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Paralog dependency indirectly affects the
robustness of human cells
Rohan Dandage1,2,3,4,5 & Christian R Landry1,2,3,4,5,*

Abstract

The protective redundancy of paralogous genes partly relies on the
fact that they carry their functions independently. However, a
significant fraction of paralogous proteins may form functionally
dependent pairs, for instance, through heteromerization. As a
consequence, one could expect these heteromeric paralogs to be
less protective against deleterious mutations. To test this hypothe-
sis, we examined the robustness landscape of gene loss-of-function
by CRISPR-Cas9 in more than 450 human cell lines. This landscape
shows regions of greater deleteriousness to gene inactivation as a
function of key paralog properties. Heteromeric paralogs are more
likely to occupy such regions owing to their high expression and
large number of protein–protein interaction partners. Further
investigation revealed that heteromers may also be under stricter
dosage balance, which may also contribute to the higher deleteri-
ousness upon gene inactivation. Finally, we suggest that physical
dependency may contribute to the deleteriousness upon loss-of-
function as revealed by the correlation between the strength of
interactions between paralogs and their higher deleteriousness
upon loss of function.
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Introduction

After a gene duplication event and before they become functionally

distinct, paralogs are redundant and can mask each other’s inacti-

vating mutations (Pickett & Meeks-Wagner, 1995; Brookfield, 1997;

Diss et al, 2014). This mutational robustness does not provide an

advantage strong enough by itself to cause the maintenance of para-

logs by natural selection unless mutation rate or population size is

exceptionally large (van Nimwegen et al, 1999). Nevertheless,

paralogous genes affect how biological systems globally respond to

loss-of-function (LOF) mutations. For instance, the early analysis of

growth rate of the yeast gene deletion collection revealed that genes

with duplicates are enriched among the ones that have a weak effect

on fitness when deleted (Gu et al, 2003). Likewise, singletons (ge-

nes with no detectable homologous sequence in the genome) tend

to be overrepresented among genes whose deletion is lethal. Further

studies in yeast also showed that redundancy could be maintained

for millions of years, making the impact of duplication long lasting

(Dean et al, 2008). A parallel observation in humans showed that

genes are less likely to be involved in diseases if they have a

paralog, and the probability of disease association for a gene

decreases with increasing sequence similarity with its closest

homolog in the genome (Hsiao & Vitkup, 2008). These observations,

along with smaller scale observations made in classical genetics

(Pickett & Meeks-Wagner, 1995; Diss et al, 2014), strongly demon-

strate that redundancy allows paralogs to compensate for each

other’s LOF at the molecular level.

The buffering ability of paralogs is however not universal (Ihmels

et al, 2007), and opposite results have been reported. For instance,

Chen et al (2013b) reported an enrichment of human diseases

among paralogous genes, particularly among the ones with higher

functional similarity. The authors explained this result with a model

in which redundancy reduces the efficacy of purifying selection,

leading to the maintenance of disease alleles that could have lower

penetrance, for instance, through noise in gene expression. Other

authors have shown that the retention of whole-genome duplicates

could be biased toward genes that are more likely to bear autosomal-

dominant deleterious mutations (Singh et al, 2012). In this case, the

maintenance of paralogs would be associated with greater suscepti-

bility to disease mutations, contrary to the robustness expected from

gene redundancy. A better understanding of whether and how para-

logs can compensate for each other’s deleterious mutations therefore

requires a better understanding of the mechanisms involved. This

would improve our understanding of evolution and also accelerate

the development of medical interventions because redundancy is

often a major obstacle in this context (Lavi, 2015).

The mechanisms by which paralogs compensate for each other’s

LOF mutations are for most cases not known in details (Pickett &
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Meeks-Wagner, 1995; Diss et al, 2014), but likely involve active and

passive mechanisms, from transcriptional to post-translational ones.

For instance, it was shown for a small fraction of paralogous gene

pairs that a member of a pair is upregulated by some feedback

mechanism upon the deletion of the second copy (Kafri et al, 2005).

Although it may have important consequences, the occurrence of

this phenomenon is however very likely limited. Indeed, a system-

atic assessment of this mechanism at the protein level in yeast found

that it could take place only for a very small set of paralogous genes

(DeLuna et al, 2010).

