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ABSTRACT
Objectives: To elucidating the linkage between obesity‐associated body fat indicators and atrial fibrillation (AF) using Men-

delian Randomization (MR) and mediation analysis.

Methods: The study utilized three independent genome‐wide association study (GWAS) datasets, with containing over 450 000

individuals each, to represent body fat indicators as the exposure variable. Additionally, two summary genetic datasets of AF

were utilized as the clinical outcome. Single nucleotide polymorphisms (SNPs) with p‐values less than 5 × 10−10 were identified

as instrumental variables (IVs) for MR analysis. The primary analysis method employed was the inverse‐variance weighting

(IVW) model, supplemented by three additional models: MR‐Egger regression, weighted median, and maximum likelihood.

Sensitivity analysis was conducted, encompassing tests for heterogeneity and horizontal pleiotropy, utilizing Cochran's Q,

MR‐Egger intercept, and MR‐PRESSO tests to validate the reliability of the findings. Furthermore, a mediation analysis was

conducted to explore potential mediators involved in the pathogenesis of AF.

Results: The IVW model demonstrated that per 1‐SD increase in body fat indicators (body fat percentage, whole body fat mass,

and trunk fat mass) is associated with an elevated risk of AF, with values of 63.1%, 55.0%, and 55.8% respectively. All three

supplementary models arrived comparable conclusions with IVW model. The sensitivity analysis confirmed the absence of

horizontal pleiotropy, thereby validating the reliability of the findings. Additionally, the mediation study indicates that

hypertension and sleep apnea syndrome are identified as significant mediators during the pathogenesis of AF.

Conclusions: The study reveals that individuals with a higher body fat percentage tend to exhibit a heightened genetic

predisposition for susceptibility to AF. Meanwhile, hypertension and sleep apnea syndrome have been identified as key

mediators contributing to the pathogenesis of AF.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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1 | Introduction

Atrial fibrillation (AF) is a prevalent and potentially life‐
threatening cardiac arrhythmia associated with acute ischemic
stroke and heart failure. Based on a global epidemiological
report, approximately 3 046 000 new cases of AF were diagnosed
in 2017. Meanwhile, the global prevalence of AF in 2017 was
33% higher than the incidence reported in 1997, resulting in an
estimated 37.574 million cases. Additionally, given the wide-
spread aging population, the prevalence of AF is expected to
increase, posing a significant challenge to global public health
[1, 2].

Obesity, a well‐recognized independent risk factor for cardio-
vascular and metabolic diseases, affects approximately 30% of
the world's population. Obesity typically arises from sustained
accumulation of body fat and is categorized by a body mass
index (BMI) of 30 kg/m2 or above, according to the World
Health Organization's criteria. Nevertheless, the obese pheno-
type exhibits diverse characteristics and is not exclusively
determined by BMI, rather, it encompasses measurements of
body fat distribution, including leg fat, liver fat, and skeletal
muscle mass. Detailed characterization of individual body
components enhances our comprehension of metabolic, endo-
crine, and genetic profiles linked to obesity and its related
metabolic risks [3–5].

Based on the global burden database, researchers observed an
escalation in the occurrence of obesity, resulting in an estimated
4 million fatalities in 2015, with over two‐thirds attributed to
cardiovascular disease [6]. Observational studies also demon-
strated that obese/overweight individuals exhibit higher inci-
dences, prevalence, severity, and rate of progression of AF
compared to those with a normal weight [7–9]. However,
observational studies inherently have limitations, which en-
compass reverse causation, measurement error, and potential
bias, that hinder clarification of the association between obesity
and AF, particularly the potential causal link, remaining enig-
matic. Hence, innovative and rigorous research approaches
aimed at minimizing these biases are crucial.

Mendelian randomization (MR) is a statistical technique widely
used in epidemiological and genetic studies to elucidate causal
relationships between exposure factors and outcomes. MR is
rooted in Mendel's law of inheritance, which outlines how
genetic variants undergo random allocation during meiosis [10].
MR employs instrumental variables, particularly genetic varia-
tions like single nucleotide polymorphisms (SNPs) associated
with a specific risk factor (e.g., obesity‐associated body fat in-
dicators), to investigate whether the chosen risk factor has a
causal influence on the outcome of interest (e.g., AF). In the
absence of randomized controlled trials (RCTs), MR studies
serve as an alternative approach that mimics the RCT process
due to the random allocation of genetic variants during meiosis.
Consequently, MR offers advantages over traditional observa-
tional studies by minimizing confounding risks and clarifying
reverse causality, making it a powerful tool for exploring cau-
sality in epidemiological research [11].

