem deposits,

demonstrate climatic shifts through the Pleistocene and Holocene at Wonderwerk Cave [17–

24]. At Kathu Pan, several wet periods between ~160–22 ka have been identified based on sedi-

mentary analyses [25, 26], and evidence for wetter conditions at Ga-Mohana Hill ~110–105 ka

has also been reported [27]. Previous studies reveal significant complexities even at the intra-

regional scale, however, due in part to the different types of proxies with variable resolutions

and the variety of forcing factors at play [16]. They also reveal a complex relationship between

palaeoenvironmental conditions and evidence for human occupation [15, 28]. To more fully

assess the response of Homo sapiens to changes in climate and environments, more well-dated

records of past environments from different proxies, preferably closely associated with archae-

ological records of human behaviour, are required. Here, we report one such record from the

abundant carbonate deposits at Ga-Mohana Hill, identified as tufa i.e., ambient temperature,

freshwater calcium carbonate precipitates, that span the last 110 thousand years.

Ga-Mohana Hill is a double-humped hillside situated on the eastern flank of the north-

south trending Kuruman Hills which outcrop on the Ghaap Plateau, an elevated region in the

Northern Cape province of South Africa (Fig 1). Today the area is characterised as semi-arid,

with seasonal mean annual precipitation of ~300–400 mm during the austral summer months

[24]. The bedrock lithology of the Ghaap Plateau, which is comprised of the Palaeoproterozoic

dolomites of the Campbellrand-Malmani Subgroup [29], has undergone extensive karstifica-

tion. Coupled with cross-cutting dolerite dykes, this has resulted in large groundwater com-

partments that are important aquifers for the region [30, 31]. Groundwater resurgence at

active springs in the area, such as the Eye of Kuruman, in Kuruman (Fig 1) are a testament to

this vast underground drainage network [31]. The presence and movement of these ground-

waters through the dolomite host rock is a vital precursor to the formation of the tufas at Ga-

Mohana Hill.

Recent archaeological excavations at Ga-Mohana Hill North Rockshelter have yielded a

Middle Stone Age assemblage of artefacts that provides early evidence for innovation and

behavioural complexity in this region at 105±3.3 ka [27, 36]. Stratified above are younger

deposits dated by OSL to 31±1.8 ka and 15±0.8 ka [36]. The hillside has abundant tufa deposits

which are direct evidence for the presence of water on the landscape and are amenable to

radiometric dating methods, making them valuable archives of changes in environmental con-

ditions [37–42].

In this study, we present macro- and micromorphological analyses of the Ga-Mohana tufas

to assess their depositional context. Tufas are challenging materials for dating due to detrital
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contamination and generally low uranium concentrations [43, 44] and so samples were

screened using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to

target optimal zones for study. This method has been used previously for dating speleothems

[45], but to the best of our knowledge, this is the first tufa application. We present 33 U-Th age

estimates and identify five discrete periods of tufa formation, interpreted as evidence for

increased moisture and fresh water availability on the landscape during the late Pleistocene,

thus providing a new record of localized climate change linked to a dated record of human

occupation.

Materials and methods

Fieldwork and tufa sample collection

Ga-Mohana Hill has spiritual significance for the local communities, with visits to the shelter

deliberate and rare [46]. Out of respect for this and as part of our on-going engagement with

these communities, we adopted a low-impact sampling approach, with targeted samples care-

fully chosen after extensive survey of the 6 km area around the shelter. During this pedestrian

Fig 1. Map of South Africa with the location of Ga-Mohana Hill (GHN) and key palaeoenvironmental and middle

stone age sites discussed in the text. Dashed lines demarcate summer and winter rainfall zone boundaries (SRZ,

WRZ), middle area experiences year-round rainfall (YRZ). Inset map shows the approximate extent of the Kalahari

Basin in southern Africa and the location of the region of interest in relation to it. Figure produced in ArcGIS 10 from

multiple open source datasets: Kalahari Basin extent from SASSCAL Open Access Data Centre [32]; Digital Elevation

Model obtained from USGS Earth Explorer [33]; annual rainfall data from WorldClim 2 [34] and river centrelines

accessed from Natural Earth vector data [35].

https://doi.org/10.1371/journal.pone.0270104.g001
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survey, the field occurrences, positions and types of tufa were identified and mapped using a

roaming Geographic Positioning System. A total of twenty-nine tufa hand samples were col-

lected from the ~ 1 km2 Ga-Mohana hillside sampling all five tufa morphologies. Eighteen

hand samples were collected using a geological hammer, mallet and chisel, marking the way-

up on each sample with an arrow using permanent marker. Subsequent sampling deliberately

targeted the stratigraphically older layers, closest to the host rock dolomite, to try and con-

strain the onset of preserved tufa formation. We used a modified Makita cordless hand drill fit-

ted with Pomeroy Model SW-3 Miniature Water Swivel and a custom made Pomeroy 1.5” ID

diamond-tipped core barrel. A total of eleven small cores were collected, 8 cm in length on

average, from in-situ mound tufas, and both in-situ and ex-situ cascade tufas (S1 Table, S1–S5

Figs). The cores were set in epoxy resin and then halved lengthways with a diamond rock saw

and polished. Thin sections were made from a sub-set of fourteen samples, representative of

all the morphology types, for characterisation using a Zeiss AXIO polarising light microscope

(S1 Table, S1–S5 Figs).