Another potential mechanism of compensation takes place at the

level of protein–protein interactions (PPI) (reviewed by Diss et al,

2014), whereby paralogs replace each other with respect to their

binding partners through ancestrally preserved binding ability.

Evidence for this mechanism was recently reported by Diss et al

(2013, 2017). The model proposed is that paralogs appear to have

different binding partners in wild-type cells, because they mutually

exclude each other from binding with potential partners. This is due

to differential binding affinity or expression levels of the paralogs

that tilts binding competition toward one paralog or the other. Upon

deletion, the mutual exclusion is relieved and compensation

becomes apparent. Results consistent with this observation were

obtained by Ori et al (2016) in mammalian cells. The authors

showed that some paralogs can replace each other through changes

in expression within protein complexes, supporting the fact that

paralogs have preserved the ability to interact with the same part-

ners. Another study reported observations consistent with this

model using proteomics analyses of cancer cell lines (Gonçalves

et al, 2017). In this case, an increased copy number for one gene led

to increased protein abundance and a decrease in abundance of its

paralogs, as if a feedback mechanism was affecting the balance

between paralogs. This feedback is likely due to post-translational

regulation that leads to the degradation of the displaced paralogs

from protein complexes, also called protein attenuation (Ishikawa

et al, 2017; Taggart & Li, 2018). This observation suggests that the

two paralogs would have overlapping binding partners and the

balance would be determined by their relative affinity and abun-

dance, as observed in one recent meta-analysis study (Sousa et al,

2019). Finally, Rajoo et al (2018) examined the composition of the

yeast nuclear pore complex and, similarly to the Diss et al study

(Diss et al, 2013), found that paralogous proteins can at least

partially replace each other in situ upon deletion and change in

abundance.

A major determinant that limits the ability of paralogs to

compensate is their functional divergence, which can be approxi-

mated by sequence divergence (Hsiao & Vitkup, 2008; Li et al,

2010). Other factors could also play a role, for instance, cross-

dependency, which has been brought to light only recently. DeLuna

et al (2010) looked at protein abundance of yeast paralogs when

their sister copies are deleted, and found that six of the 29 pairs

studied displayed negative responsiveness: Upon deletion, the

remaining paralog showed a decreased protein abundance. In half

of these cases, the paralogs heteromerized (physically interacted

with each other), suggesting that protein abundance may depend on

their physical interactions. The control of protein abundance

through interactions was also recently elucidated in the context of

human cells (Sousa et al, 2019). The consequences of these

decreases in abundance were not investigated further but one could

imagine that this would directly affect the compensating ability of

paralogs, because the deletion of one copy of a pair leads to a LOF

of the second, thereby essentially acting as a dominant negative

effect. A recent study by Diss et al (2017) directly examined paralog

compensation at the level of protein–protein interactions. Among

more than 50 pairs of paralogs, they showed that not all paralogs

could compensate in the yeast protein interaction network. About

20 pairs showed dependency, i.e., one paralog lost some or all its

interaction partners upon the loss of the second. Diss et al found

that dependent pairs were enriched for pairs that form heteromers

and, in some cases, the dependency could be explained by a strong

decrease in protein abundance upon deletion, consistent with the

observation of DeLuna et al (2010).

Altogether, these observations raise the possibility that

heteromerization of paralogs may reflect their physical and func-

tional dependency, which as a consequence would reduce the ability

of paralogous genes to compensate for each other’s loss. One could

therefore predict that the protection that paralogous genes provide

against the effect of LOF mutations would be contingent on whether

their products form heteromeric complexes with each other or not.

These genes would have fitness effects that are closer to that of

single copy genes (singletons) than that of typical duplicates. Here,

we examine these predictions by re-analyzing a set of well-curated

pairs of human paralogous genes (Singh et al, 2015; Lan &

Pritchard, 2016) and recent large-scale genome-wide CRISPR-Cas9

screens in which the effect of gene LOF on cell proliferation was

examined in more than 450 cancer cell lines (Wang et al, 2015;

DepMap, 2018) and a primary cell line (Shifrut et al, 2018). The

meta-analysis of the effect of gene LOF on cell proliferation, mRNA

expression from 374 cell lines, protein expression from 49 cell lines

and protein–protein interactions (Table EV1) revealed patterns

which strongly support our hypothesis that paralogs that assemble

are less protective, but through factors other than heteromerization

itself.