We aim to employ extensive Genome‐Wide Association Study
(GWAS) datasets in this study, to identify a potential causal

association between obesity‐associated body fat indicators and
AF through MR and mediation analysis. This approach will
yield robust evidence regarding the impact of obesity on the
etiology of AF.

2 | Materials and Methods

2.1 | MR Study Design and Information of GWAS
Datasets

To guarantee unbiased findings in this MR study, three fun-
damental assumptions were established. Firstly, the genetic
instrumental variables (IVs) chosen from among the single
nucleotide polymorphisms (SNPs), must exhibit a strong asso-
ciation with the exposure factor. Secondly, the IVs must remain
independent of any potential confounders that could potentially
correlate with both the exposure factors and outcomes. Lastly,
the influence of the IVs on the outcome is solely mediated by
the exposure factor [12].

To gain a deeper understanding of the causal relationship
between obesity‐associated body fat indicators (exposure) and
atrial fibrillation (outcome), it is imperative to select the most
recent GWAS datasets, encompassing the largest cohort of
participants and an adequate number of sequenced SNPs, for
MR analysis. Obesity‐associated body fat indicators were
represented by three independent GWAS datasets, namely
body fat percentage, whole body fat mass, and trunk fat mass.
Each of these datasets encompassed over 450 000 individuals.
The three GWAS datasets were sourced from the UK‐Biobank
database, a comprehensive longitudinal study meticulously
designed to provide detailed genetic and health information
on European populations [13]. The bioelectrical impedance
technique, a practical approach, was utilized to measure
these indices, enabling the estimation of body fat [14]. A low,
safe electrical current is administered to the body, allowing
for the assessment of its composition and subsequent deter-
mination of body fat percentage. The Tanita BC418MA body
composition analyzer provided the reported results. AF is
defined as a chaotic, rapid (300–500 beats per minute), and
irregular atrial rhythm. It was common in clinical usually
diagnosed by electronic cardiogram or Holter [15]. In our
study, two independent GWAS datasets associated with AF
were contributed by Jonas B. Nielsen et al [16]. and Carolina
Roselli et al. [17], including 60 620 and 65 446 cases (both
paroxysmal and permanent atrial fibrillation) respectively.
The GWAS datasets for four mediators, namely coronary
atherosclerosis, hypertension, Type 2 diabetes, and sleep
apnea syndrome, originated from the FinnGen database [18].
To mitigate potential biases stemming from sample overlap,
distinct consortiums were sourced for GWAS datasets related
to exposure, mediators, and outcomes. Furthermore, the
GWAS datasets primarily comprised individuals of European
descent, thereby mitigating biases associated with population
stratification. Detailed information on the datasets used in
the study is listed in Table 1. As all the GWAS datasets
involved in the study were shared in the IEU GWAS (https://
gwas.mrcieu.ac.uk/datasets/), a publicly accessible GWAS
summary database [19], the ethical committee approval
requirement was waived.
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2.2 | Selection Criteria for SNPs Used as
Instrumental Variables

SNPs should be independently associated with the obesity‐
associated body fat indicators were extracted and treated as
instrumental variables according to the following conditions:
(1) a genome‐wide significance threshold settled as
p‐value < 5 × 10−10, (2) independence among SNPs in linkage
disequilibrium (r2 < 0.0001; clumping distance, 100 000 kb), (3)
The independence of SNPs was ensured using the Phe-
noScanner database (http://www.phenoscanner.medschl.cam.
ac.uk/) to identify and remove SNPs that are associated with
potential confounders or AF, (4) F‐statistics exceeding 10 were
utilized to assess the robustness of the instrumental variables in
mitigating instrumental bias. The SNPs serving as instrumental
variables were aligned with those in AF‐associated GWAS da-
tasets to establish genetic associations. The SNP‐phenotype and
SNP‐outcome summary statistics were standardized to ensure
effect size alignment, excluding palindromic SNP [20].

2.3 | Mendelian Randomization Study and
Sensitivity Analysis

The Mendelian randomization study employed the random
effect inverse‐variance weighting (IVW) model as the primary
analysis method [21] to assess the potential causal relationship
between the exposure and AF across various scenarios. More-
over, three additional models, namely MR‐Egger regression
[22], weighted median [23], and maximum likelihood [24]
respectively were applied to complement the conclusion of IVW
model. The evidential threshold for MR analysis was set at a
p‐value of less than 0.017 (0.05/3), derived from the Bonferroni
correction method. A p‐value ranging from the Bonferroni‐
corrected evidential threshold to 0.05 was considered indicative
of a potential association [25].