Permits for archaeological investigations at Ga-Mohana Hill were obtained from the South

African Heritage Resource Agency (Permit ID 2194). The land is owned by the Baga Motlh-

ware Traditional Council and consent was granted by them to conduct the study. All necessary

permits were obtained for the described study, which complied with all relevant regulations.

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in the Supporting Information (S1 Checklist).

Laser ablation-inductively coupled plasma-mass spectrometer

(LA-ICP-MS) pre-screening of U and Th concentrations and distributions

The aphanitic micrite layers free from detritus and inclusions, identified in thin section, were

primary targets for U-Th dating. However, these layers tend to be fine, undulating and laterally

variable, and so while visual evaluation of the tufas is an important first step in identifying suit-

able material to target for U-Th dating, it is not sufficient considering the complexity of the

tufas on a microscale. We employed an additional screening step, using laser ablation induc-

tively coupled plasma mass spectrometry (LA-ICP-MS), to measure and image the U and Th

concentrations and distributions along transects within the tufa samples. Thus, layers with suf-

ficiently high levels of 238U and low levels of 232Th, i.e. detrital thorium, can be selected, as

these are the best for producing reliable age data [47].

Tufa U and Th concentrations and distributions were collected for 16 samples using laser-

ablation with an Applied Spectra RESOlution SE 193nm ArFexcimer laser-ablation system

coupled to an Agilent 7700x Quadrupole ICP-MS at the University of Melbourne, following

the protocols outlined in Woodhead et al. [48]. High-resolution images (3200 dpi) of the sam-

ples were captured using a flat-bed scanner, used to reference the co-ordinate system of the

laser cell using GeoStar software (Norris Software). Between 6 and 12 parallel lines per sample,

set 62μm apart, were chosen perpendicular to the growth layers. Pre-ablation was performed

twice using a 60μm spot size and stage translation speed of 150μm/s.

Trace element data for the following elements: Mg, Al, Mn, Fe, Zn, Sr, Ba, Pb, Th and U,

were collected with a 60μm spot at a stage translation speed of 75μm/s, pulse rate of 10Hz, and

laser fluence of ~2–3 Jcm-2. NIST SRM 612 was used for calibration, with 43Ca as an internal

standard, and an estimated precision of ca<5%. NIST SRM 610 and JCp-1, a powdered coral

standard, were also analysed. The raw mass spectrometry data was reduced using the Iolite

software package [49, 50]. Element distribution maps for 238U and 232Th were generated in

order to visualise the spatial arrangement of these trace elements through the samples [51]

(S6–S8 Figs).

PLOS ONE Water availability and human occupation in the southern Kalahari

PLOS ONE | https://doi.org/10.1371/journal.pone.0270104 July 20, 2022 4 / 21

https://doi.org/10.1371/journal.pone.0270104


U-Th dating of tufa

Guided by the laser ablation results, layers with sufficiently high uranium (238U > 0.1ppm)

and low thorium concentrations (232Th < 0.01ppm) were selected for U-Th analysis. A subset

of 43 samples (S2 and S3 Tables, S6–S8 Figs), each with a mass of 60 ± 10 mg, were drilled

from 16 tufa samples using a Dremel hand-held hobby drill and 1 mm carbide micro-drill bit.

Powdered samples were dissolved in 1.5M HNO3, spiked with a mixed 236U-233U-229Th tracer

equilibrated on a hotplate overnight. U and Th were separated from the calcite matrix using

Eichrom TRU-spec selective ion exchange resin following established protocols [52]. The

U-Th solution was dissolved in a mixture of dilute nitric and hydrofluoric acid and introduced

to the Nu Instruments Plasma Multi Collector-Inductively Coupled Plasma-Mass Spectrome-

ter via an autosampler [52, 53]. Isotope-ratio measurements for 230Th/238U and 234U/238U

were calculated using an internally standardised parallel ion-counter procedure and calibrated

against the secular equilibrium standard, HU-1. Reproducibility was monitored using a second

in-house standard (YB-1). An a priori estimate of 1.5 ± 1.5 for the initial 230Th/232Th was

applied to all the samples in order to correct for the inherent detrital component [47]. With

this initial value and its uncertainty, corrected ages for all samples were calculated using

Monte Carlo iterations to solve equation 1 of Hellstrom [47] and the half-life values of 234U

and 230Th as reported in Cheng et al. [54]. The final age uncertainty is reported in 2σ for which

the uncertainties of the measured activity ratios as well as the assumed initial 230Th/232Th are

fully propagated.