Results

Paralogous genes protect against the effect of gene LOF across
all cell lines

We used two datasets of paralogous genes, one of relatively young

paralogs, largely derived from small-scale duplications (Lan &

Pritchard, 2016) and another set of relatively old paralogs most

likely derived from whole-genome duplication (Data ref: Ohnolog,

2018; total of 3,132 pairs of paralogs, see Materials and Methods,

Dataset EV1). We first examined whether paralogous genes protect

against the deleterious effects of LOF mutations in a set of 455

human cell lines from three independent CRISPR-Cas9 genome-wide

LOF screens (Table EV1). Such experiments yield a CRISPR score

(CS) per gene which is an estimate of the relative depletion of guide

RNAs (gRNAs) during the genome-wide CRISPR-Cas9 screening

experiment. CS therefore reflects the relative deleteriousness of LOF

on cell proliferation (Fig EV1): A lower CS value indicates more

deleteriousness and vice versa. These datasets are (i) CS1 from four

cell lines (Wang et al, 2015), (ii) CS2 from 450 cell lines (Meyers

et al, 2017; DepMap, 2018), (iii) CS2.1 from 450 cell lines (DepMap,

2018), and (iv) CS3 from 1 primary cell line (Shifrut et al, 2018; see
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Dataset EV2 for cell-line information, Dataset EV3 for gene-wise CS

values). All the CS values capture the essentiality of the genes

which, in the case of cancer cell lines, are found to be largely inde-

pendent of the role of the genes in cancerogenesis (Fig EV1).

Because the estimation of CS of the paralogs could be confounded

by gRNAs that match to more than one gene due to their sequence

similarities, we recomputed scores for the CS1, CS2.1, and CS3

datasets by considering only the gRNAs that uniquely align to the

genome (see Materials and Methods). Dataset CS2 and dataset

CS2.1 constitute data from the same set of cell lines (biologically

identical), but analyzed differently. CS2 takes copy-number varia-

tion effects in each cell line into account (used directly as

computed by the authors; Meyers et al, 2017), while CS2.1 is

analyzed by utilizing only the uniquely aligned gRNAs (see

Materials and Methods). CS values among datasets CS1 and CS2/

CS2.1 are well correlated, indicating reproducible measurements of

fitness effects across platforms, methodologies, cell lines, and cell

types (Appendix Fig S1). The weaker correlation with dataset CS3

values (Spearman correlation coefficient ranges from 0.19 to 0.21),

however, could be attributed to the difference in the physiology of

the primary and cancer cell lines itself, although technical factors

could also be responsible.

As expected, we find that paralogs buffer the effect of gene LOF.

Genes with paralogs have relatively higher CS values than single-

tons (see Materials and Methods for classification of singletons), for

the three biologically independent datasets considered (Fig 1A). To

confirm that these effects were systematic and were not driven by

few cases of cell lines with strong effects, we compared the mean

A

B C D

Figure 1. The LOF of paralogs is less deleterious than that of singletons in human cell lines.

A LOF data derived from genome-wide CRISPR-Cas9 screening experiments. The deleteriousness of LOF of a gene on cell proliferation is estimated from the depletion
of gRNAs in the experiment. The extent of depletion is measured as a CRISPR score (CS, see Materials and Methods). CS values across cell lines from three
biologically independent datasets—CS1 (Wang et al, 2015), CS2/CS2.1 (Meyers et al, 2017; DepMap, 2018), and CS3 (Shifrut et al, 2018) are shown. Genes that are
not in the paralog datasets but that were not identified as singletons in the stringent identification of singletons are denoted as “unclassified”. Relatively higher CS
of paralogs compared to singletons indicates that they are relatively less deleteriousness. P-values from two-sided Mann–Whitney U tests are shown. On the violin
plots, the medians of the distributions are shown by a horizontal black line and quartiles by a vertical thick black line. For clarity, the upper and lower tails of the
distributions are not shown.

B, C (B) Comparisons of CS values between paralogs and singletons and (C) between paralogs and unclassified genes (neither clearly a paralog nor a singleton). CS data
for 4 (CS1) + 450 (CS2.1) + 1 (CS3) cell lines is shown. Each point represents the mean CS for a class (singleton, paralog, or unclassified) in an individual cell line. All
points are below the diagonal (dashed gray line), showing that the effect is systematic and largely cell-line independent. Similar plots are shown for CS2 dataset in
Appendix Fig S2.