Sensitivity analysis was performed to evaluate the reliability and
stability of the MR findings. It encompassed three key compo-
nents as follows: (1) Cochran's Q test is used to identified het-
erogeneity based on IVW model and MR‐Egger regression

model. (2) The horizontal pleiotropy test was conducted using
the MR‐Egger intercept [26] and MR‐PRESSO test [27]. A
p‐value less than 0.05 was considered statistically significant in
both the Cochran's Q test and the horizontal pleiotropy test. (3)
The “leave‐one‐out” test involves successively excluding each
SNP and repeating the IVW analysis to determine if the esti-
mated causal relationship is influenced by a particular SNP.

We reported the MR effects as odds ratios (OR) accompanied by
corresponding 95% confidence intervals (CI) and p‐values. The
R 4.0.3 software, along with the “TwoSampleMR” [28] and
“MR‐PRESSO” [27] packages, was utilized for data processing
and visualization of the results.

2.4 | Mediation Analysis

Mediation analysis aims to clarify the mechanisms by which a
particular exposure affects an outcome [29]. We utilized a two‐
stage MR methodology to investigate whether the impact of
obesity‐associated body fat indicators on the risk of AF is
mediated by four interested diseases (coronary atherosclerosis,
hypertension, Type 2 diabetes, and sleep apnea syndrome). In
the first stage, we estimated the relationship between each ex-
posure. In the second stage, we identified the association
between each mediator disease and AF [20]. To determine the
mediating effect, we multiplied the effect value obtained in the
first step by the effect value in the second step. We conducted a
mediation analysis employing the IVW model, and considered a
p‐value of less than 0.05 as statistically significant. Please refer
to the Supporting Information S1: Figure 1 for detailed illus-
trations of the mediation analysis process.

3 | Results

3.1 | Instrumental Variables Identified and
Results of Mendelian Randomization

A total of 72, 80, and 82 SNPs were ultimately identified as IVs
from different obesity ‐proxied phenotype (body fat percentage,

TABLE 1 | Basic information about the GWAS datasets used in the study.

Traits GWAS ID Years Population Sample size

Body fat indicators Total sample

Body fat percentage ukb‐b‐8909 2018 European 454 633

Whole body fat mass ukb‐b‐19393 2018 European 454 137

Trunk fat mass ukb‐b‐20044 2018 European 454 588

Atrial fibrillation Case/Control

Atrial fibrillation ebi‐a‐GCST006414 2018 European 60 620/970 216

ebi‐a‐GCST006061 2018 European 55 114/482 295

Mediators Case/Control

Coronary atherosclerosis finn‐b‐I9_CORATHER 2021 European 23 363/187 840

Hypertension finn‐b‐I9_HYPERTENSION 2021 European 55 955/162 837

Type 2 diabetes finn‐b‐E4_DM2 2021 European 32 469/183 185

Sleep apnea syndrome finn‐b‐G6_SLEEPAPNO 2021 European 16 761/201 194
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whole body fat mass, and trunk fat mass, respectively) in ebi‐a‐
GCST006414 AF‐association GWAS datasets; while 62, 72, and
71 were identified, respectively, in ebi‐a‐GCST006061 AF‐
association GWAS. The F‐statistic scores of the selected SNPs
were ranged from 50 to 120, indicating a low risk of weak‐
instrument bias.

Based on the findings from the random effect IVW model as the
primary criterion, a causal relationship between all the three
obesity‐proxied phenotypes (body fat percentage, whole body
fat mass and trunk fat mass) and AF could be inferred in both
AF‐associated GWAS datasets. Moreover, the conclusion was
also supported by the rest three supplement models. Detailed

results of MR study are displayed in Table 2 and is illustrated as
a scatter plot (Figure 1).

3.2 | Results of Sensitivity Analysis

The Cochran's Q test results, utilizing the IVW model and MR‐
Egger regression, demonstrated the presence of heterogeneity
(p< 0.05) among instrumental variables within obesity‐
associated body fat exposures. To address the heterogeneity in
the MR study, we primarily relied on the random‐effects IVW
model. Additionally, the MR‐Egger intercept and MR‐PRESSO
test results both confirmed that the instrumental variables for

FIGURE 1 | Scatter plots of the Mendelian randomization study results. Note: Each scatter plot point is an instrumental variable SNP. Each

diagonal line in a different color is a testing model. The figure‐a, figure‐b, figure‐c represents the relationship of obesity‐associated body fat indicators