Results

Tufa macro and micromorphology

The Ga-Mohana tufa system comprises five morphological components: cascades, rim pools,

barrages, domes and terrace breccias (Fig 2) drawing from established classification schemes

[55–58]. Tufa cascades are observed across the ~1 km2 hillside. Large (3-5m) cascades cover

the tall cliffs on either side of the rock shelters. Smaller cascades bulge outward from the fronts

of the dolomite steps above and below the shelters (Fig 2, S1 Fig). These cascade tufas are

point-sourced, appearing to have formed from water flowing out of the dolomite bedding

planes. Below the step-front cascades, sinuous tufa rims edge the flat, transverse sections of the

dolomite steps. These are evidence of terraced, shallow pools, likely formed from excess water

ponding below the cascades. The areas behind the rims are filled with lightly compacted sedi-

ment and debris. Curved, down-hill sloping barrage tufas, characterised by knobbly, coralloid

surfaces, sit below the rim pool edges formed when water overflowed from the pools above.

Meandering channels scoured in the dolomite, observed above the rock shelter, are evidence

of palaeostreams and indicate periods of substantial and prolonged water flow.

The rockshelters and the tall cliffs adjacent to them mark a break in the hillside. At this

point, cone-shaped tufa ‘noses’ jut out over the lip of the rock shelters and are spread along the

overhang (Fig 2). These are interpreted as remnants of moss curtains and align with large

hemispheric dome tufas below. The domes trace the dripline of the overhanging shelters and

occur along the base of the cliffs adjacent to the rock shelters; they appear to be sourced from

dripping and splashing waters channelled via the noses above and are composed of stacked

phytoherm macro-layers reminiscent of bryophyte boundstones [55, 56]. The internal rock-

shelter walls are covered with clusters of small stalactitic features and calcitic crusts. Below the

shelter, surface-cementations of sub-angular detrital clasts of variable sizes (0.5–20 cm) of

banded ironstone and dolomite fragments occur as benches, pavements, or patches of carbon-

ate-cemented hill-slope material on the sub-horizontal terraces between dolomite steps,
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similar to the surface-cemented rudites described in Pentecost and Viles [58]. In rare

instances, stone artefacts are also included.

Microscale observations of the tufas reveal that, regardless of depositional setting, the tufas

are composed of a few simple petrographic components: micrite, microspar, and sparite (S1–

S5 Figs). Detrital clasts (quartz) and iron and manganese oxides are present to varying degrees

and tend to be concentrated along thin layers in the tufas. This suggests periods of non-deposi-

tion of tufa. The variable organisation of these petrographic components within each sample

results in distinct fabrics, classed as laminar, peloidal, aphanitic, and chaotic, following the

scheme devised by Manzo et al. [59]. A significant biological component is evidenced by stro-

matolitic structures (S1 Fig), clotted micrite (S3 Fig), and primary cavities (S5 Fig).

Fig 2. Tufa depositional environment context and representative photographs of each of the tufa morphologies

identified on the Ga-Mohana hillside. (A) Schematic profile sketch of Ga-Mohana Hill North Rockshelter (not drawn

to scale) illustrating the series of tufa deposits and the archaeological excavation. The excavation layers dated via OSL:

DBSR = ~105 ka; OAS = ~31 ka and DBGS = ~15 ka; (B) cliff cascade; (C) step-front cascade; (D) sinuous rim-pool

edge; (E) barrage tufa; (F) terrace breccia; (G) tufa dome.

https://doi.org/10.1371/journal.pone.0270104.g002
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The various tufa morphologies at Ga-Mohana Hill each represents an individual sub-envi-

ronment, and together they form a continuum of linked deposits that aligns with the perched

springline model of Pedley [57, 60]. This depositional environment was characterised by water

emerging from bedding planes in the dolomite, flowing down the hillside via multiple diver-

gent pathways, creating cascades on the step-fronts of the dolomite steps, generating waterfalls

and moss curtains over the rock shelters, and feeding shallow pools on the flat terraces. The

terrace breccia deposits hint at periods of high energy flow (e.g., flash flooding) to transport

and cement substantial talus scree downslope.

U-Th chronology

The 238U concentration in the tufas is consistently low (range = 0.1 to 0.6 ppm;

mean = 0.2 ppm). The 232Th concentrations were generally lower than the 238U concentra-

tions, with most samples reflecting a wide range in 232Th concentration, between 1–100 ppb.

In many instances, elevated 232Th corresponds with visually discernible detrital material (S8

Fig). Out of 43 sub-samples drilled from 18 tufa samples, we obtained 33 U-Th ages from 12

tufas (Table 1, S2 Table). Cascade, rim pool and terrace tufas exhibited high success rates; 86%

of cascade samples (18 of 21), 100% of rim pools (7 of 7) and 100% of terrace breccias sampled

(7 of 7) yielded resolvable U-Th age estimates, while only one of four dome samples returned a

reliable age. Reliable ages tended to be unresolvable on samples with very low 230Th /232Th

ratios (e.g. 230Th /232Th <7) indicating a significant detrital component (S3 Table). It was not

possible to resolve reliable or precise ages for any of the barrage samples, three dome and two

cascade samples, however some of the corrected ages for these samples may provide a useful

upper limit age estimate, i.e. the corrected age plus the associated 2σ uncertainty (S3 Table).