D Older paralogs tend to be more essential than younger ones and are therefore less protective (i.e., more deleterious upon LOF). On the y-axis, the age groups are
ordered in increasing distance of phylogenetic node of duplication relative to common ancestor, i.e. Opisthokonta. Sets of essential and non-essential genes were
derived from the union of gene sets reported by DepMap (2018) and BAGEL (Hart & Moffat, 2016; See Materials and Methods). P-value from a two-sided Mann–
Whitney U test is shown. The boxes represent the first and third quartiles (Q1 and Q2) of the distribution, and the upper and lower whiskers extend up to Q3 +
1.5*interquartile range and Q1 � 1.5*interquartile range, respectively. The central horizontal line represents the median of the distributions containing 65 data
points in the case of essential paralogs and 235 data points in the case of non-essential paralogs.

Source data are available online for this figure.
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CS for paralogs and singletons across cell lines (see Fig 1B for analy-

sis with CS2.1 and Appendix Fig S2A for analysis with CS2 dataset).

All cell lines systematically showed stronger buffering effects for the

inactivation of paralogs compared to singletons, with no exception.

The same results were observed for the comparison of paralogs with

genes that are not in the set of paralogs nor classified as singletons,

denoted as “unclassified” (see Fig 1C for analysis with CS2.1 and

Appendix Fig S2B for CS2 dataset). These results are therefore

highly reproducible and cell-line independent. However, the trend

showed some dependence on molecular features such as mRNA

expression levels, as we discuss below.

Older paralogs tend to be less protective

In order to determine the effect of paralog age on deleteriousness,

we compared the essential and non-essential sets of genes in terms

of their age group of duplications retrieved from Ensembl Compara

(Herrero et al, 2016; see Materials and Methods). We find that,

albeit with a weak difference, older paralogs are more likely to be

classified as essential genes and thus have potentially more delete-

rious effects upon LOF than younger paralogs (Fig 1D, see Materi-

als and Methods for the classification of essential genes). This

result underscores similar findings from earlier studies showing

that the more diverged paralogs are, the less likely they are to

buffer each other’s loss, in the context of human diseases or yeast

gene deletions (Hsiao & Vitkup, 2008; Li et al, 2010; Plata &

Vitkup, 2014).

Heteromeric paralogs emerge from ancestral homomers

The model in which paralogous genes are dependent on each other

considers that interacting paralogs derive from ancestral homomeric

proteins (Bridgham et al, 2008; Baker et al, 2013; Kaltenegger &

Ober, 2015; Diss et al, 2017). We can assume that when the two

paralogs individually form a homomer, the ancestral protein was

most likely also a homomer. Therefore, we can infer that hetero-

mers of paralogs are derived from ancestral homomers, if each

paralog also forms a homomer. Homomeric, in the context of this

study, refers to the assembly of a protein with itself while hetero-

mers of paralogs or heteromeric paralogs refer to paralogous

proteins that assemble with each other.

We used two sources of PPI, BioGRID (Chatr-Aryamontri et al,

2015, 2017) and IntAct (Orchard et al, 2014), to define homomeric

genes or heteromeric gene pairs based on PPI (see Materials and

Methods). Further, the subsets were defined based on all PPI

(henceforth, this dataset will be referred to as “all PPI”) or direct

physical interactions only (henceforth, this dataset will be referred

to as “direct PPI”). Considering all PPIs (see Materials and Meth-

ods for the difference between “all PPI” and “direct PPI”), para-

logs are 8.13 times more likely to form heteromeric pairs (Fisher’s

exact test, P-value < 1.4e-14) if they also both form homomers

than if none of them does. The likelihood is 48.88 times for

heteromers defined by “direct PPI”s only (P-value < 5.5e-18; see

Appendix Table S1 for the numbers of pairs in each category). We

can therefore generally assume that pairs of heteromeric paralogs

are more likely to be derived from ancestral homomers, consistent

with previous observations (Wagner, 2003; Pereira-Leal et al,

2007).