“Body fat percentage,” “Whole body fat mass,” “Trunk fat mass” and AF in ebi‐a‐GCST006414 GWAS data set. The figure‐d, figure‐e, figure‐f
represents the relationship of obesity‐associated body fat indicators “Body fat percentage,” “Whole body fat mass,” “Trunk fat mass” and AF in

ebi‐a‐GCST006061 GWAS data set.
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each obesity‐related body fat indicator passed the horizontal
multiplicity test (Table 3). Furthermore, the “leave‐one‐out”
method results (Supporting Information S1: Figure 2) revealed
that no individual SNP had a significant impact on the overall
outcome. In summary, the sensitivity analysis findings support
the reliability of the MR conclusions.

3.3 | Results of Mediation Analysis

The results of the mediation analysis identified hypertension and
sleep apnea syndrome as significant mediators linking obesity
and AF pathogenesis. Analyzing three obesity‐associated body fat
indicators—body fat percentage, whole body fat mass, and trunk
fat mass—the study found hypertension to have mediation ef-
fects of 0.094 (95% CI: 0.060–0.134), 0.072 (95% CI: 0.046–0.102),
and 0.059 (95% CI: 0.037–0.084), corresponding to mediation
proportions of 19.22%, 16.44%, and 13.38% respectively, in AF‐
related GWAS data set ebi‐a‐GCST006414. Additionally, hyper-
tension demonstrated mediation effects of 0.092 (95% CI:
0.057–0.133), 0.071 (95% CI: 0.045–0.100), and 0.058 (95% CI:
0.034–0.084) respectively. Correspondingly, the mediation pro-
portions in ebi‐a‐GCST006061 AF‐related GWAS data set were
24.08%, 18.98%, and 14.01% respectively.

The mediation effect of sleep apnea syndrome on three obesity‐
associated body fat indicators (Body fat percentage, Whole body
fat mass, and Trunk fat mass), was 0.120 (95% CI: 0.047–0.199),
0.099 (95% CI: 0.040–0.162) and 0.089 (95% CI: 0.034–0.147)
respectively. The corresponding proportion of mediation effect
in AF‐related GWAS data set ebi‐a‐GCST006414was account for
24.54%, 22.60%, and 20.18% respectively.

Additionally, sleep apnea syndrome demonstrated mediation ef-
fects of 0.100 (95% CI: 0.006–0.199), 0.082 (95% CI: 0.005–0.161)
and 0.074 (95% CI: 0.005–0.147) respectively. Correspondingly, the
mediation proportions in ebi‐a‐GCST006061 AF‐related GWAS
data set were 26.18%, 21.93%, and 17.87% respectively. The de-
tailed results of mediation analysis were demonstrated in Table 4.

4 | Discussion

Obesity has been implicated as a risk factor for the increased
occurrence of AF. However, prior research has predominantly

focused on BMI analysis, overlooking the role of adipose tissue
distribution and function in disease severity [3, 30]. To date,
assessments of adiposity indices beyond BMI, specifically
related to AF risk, are still limited, and the relationship between
body fat distribution and AF development remains unclear. In
the research, we utilized the Mendelian randomization and
mediation analyses, with the latest and most comprehensive
GWAS data from European cohorts to further explore the sci-
entific problem. The study is expected to provide insights into
the understanding of obesity and AF, surpassing the limitations
of BMI alone.

The IVW model showed that a 1‐SD increase in obesity‐related
body fat indicators (body fat percentage, whole body fat mass,
and trunk fat mass) is linked to an elevated risk of AF, with
values of 63.1%, 55.0%, and 55.8% respectively. The three sup-
plementary models (MR‐Egger regression, weighted median,
and maximum likelihood) consistently concurred with the
outcomes of the IVW model. The sensitivity analysis affirmed
the absence of horizontal pleiotropy, thereby confirming the
stability and reliability of our conclusions. Moreover, the
mediation study implies that hypertension and sleep apnea
syndrome could play significant roles as mediators in the
development of AF.