The tufa ages span the last interglacial cycle, from 110.6 ± 3.0 ka through to 3.0 ± 0.9 ka

(Table 1, Fig 3). Clusters of ages, defined by distinct groups of overlapping ages and their asso-

ciated 2σ uncertainties, suggests episodic growth over this time. At least five intervals of tufa

formation at Ga-Mohana Hill identified at approximately 114–100 ka, 73–48 ka, 44–32 ka, 15–

6 ka, and ~3 ka (Fig 3). The 2σ uncertainties associated with the ages are small; most samples

are associated with errors of<3 ka (on average approximately 1 ka) except for two samples,

GHS-5 and GHS-6.3, which have an uncertainty of 4.9 ka (49%) and 4.2 ka (7.9%) respectively.

These larger errors are due to a high detrital thorium component (Table 1).

The ages for the timing of human occupation at Ga-Mohana Hill coincides with three of

the tufa forming intervals during MIS 5d, late MIS 3, and late MIS 2, indicating contempora-

neous human activity and tufa formation at Ga-Mohana during those periods (Fig 3). The age

certainty for the interval of tufa formation that overlaps with the MIS 2 occupation at Ga-

Mohana Hill is less secure than the other intervals as it has a large error associated with it, but

the human occupation falls within the 2σ uncertainty of the tufa age.

Comparison to global records

Tufa deposits occur in a variety of settings around the world, and their formation is controlled

by a range of local, regional and global factors operating on different scales [38, 60, 64–66].

Here we compare the timing of tufa formation at Ga-Mohana Hill to records of global ice vol-

ume [61], austral summer insolation for 270 south [63], and changes in sea surface temperature

in the southwest Indian Ocean [62] to assess the extent to which the tufa deposits reflect

global-scale climate changes (Fig 3). There is no clear glacial/interglacial partitioning of tufa

formation episodes, as evidenced by comparing our data to the LR04 d18O benthic stack [61]

(Fig 3). This adds to growing evidence that the wet/dry, interglacial/glacial dichotomy through

which much of southern African palaeoclimates has traditionally been viewed is overly

PLOS ONE Water availability and human occupation in the southern Kalahari

PLOS ONE | https://doi.org/10.1371/journal.pone.0270104 July 20, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0270104


simplistic [67–71]. While tufas have typically been associated with warmer and more humid

interglacial climate conditions [72–75], several studies report tufa occurrences during both gla-

cial and interglacial periods [41, 42, 66, 76, 77]. This highlights that, across the globe, regional

climates respond variably to these boundary conditions, and cautions against simplistic inter-

pretations of tufa deposits. Our record suggests tufa formation was semi-continuous across

MIS 4 and MIS 3; we thus echo the conclusion of previous studies that tufa formation is not

restricted to interglacial periods, nor is it a simple product of changing global climate states.

The principal conditions required for tufa formation are sufficient effective precipitation to

recharge the aquifers and CaCO3 supersaturation of those waters [38, 40, 75]. Productive soil

and vegetation cover is necessary to enhance the pCO2 of the percolating waters, and moderate

temperatures which balance productivity, moisture and evaporation, are important secondary

Table 1. U-Th age data for tufa samples from Ga-Mohana Hill. The samples are labelled according to the sequence they were collected in but presented in stratigraphic

order. Errors on all isotope activity ratios are reported with 2σ uncertainty. All ages have been corrected to account for the effect of detrital Th assuming an estimate for ini-

tial 230Th/232Th of 1.5 ± 1.5, and calculated using the 230Th-238U decay constants of Cheng et al. [54] and equation 1 from Hellstrom [47].

Sample ID Tufa type 238U (ng/g) 230Th/238U 2σ 234U/238U 2σ 230Th/232Th U-Th age (ka) 2σ % error