Paralogs that form heteromers have stronger effects on cell
proliferation when inactivated

Next, we investigated the effect of LOF of paralogs that form hetero-

mers and those that do not. Consistent with the dependency hypothe-

sis, the LOF of heteromeric paralogs seems to cause relatively more

deleterious effect on cell proliferation than the LOF of non-hetero-

meric paralogs, across all 4 CS datasets (Fig 2A, similar analysis with

“direct PPI”s is shown in Appendix Fig S3). We also observe that the

effect is consistent across cell lines by looking at the mean CS of

heteromers or non-heteromers within each cell line (Fig 2B), with a

majority of cell lines showing stronger effects for the LOF of paralogs

forming heteromers. This trend is clearly observed across all the CS

datasets and irrespective of the source of the PPI used for the defi-

nition of the heteromeric paralogs (similar analysis as that of the

Fig 2B with all the rest of the combinations of the PPI sources and CS

datasets is shown in Appendix Fig S4). A similar analysis with para-

logs that are both heteromers and homomers compared with paralogs

which are only homomers shows that interacting paralogous are rela-

tively more deleterious (Fig 2C). This trend is also clearly observed

across all the CS datasets and irrespective of the source of the PPI

used for the definition of the subsets of paralogs (similar analysis as

that of the Fig 2B with all the rest of the combinations of the PPI

sources and CS datasets is shown in Appendix Fig S4). The effects are

therefore not due to homomerization but due to heteromerization

(Fig 2C). These results support the hypothesis that interacting pairs

of paralogs are less likely to buffer each other’s LOF.

One potential confounding factor with this analysis is the fact that

the frequency of heteromers could covary with the age of paralogs,

which we showed above to affect at least partially the essentiality of

the gene (Fig 1D). Heteromers are indeed older than the non-hetero-

meric paralogs (Fig 2D), albeit only in the case of the heteromers

defined by “all PPI”s. We therefore looked at CS values of paralog

LOF corrected for age, by using age groups. We observed that for all

age groups, except for two, CS values for heteromers are indeed

lower than for non-heteromers, suggesting that this effect is largely

independent from age (Fig 2E). The reason for the inconsistency

between the two age groups is however unclear, the potential

confounding factors could be the DNA sequence divergence between

paralogs and the ability of gRNA to target one gene specifically.

Molecular functions enriched for heteromeric paralogs tend to
be more critical for cell proliferation

It is possible that the effects detected are due to specific gene func-

tions that would be particularly associated with heteromeric para-

logs. We first examined whether heteromers of paralogs are

enriched for particular function among all paralogs. We found that

heteromers of paralogs are enriched for gene sets containing

proteins that have catalytic activity and known to directly interact/

regulate with each other such as kinase binding (Breitkreutz et al,

2010) as well as DNA binding proteins from the histone deacetylase

binding gene set (see Dataset EV4 gene sets and GO terms used in

the analysis, Dataset EV5 for enrichment analysis).

From this gene set enrichment analysis, we find that the propor-

tion of heteromerization of paralogs in a gene set, in general, is

negatively correlated (Spearman correlation coefficient = �0.26,

P-value = 0.086) with the average CS value of paralogs per gene set.
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A

B C D

E

Figure 2. The LOF of paralogs that form heteromers is more deleterious than the LOF of non-heteromers.

A The effect of LOF on cell proliferation (CS values) is relatively more deleterious in the case of heteromeric paralogs than non-heteromers, across all 4 CS datasets.
P-values from two-sided Mann–Whitney U tests are shown. Similar plot for heteromers defined with direct PPI only is shown in Appendix Fig S3.

B Mean CS values of heteromeric paralogs and non-heteromers (defined by “all PPI”s from BioGRID source) are shown across cell lines. Each point represents the mean
CS value for a class in an individual cell line. All the points are above the diagonal (dashed gray line), showing that the effect is systematic and largely independent of
cell line. Similar plots for both PPI sources and CS2 dataset are shown in Appendix Fig S4.

C Similar to panel (B), but comparing paralogs that form heteromers and homomers to those that form homomers only (defined by “all PPI”s from BioGRID source). This
result shows that the difference between heteromers and non-heteromers is not caused by the fact that heteromers are also enriched for homomers. Similar plots for
both PPI sources and CS2 dataset are shown in Appendix Fig S4.