In the Rotterdam Study, a population‐based, prospective inves-
tigation, Maryam Kavousi and colleagues observed a significant
dose–response relationship between body fat accumulation and
AF. Their findings suggest that various body fat depots are
associated with the onset of AF [31]. Consistent with our find-
ings, a meta‐analysis reported both body fat percentage and body
fat mass were regarded as risk factors of AF. A 5 kg increase in
body fat mass was associated with a 9% increased risk of AF (95%
CI: 1.02–1.16), while a 10% increase in body fat percentage was
associated with a 10% increased risk of AF (95% CI: 0.92–1.33)
[32]. A Swedish cohort study, led by Isac Zia et al., involving
25 961 individuals, demonstrated that a 10% increase in body fat
percentage is associated with a 21% increased risk of AF in men
and a 45% increased risk in women [33]. Likewise, a prospective
study encompassing 55 273 Danish individuals confirmed the
link between higher body fat at any measured location and an
increased risk of AF. The adjusted hazard ratio (HR) for every 1
sex‐specific standard deviation (SD) increase in body fat mass
was 1.29 (95% confidence interval [CI], 1.24–1.33) [34]. Mean-
while, comparable results have been reported in Asian

TABLE 3 | The results of the heterogeneity and horizontal pleiotropy tests.

Exposures
AF‐related GWAS

data set

Heterogeneity test (Cochran Q test) Horizontal pleiotropy test

MR‐Egger
regression

IVW
model

MR‐Egger
intercept MR‐PRESSO test

Body fat
percentage

ebi‐a‐GCST006414 < 0.001 < 0.001 0.533 0.669

ebi‐a‐GCST006061 < 0.001 < 0.001 0.708 0.428

Whole body
fat mass

ebi‐a‐GCST006414 < 0.001 < 0.001 0.798 0.931

ebi‐a‐GCST006061 < 0.001 < 0.001 0.145 0.493

Trunk fat mass ebi‐a‐GCST006414 < 0.001 < 0.001 0.957 0.807

ebi‐a‐GCST006061 < 0.001 < 0.001 0.370 0.469

Note: A p‐value less than 0.05 was deemed statistically significant in both the Heterogeneity and Horizontal Pleiotropy tests.
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populations. Ho Geol Woo et al. conducted a study with a
median follow‐up of 9.5 years (interquartile range: 9.2–10.1) and
reported that higher body fat mass was associated with increased
risks of AF, with hazard ratios of 1.345 (95% confidence interval:
1.221–1.483) for men in the fifth quintile and 1.420 (95% confi-
dence interval: 1.274–1.591) for women in the fifth quintile [35].

On the contrary, numerous studies have consistently shown
that effective obesity management can attenuate the natural
progression of AF. These clinical trial outcomes strongly sup-
port the hypothesis that excessive body fat accumulation may
exacerbate the severity of AF [36–39].

Obesity, often resulting from disrupted body fat metabolism or
accumulation, frequently coincides with diabetes, hypertension,
and obstructive sleep apnea. The mediation analysis identified
hypertension and sleep apnea syndrome as key mediators in the
development of AF. Magnani et al. offer a plausible mechanistic
explanation for the interplay between obesity and these medi-
ators, ultimately leading to AF. Obesity, influenced by meta-
bolic factors like hypertension, dyslipidemia, and insulin
resistance, alongside mechanical effects such as obstructive
sleep apnea (OSA), increased intrathoracic pressure, coronary
disease, ventricular hypertrophy, and inflammation, ultimately
results in atrial fibrillation (AF) through atrial adaptation
marked by elevated atrial pressures, enlargement, and altered
electrical function [40].

Obesity increases the risk of AF through various mechanisms,
including structural and electrical remodeling, thereby con-
tributing to the formation of an arrhythmogenic substrate. Ex-
perimental studies utilizing the ovine model have demonstrated
that short‐term weight gain results in progressive atrial re-
modeling. This remodeling involves increased deposition of
fibrous tissue, upregulated expression of endothelin receptors,
and altered atrial conduction, ultimately resulting in a higher
susceptibility to AF induction [41]. Meanwhile, Mahajan et al.
partially investigated the influence of weight loss on the pro-
gression of AF. Among obese sheep, weight loss was associated
with a decrease in both inflammatory and fibrotic markers [42].

It is important to acknowledge several limitations in this study.
Firstly, the heterogeneity test results indicated the presence of
variance among the instrumental variables within the study,
Despite utilizing the random effects IVW model to minimize
heterogeneity in the MR study. Secondly, the GWAS datasets
primarily centered on the European population, indicating that
the findings might not be universally applicable across other
ethnicities. Additionally, there is a need for further exploration
of the biological functions of SNPs as instrumental variables
and their role in aggravating AF.

5 | Conclusion

The study reveals that individuals with a higher body fat per-
centage tend to exhibit a heightened genetic predisposition for
susceptibility to AF. Additionally, hypertension and sleep apnea
syndrome have been identified as key mediators contributing to
the pathogenesis of AF. The findings have potential implica-
tions for AF prevention.
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