18–10.2 dome 174 0.088 0.001 2.443 0.006 6.5 3.0 0.9 30

GHN-2 cascade 75 0.184 0.002 2.728 0.009 36.2 7.266 0.315 4.3

GHS-5 cascade 263 0.251 0.002 1.866 0.007 4.6 10.738 4.932 45.9

17–8.1 terrace 363 0.707 0.002 1.895 0.003 88.4 48.306 0.684 1.4

17–8.2 terrace 273 0.528 0.002 1.894 0.003 238.3 34.503 0.231 0.7

17–8.3 terrace 321 0.621 0.002 1.896 0.005 3367.7 41.760 0.220 0.5

17–8.4 terrace 298 0.641 0.003 1.903 0.005 4516.0 43.230 0.270 0.6

17–8.5 terrace 307 0.618 0.003 1.895 0.005 4858.7 41.620 0.260 0.6

17–8.6 terrace 459 0.503 0.004 1.899 0.006 216.6 32.450 0.370 1.1

GHN-1 rim pool 236 0.576 0.005 1.863 0.006 716.3 39.126 0.398 1.0

GHN-1.2 rim pool 234 0.543 0.005 1.859 0.006 6818.5 36.550 0.390 1.1

GHN-1.3 rim pool 240 0.551 0.005 1.868 0.007 10846.4 37.020 0.420 1.1

GHS-6 rim pool 212 0.864 0.007 1.914 0.007 41.3 60.379 1.809 3.0

GHS-6.1 rim pool 180 0.852 0.005 1.913 0.007 50.3 59.677 1.461 2.4

GHS-6.2 rim pool 190 0.873 0.003 1.928 0.0054 251.3 61.986 0.466 0.8

GHS-6.3 rim pool 158 0.798 0.003 1.882 0.004 15.9 53.100 4.200 7.9

18–7 terrace 847 0.749 0.003 1.833 0.005 50.5 53.520 1.310 2.4

18–13.1 cascade 249 1.174 0.003 2.654 0.007 68.3 58.610 0.990 1.7

18–13.2 cascade 226 1.313 0.003 2.742 0.007 93.6 65.040 0.810 1.2

18–13.3 cascade 132 1.287 0.004 2.646 0.007 620.5 67.150 0.380 0.6

18–13.4 cascade 195 1.483 0.004 2.933 0.008 124.6 69.830 0.680 1.0

18–14.1 cascade 83 1.308 0.009 2.644 0.009 243.4 68.430 0.730 1.1

18–14.2 cascade 139 1.219 0.006 2.551 0.008 46.1 64.280 1.600 2.5

18–14.3 cascade 98 1.351 0.008 2.705 0.009 439.1 69.350 0.670 1.0

18–14.4 cascade 180 1.481 0.006 2.876 0.008 47.0 70.600 1.670 2.4

18–15.1 cascade 137 1.319 0.007 2.668 0.008 781.0 68.520 0.570 0.8

18–15.2 cascade 95 1.317 0.011 2.587 0.010 746.9 71.340 0.890 1.2

18–15.3 cascade 313 1.522 0.005 2.940 0.008 229.7 72.280 0.530 0.7

18–17.1 cascade 154 2.176 0.006 3.194 0.006 29.0 102.900 3.200 3.1

18–17.2 cascade 148 2.085 0.007 3.102 0.006 44.2 102.100 2.100 2.1

18–17.3 cascade 142 2.217 0.006 3.289 0.006 95.7 103.310 1.080 1.0

18–16.1 cascade 164 2.586 0.008 3.614 0.007 32.9 110.600 3.000 2.7

18–16.2 cascade 177 2.404 0.007 3.476 0.007 43.9 105.900 2.200 2.1

https://doi.org/10.1371/journal.pone.0270104.t001
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requirements [38, 42]. Tufa formation is thus sensitive to multiple environmental parameters,

but ultimately provides direct evidence of fresh water and associated productivity on the land-

scape. Our record indicates that these conditions were met during five discrete time intervals

(114–100 ka, 73–48 ka, 44–32 ka, 15–6 ka, and 3 ka) in the southern Kalahari over the last

~110 ka.

The limiting factor for tufa formation in semi-arid, low latitude regions is water availability

[40, 78]. The moisture source for rainfall in the SRZ in South Africa originates primarily from

Fig 3. Composite plot of Ga-Mohana Hill tufa formation compared to selected global proxies over the last 120 ka. (A) LR04 curve [61]; (B) variance of reconstructed

sea surface temperatures (SST) from Indian Ocean core MD96-2048 [62]; (C) mean daily summer insolation curve for 27oS [63]; (D) OSL age data from the Ga-Mohana

Hill North excavation sediments [27, 36]; (E) tufa U-Th age data with 2σ error bars presented in Table 1. The blue bars highlight clusters of overlapping tufa ages and are

defined by the minimum and maximum ages in each range, calculated using the 2σ uncertainty associated with the ages. Based on the presence of the tufa deposits, these

periods are inferred to represent episodes of greater water availability on the landscape.

https://doi.org/10.1371/journal.pone.0270104.g003
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the south western Indian Ocean [79] but the spatial and temporal variability of rainfall in this

southern Kalahari region is poorly constrained. Rainfall may be modulated by summer insola-

tion, with increased precipitation corresponding to insolation maxima [80], however, we see

no simple correlation. Based on the mean summer insolation curve for 27˚S [63] (Fig 3), tufa

formation during the 114–100 ka and 44–32 ka intervals coincide with increasing summer

insolation, while tufa formation during 73–48 ka is variable, and at a minimum during the 15–

6 ka episode. The most recent tufa formation at ~3 ka does coincide with insolation maximum.