D Paralogs that form heteromers tend to have been duplicated earlier in evolution. The age of the paralog pairs is shown in terms of synonymous substitutions per site
(dS) (see Materials and Methods), a proxy for age. Data are shown for interactions derived from “all PPI”, and those that are more likely to detect “direct PPI”. P-values
from two-sided Mann–Whitney U tests are shown.

E Paralogs that form heteromers tend to be more deleterious upon LOF than other paralogs. Data from CS2.1 are shown, largely independent of the age of the paralog.
In the legends, paralogs are ordered by their age. The CS values per class of paralogs (heteromer or not) and their age group are aggregated by taking median across
cell lines. Note that while heteromers are more deleterious in most of the age groups, in the case of 2 out of 10 age groups a reverse trend is observed. Distributions
of the CS values per class of paralogs (heteromer or not) and their age group for this analysis are shown in Appendix Fig S5A. Similar analysis with dataset CS2 and
for heteromers detected with “direct PPI”s only is shown in Appendix Fig S5 B–D. P-values from two-sided Mann–Whitney U tests are shown.

Data information: On the violin plots (panel A and D), the medians of the distributions are denoted by a horizontal black line, while the quartiles of the distributions
from the median value are indicated by a vertical thick black line. For clarity, the upper and lower tails of the distributions are not shown in panel (A).
Source data are available online for this figure.
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This shows that some functions are particularly deleterious when

deleted and these tend to be rich in heteromeric paralogs. This is the

case in the analysis while considering both PPI methods (see Fig 3

for “all PPI” and Appendix Fig S6A for “direct PPI”). The negative

correlations also hold true in the case of GO biological process and

GO cell component gene sets (see Fig EV2 for “all PPI” and

Appendix Fig S6B and C for “direct PPI”).

Some molecular functions enriched among heteromers also show a

significant difference in the average CS values of the heteromers

and non-heteromers in that particular gene set (Fig 3, Dataset EV5).

Such gene sets include, for instance, RNA polymerase II and

transcription, and DNA and nucleic acids binding genes, which are

frequent among large families of dimeric transcription factors that

evolve through duplication (Amoutzias et al, 2008), some of which

have been shown to have co-dependent evolution (Baker et al, 2013).

Among other such gene sets, phosphatase activity related genes were

identified in the case of “all PPI” dataset (Fig 3). Gene sets corre-

sponding to protein homodimerization activity were commonly found

in both the analyses with all PPI and with direct PPI (Fig 3 and

Appendix Fig S6A) as showing significant lower CS values for hetero-

meric pairs, consistent with the correlation observed above between

heteromerization and homomerization.

Figure 3. Association between the molecular functions of paralogs, their probability of heteromerization, and the effect of gene LOF on cell proliferation.

Average CS values of paralogs (heteromer or not heteromer) belonging to a gene set were used in the analysis. On the y-axis, GO terms for molecular functions are sorted
according to their proportion of heteromeric paralogs (i.e., # of heteromers/# of paralogs, heteromers defined by “all PPI”). The size of the circles represents the number of
paralog pairs in a category, and the colors represent the proportion of heteromers in that category. In the left panel, average CS values of heteromers per category are shown
on the x-axis. In the right panel, the difference between the average CS value of the heteromers and average CS values of the non-heteromers are shown on the x-axis. The
terms with significant difference between the average CS value of the heteromers and average CS value of the non-heteromers (estimated by two-sided t-test) are annotated
with the blue edges. The descriptions of the representative significant GO terms with the highest difference are shown in the right-side panel. Spearman rank correlation
between the proportion of the heteromers in the GO terms and the average CS value of paralogs in the term [rs(# of heteromers/# of paralogs per term, CS mean of paralogs
per term)] is shown in the lower left corner. Only GOmolecular functions withmore than 10%of the number of paralogs in all the gene sets are shown. Similar analysis for the
GO biological process and GO cellular component aspect, for the “all PPI” based data, is shown in Fig EV2. Similar analysis with the “direct PPI” data is shown in Appendix Fig
S6. See Dataset EV5 for GO terms and annotations shown on this figure. Note that not all gene sets are independent because some genes are in several categories.

Source data are available online for this figure.

6 of 18 Molecular Systems Biology 15: e8871 | 2019 ª 2019 The Authors

Molecular Systems Biology Rohan Dandage & Christian R Landry



A

B

D

E

C

Figure 4.