Kele et al. [77] find a similarly poor correlation between the timing of tufa formation in the

Kurkur-Dungal area (southern Egypt) and northern hemisphere insolation, which is thought

to modulate the position of the ITCZ, i.e., high summer insolation is expected to correspond

to increased precipitation. However, the southern Egypt tufa deposits do not align with high

summer insolation, even when a delay in aquifer recharge is taken into account. They propose

that the mechanisms driving rainfall in the region are complex and cannot be attributed to a

single forcing factor, e.g. the precession-controlled motion of the ITCZ, and instead conclude

that different forcing mechanisms are likely at play during interglacial vs. glacial periods. A

potential explanation for the lack of correlation between our Ga-Mohana tufa record and high

austral summer insolation is that direct insolation forcing has played a lesser role over the last

~50 ka due to lower amplitude changes related to declining eccentricity [81], and that after

~70 ka, high latitude changes may have had a greater influence on southern African hydrocli-

mate [82]. This could mean that the first and last intervals of tufa formation (~114–100 ka and

~3 ka) may have been driven by low latitude mechanisms, i.e. high austral summer insolation,

whereas favourable conditions for tufa formation across MIS 4 and MIS 3, which occurred

across variable insolation, may have been a response to high latitude mechanisms, i.e. an

increase in the global ice volume.

Following that warmer sea surface temperatures (SST) in the southwest Indian Ocean gen-

erate increased moisture and correlate to periods of greater rainfall in southeastern Africa

today [79, 83, 84], one might predict that past periods of warmer SST would correspond to

periods of tufa formation at Ga-Mohana. However, tufa formation occurs across a range of

Indian Ocean SST [62] (Fig 3) suggesting that SST is not the driving mechanism for increased

rainfall in this region. While warmer SSTs, coupled with a negative Southern Oscillation

Index, is used to explain higher rainfall during the 114–100 ka interval [27], Caley et al. [62]

argue that land-sea temperature gradients, rather than SSTs alone, are likely to have played an

important role in modulating rainfall variability in southeastern Africa. However, with an

ever-growing body of palaeoproxy data generated for sites across southern Africa, it is increas-

ingly acknowledged that broad theoretical models evoking a primary driving mechanism do

not capture the homogeneity of rainfall across the region which has experienced a spatially

complex pattern of past hydroclimate variability [81, 85]. Through HadCM3 climate model

simulations, Singarayer et al. [81] show that correlations between SSTs and rainfall varies spa-

tially and temporally over southern Africa depending on the interplay of different mecha-

nisms. This illustrates that rainfall across the region is driven by the interaction of a range of

drivers that wax and wane in prominence, and suggests that the governing mechanism of rain-

fall variability for any particular region has likely varied over time [81].

It seems clear that tufa formation cannot be simply related to changes in global climate, as

these deposits occur in a variety of settings and form in response to variable climatic condi-

tions. However, tufas remain a valuable tool for assessing rainfall regime shifts, karst recharge

processes, and changes in environmental parameters, as documented for several deposits

world-wide [40, 55, 76, 78, 86–88] and may be complimentary archives to other proxies such

as lake sediments and speleothem deposits [39, 60, 89].
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The Ga-Mohana tufas form from emergent groundwaters. Recharge of the below surface

aquifers, which feed these underground waters, is driven by either increased rainfall, less sea-

sonal / more prolonged rainfall, or reduced effects of evaporation, or most likely a combina-

tion of all three. Little is known about the karst dynamics at this site, and so potential lags

between rainfall events, aquifer recharge, residence times and tufa formation are as yet uncon-

strained. However, Markowska et al. [90] show that cooler temperatures and reduced rates of

evaporation create favourable conditions for karst recharge in semi-arid regions. As such, tufa

deposits at Ga-Mohana Hill are not simply indicators of ‘wet’ conditions but rather indicate a

positive moisture balance caused by an interplay of local and regional climatic and environ-

mental parameters. The time intervals presented here are thus interpreted as periods of pro-

longed water availability combined with milder temperatures and reduced rates of

evaporation. These conditions were met during discrete time periods over the last ~110 ka, the

timing of which arise from the interaction of multiple forcing factors.

Comparison to regional records

We compare the record of tufa formation intervals at Ga-Mohana Hill with other palaeoenvir-

onmental records at nearby Kathu Pan and Wonderwerk Cave (Fig 4). These three sites all

occur within ~60 km of each other and thus experienced comparable shifts in local hydrocli-

mate. The tufa record at Ga-Mohana Hill indicates wet conditions during MIS 5d and MIS 4.

Sediment analysis at Kathu Pan is consistent with our record; marshy conditions prevailed at

Kathu Pan from ~101–80 ka, and palygorskite-coated sands indicate the presence of fluctuat-

ing water levels across five intervals between ~167–52 ka [25]. This confirms that the region

was wetter during much of MIS 5 and 4. A gap in tufa formation at Ga-Mohana Hill after ~31

ka indicates less water availability during much of MIS 2. This is reflected in the development

of extensive pedogenic carbonate deposits at Kathu Pan by ~23 ka, which indicate drier condi-

tions and perhaps more seasonal rainfall compared to earlier time periods [25]. At Wonder-

werk Cave, a hiatus in stalagmite growth after ~33 ka [19] is consistent with drier conditions,

however, wetter conditions from ~23 to 17 ka are reflected in the pollen and stable isotope

record from the same stalagmite; this evidence for wetter conditions at Wonderwerk Cave dur-

ing the LGM is inconsistent with the records from Ga-Mohana and Kathu Pan. Ga-Mohana

Hill documents a subsequent late glacial wet period commencing as early as ~15 ka, while at

Wonderwerk Cave, slow growth of the stalagmite between ~17–13 ka signifies reduced mois-

ture availability [19], and pedogenic carbonates at Kathu Pan, indicating dry conditions, per-

sist at ~10 ka [25]. The most recent period of tufa formation at Ga-Mohana is at ~3 ka.

Through the Holocene, fine layers of organic material alternate with calcium carbonate depos-

its at Kathu Pan, implying an increased amplitude of fluctuating water availability and aridity

[25], and at Wonderwerk Cave, stalagmite growth resumes at ~3.5 ka, indicating wet condi-

tions during the late Holocene [18, 19]. The earlier and latest parts of the sequences from these

sites are consistent, but the record from Wonderwerk Cave indicating wetter conditions dur-

ing MIS 2 is inconsistent, and some discrepancy between the records exist for the MIS 2—

Holocene transition.

The close proximity of Ga-Mohana Hill, Kathu Pan, and Wonderwerk Cave to each other

makes it possible that they were utilized by the same groups of mobile hunter-gatherers, thus

providing an opportunity to consider the relationships between wet periods and evidence for

human occupation in this region of the southern Kalahari (Fig 4). Between ~251 and 138 ka at

Wonderwerk Cave, there is evidence for both wetter conditions and human occupation [20].

Archaeological material at Kathu Pan occurs within palygorskite-coated, water-associated sed-

iments dated to ~156 ka, ~121 ka and ~74 ka [25], with the latter being a Howiesons Poort
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occurrence. Also at Kathu Pan, wet, marshy conditions that are likely to have supported a sig-

nificant amount of vegetation occur between ~101 and 80 ka, coupled with evidence for

human occupation [25]. At Ga-Mohana Hill, tufa formation at ~114–100 ka correlates with

human occupation at the site. Thus, in summary, before ~71 ka, human occupation of the

region appears to have been associated with the availability of water.

After ~71 ka, the timing of human occupation and wet periods do not coincide (Fig 4).

Tufas at Ga-Mohana Hill indicate that much of MIS 4 and 3 is characterised by wet conditions.

The sediments at Kathu Pan continue to indicate the presence of water through much of MIS

4, although the organic-rich marsh sediments do not occur after MIS 5 [25]. However, evi-

dence for human occupation during this time is lacking at both Kathu Pan and Ga-Mohana

Hill [36]. There are Middle Stone Age deposits at Wonderwerk Cave that have not yet been

securely dated that could potentially represent this period [9], but this remains unknown at

this point. From ~43–32 ka, wet conditions are represented at Ga-Mohana Hill, and from

~35–33 ka at Wonderwerk Cave [19]. In contrast, there is evidence for drier conditions from

~32 ka at Kathu Pan [25]. Evidence for human occupation at Ga-Mohana Hill [36] and Kathu

Pan [92] date to 31 ± 1.8 ka and 32 ± 0.78 ka, respectively. These data suggest that human

occupation at these sites may overlap with a period of decreasing water availability, but the

error ranges on the age estimates make it challenging to confidently assert this.

Human occupation is evident again at Ga-Mohana Hill at 14.8 ± 0.8 ka [36] and is associ-

ated with evidence for relatively wetter conditions, but at Kathu Pan, human occupation dur-

ing the LGM [91, 92] is associated with evidence for relatively drier conditions. Late glacial

Fig 4. Comparison of palaeoenvironmental and archaeological records from Ga-Mohana Hill, Kathu Pan, and Wonderwerk Cave. Archaeological

occupation ages for Ga-Mohana Hill [27, 36], Kathu Pan [25, 26, 91, 92] and Wonderwerk Cave [20, 93, 94]. Pale orange bars highlight periods of occupation.

Palaeoenvironment proxy data from Ga-Mohana Hill (this study), Kathu Pan [25] and Wonderwerk Cave [19, 20]. Pale blue bars highlight wet periods across

the sites. Orange star marks the point at ~71 ka, before which human occupation of the region appears to have been associated with the availability of water.

https://doi.org/10.1371/journal.pone.0270104.g004

PLOS ONE Water availability and human occupation in the southern Kalahari

PLOS ONE | https://doi.org/10.1371/journal.pone.0270104 July 20, 2022 12 / 21

https://doi.org/10.1371/journal.pone.0270104.g004
https://doi.org/10.1371/journal.pone.0270104


deposits at Wonderwerk Cave indicate an association of dry conditions and human occupa-

tion [94]. Thus, MIS 2 provides very little coherence with respect to the relationship between

water availability and human occupation; humans are associated with both wet and dry condi-

tions. Through the Holocene, there is persistent evidence for human occupation despite

changes in palaeoenvironmental conditions [25, 92, 94].