ª 2019 The Authors Molecular Systems Biology 15: e8871 | 2019 7 of 18

Rohan Dandage & Christian R Landry Molecular Systems Biology



In terms of biological processes, protein dephosphorylation

process-related genes, regulation of cell proliferation, apoptotic, tran-

scription process, and cell junction assembly process are enriched

among heteromers and also show significant deleteriousness (i.e.,

depletion in CS values of the heteromers, see Fig EV2A for analysis

with “all PPI”, Appendix Fig S6B for analysis with “direct PPI”). In

terms of cellular components, essential genes related to actin

cytoskeleton and chromatin are enriched among heteromers and

are significantly more deleterious (see Fig EV2B for analysis with

“all PPI” and Appendix Fig S6C for analysis with “direct PPI”).

These genes are therefore interesting candidates for future func-

tional analysis on the consequences of heteromerization for protein

function and robustness.

Heteromeric paralogs are more highly expressed and have more
protein interaction partners

From correlations between CS values (from the three biologically

independent datasets), mRNA expression, and number of PPI part-

ners, CS values were found to be negatively correlated with the

number of PPI partners of a protein and its mRNA expression level

(measured in terms of Fragments Per Kilobase of transcript per

Million mapped reads, i.e., FPKM; Fig 4A, see Appendix Fig S7 for

analysis with each CS dataset). Therefore, it is possible that the dele-

teriousness of the heteromeric paralogs is partially explained by the

general dependence of CS values on mRNA expression and number

of PPI partners.

Previous reports have shown that homomeric proteins tend to

have a larger number of interaction partners (Ispolatov, 2005). If

heteromers of paralogs inherit their interactions from the homo-

meric ancestor, they could also have a larger number of interaction

partners, which could explain their relatively lower CS values

(Fig 2A). Comparing the number of PPI partners of heteromeric

paralogs and non-heteromeric ones, it is clear that heteromeric para-

logs have a larger number of PPI partners, both considering “all

PPI” (Fig 4B) and “direct PPI” (Appendix Fig S8A) and are more

highly expressed (see Fig 4C for analysis with the heteromers

defined by “all PPI” and Appendix Fig S8B for the ones defined by

“direct PPI”s). The trend with mRNA expression is also true in most

of the cell lines (see Appendix Fig S8C for analysis with heteromers

defined by “all PPI” and Appendix Fig S8D for analysis with “direct

PPI” only). Collectively, the number of PPI and mRNA expression

seem to explain the greater deleteriousness of the heteromers

compared to non-heteromeric paralogs.

Further, we tested the extent to which heteromeric status of the

paralog can predict the deleteriousness relative to other potential

predictors, i.e. mRNA expression and number of interaction part-

ners. In order to do this, considering that the molecular features are

interdependent, we relied on two joint modeling approaches based

on (i) partial correlations and (ii) machine learning to estimate the

predictiveness of the molecular features, as detailed below.

Firstly, the partial correlations were carried out between the dele-

teriousness of the paralog (CS values) and the status of the paralog

being either heteromer or not (binary variable), while controlling for

either mRNA expression or the number of protein interaction partners

(Fig 4D, for analysis with “direct PPI”s see Appendix Fig S8E). From

this analysis, it is apparent that mRNA expression and number of PPI

partners are better predictors of deleteriousness relative to hetero-

meric state of the paralogs, as controlling for each of the two molecu-

lar features diminishes the correlation coefficient. Also, between

mRNA expression and number of PPI partners, the number of protein

interaction partners is a better predictor of the deleteriousness of

paralogs than mRNA expression, because controlling for the former

diminishes the correlation more than controlling for the later.

In the second joint modeling approach, we used a set of four

machine learning classification models to predict the deleteriousness

of the paralog, using the three features: (i) heteromeric state of the

paralog (heteromer or not, binary variable), (ii) mRNA expression,

and (iii) the number of protein interaction partners (see Materials

and Methods). From the feature importance obtained from the clas-

sification models, it is again apparent that the number of interac-

tions of a protein is a likely better predictor of the status of the

paralog (Fig 4E, for analysis with individual CS datasets, see

Appendix Fig S9A–D), and thereby of their relative deleteriousness.