Discussion

In this semi-arid region with limited, seasonal rainfall and no evidence of actively precipitating

tufa, the relict tufa deposits at Ga-Mohana Hill are a record of past periods of conditions

favourable for tufa formation, which are primarily an indication of increased water on the

landscape. We show that U-Th dating of the tufas, buoyed by the laser ablation screening

method, can produce precise ages. We go on to use these ages to show that periods of tufa for-

mation were punctuated over the last 110 ka, with five discrete time periods identified.

Our U-Th dated tufa records suggests periods of increased water availability in the southern

Kalahari were not restricted to interglacials. Ga-Mohana Hill shows extensive tufa formation

during much of MIS 4, a period generally assumed to be characterised by typical cold and dry

glacial conditions across much of the interior of southern Africa [95]. Increased water avail-

ability during this time is supported by other palaeoenvironmental records of the Kalahari

Basin, such as at Kathu Pan. At Witpan Dunes, approximately 350 km to the north west, the

absence of southern Kalahari dune data during MIS 4 [96] indicates unfavourable conditions

for dune accumulation, suggesting increased rainfall, decreased windiness, and a denser vege-

tation cover [97]. To the north, a Makgadikgadi Megalake highstand has been dated to

64.2 ± 2.0 ka suggesting there was also substantial water availability in the Middle Kalahari at

that time [98]. We argue that the tufa intervals represent a southern Kalahari environment

characterised by a positive hydrological balance and mild temperatures favourable for produc-

tive vegetation and soils. In accordance with other recent studies, our results challenge global

generalisations of past climate change and highlight the necessity for regionally specific models

[16, 21, 85].

In the southern Kalahari, early human population distributions appear to have been modu-

lated by water availability before ~71 ka. After ~71 ka, the picture is much less clear. Despite

evidence for wetter conditions, archaeological deposits dating to MIS 4 and the early part of

MIS 3 have not yet been identified in the punctuated record of human occupation at Ga-

Mohana Hill, nor at nearby Kathu Pan or Wonderwerk Cave. This result poses a new dilemma,

in that wet conditions in this region of the southern Kalahari should have theoretically made it

attractive for human occupation, but as of yet, no archaeological deposits date to this time.

The time interval corresponding to MIS 2 provides little coherence with respect to the relation-

ship between water availability and human occupation. The three records considered here do

not agree on whether conditions were wetter or drier during the LGM and humans appeared

to have occupied the region through both the LGM and late glacial. Others have highlighted

that the palaeoenvironmental record for MIS 2 across the Kalahari Basin and surrounding

regions is complex, documenting a high degree of spatial and temporal variability [16]. This

lack of coherence may be in part due to the variable responses of palaeoenvironmental proxies

to temperature and water availability changes, and potentially lags in responses. A shift in sea-

sonality may also play a role, with some proxies responding to seasonality changes for precipi-

tation, as evidenced at Kathu Pan [25], as opposed to mean annual precipitation.

We note that the absence of evidence may not be evidence of absence, and that issues with

site formation, site visibility, and/or dating may instead explain why no archaeological deposits

have yet been identified. The inability to fully explain this pattern is one of this study’s
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limitations. Further work, including the excavation and dating of new archaeological sites, will

be key for further testing hypotheses that link early human population distribution patterns to

water availability, potential refugia conditions, and interglacial/glacial cycling [4–6, 8, 9].

Conclusion

We have identified and described the tufa deposits at Ga-Mohana Hill, and provided a frame-

work for reliably dating them. The observed tufa morphologies suggest a depositional environ-

ment characterised by water cascading down the dolomite steps, flowing over the rock

shelters, and ponding in shallow pools. Through U-Th dating, we have produced a new, well-

dated record of prolonged water availability linked to human occupation in the southern Kala-

hari during the Late Pleistocene. Identifying the timing and nature of human occupation in

the Kalahari Desert is critical for understanding the emergence of our ability to adapt to new

and extreme environments [2]. For a long time, the Kalahari Desert has been considered too

arid for early human populations to persist, and evidence for occupation was assumed to rep-

resent wetter periods. Until now, a rarity of integrated palaeoenvironmental and archaeolog-

ical records has largely prevented adequate testing of these assumptions. The results presented

here provide evidence for prolonged periods of water availability in the southern Kalahari

Basin through much of the Late Pleistocene. There is a positive association with wet conditions

and human occupation before ~71 ka. However, by the LGM, water availability alone did not

mediate human occupation in the southern Kalahari Desert. This may extend further back in

time as the datasets for the time period between ~71 ka and the LGM become more robust.

Nevertheless, this result challenges the traditional view that links wet periods to human occu-

pation. This decoupling of human occupation and wet phases in the Late Pleistocene could

reflect new social and technological adaptations that helped hunter-gatherers cope more effec-

tively with diverse environmental conditions.
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