◀ Figure 4. Relationship between the effect of LOF of a gene on cell proliferation, mRNA expression, and number of protein–protein interaction partners.

A The effect of gene LOF on cell proliferation as measured in terms of CS values is correlated with mRNA expression and number of PPI partners. Considering the
interdependence between the three related factors, partial correlations were estimated using Spearman correlation coefficients (q) between each pair of factors while
controlling for the third factor (covariate, indicated in the curly brackets). The P-values associated with the correlations are denoted on the heatmap. Average CS
values across CS datasets were used. See Appendix Fig S7 for correlations in case of individual CS datasets and direct PPI.

B Paralogs that form heteromers have more interacting partners compared to non-heteromers. Number of interactions is in log2 scale. Similar plot with heteromeric
paralogs detected with only direct PPI is shown in Appendix Fig S8A.

C Paralogs that form heteromers show higher expression than non-heteromers. Similar plot with heteromers of paralogs detected with only direct PPI is shown in
Appendix Fig S8B. Cell-line-wise comparisons with heteromers defined by “all PPI” and “direct PPI” are shown in Appendix Fig S8C and D, respectively. Contribution of
the interacting factors in determining the paralog status is determined by jointly modeling through two approaches: partial correlations (panel D) and classification
models (panel E).

D Partial Spearman correlation coefficients (r, shown on the y-axis), between CS values and a paralog status (heteromer or not, binary variable, 1: heteromer, 0: not
heteromer). The correlations were determined while controlling for none of mRNA expression and number of interactions (“none”), only mRNA expression
(“expression”), only number of interactions (“interaction”), or both (“both”) (as shown on the x-axis). Controlling for the number of interactions leads to the greater
loss of negative correlation, indicating that it contributes to the correlation more than mRNA expression. Similar analysis with heteromers defined by “direct PPI” is
shown in Appendix Fig S8E.

E Feature importance (shown on the y-axis) of the three factors as determined through four different classification models (shown on the x-axis). Means and standard
deviations of the ROC AUC values across all cross validations and bootstrapping runs (see Materials and Methods) are plotted for each of the four classifiers. The CS
values used for this analysis are mean of the CS values across all the CS datasets. For similar analysis with the four individual CS datasets, see Appendix Fig S9 A–D.

Data information: In panels (B and C), P-values from two-sided Mann–Whitney U tests are shown. On the violin plots, the medians of the distributions are shown by a
horizontal black line and quartiles by a vertical thick black line. For clarity, the upper and lower tails of the distributions are not shown.
Source data are available online for this figure.
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In addition, multiple regression analysis (Appendix Fig S9E and F)

also corroborated these results. Put together, these analyses thus

confirm that indirect effects owing mostly to the number of PPI part-

ners, and to mRNA expression to a lesser extent, seem to explain

the stronger impact of LOF on heteromers.

As an addendum, in general, the protective effect of paralogs

compared to singleton is partially caused by their lower expression

and smaller number of protein interaction partners than that of

the singletons (Fig EV3A and B, cell-line-wise comparison in

Fig EV3C). Partial correlation analysis (Fig EV3D) indicates that the

protective effect of the paralogs is more attributable to the

expression of the genes, but this does not completely explain the

results. In the case of all the CS datasets, at lower expression values,

the difference in CS between paralogs and singletons is non-signifi-

cant (Fig EV3E). The reason for this could be attributed to the small

counts of mRNA expression generally being relatively more noisy as

well as lower fitness effects in general, making differences more dif-

ficult to detect. Also, sequence similarity between the paralogs leads

to removing reads from the analysis and may thus act as one of the

confounding factors in this analysis (see Materials and Methods) by

underestimating mRNA expression of paralogs.

Heteromerizing paralogs occupy a space of the robustness
landscape where gene LOF is more deleterious

Overall, these results can be summarized in a robustness landscape

in which the robustness against LOF is shown as a function of the

number of PPIs and mRNA expression level. Following the pattern of

correlations between the three factors (as shown in Fig 4A), the land-

scape clearly shows that strong deleteriousness is localized in the

upper right corner, where expression and number of interaction part-

ners are high (Fig 5A for analysis with “all PPI”, see Fig EV4A for

analysis with “direct PPI” only). The overlay on this landscape of the

density of singletons and paralogs shows that they occupy a similar

space (Fig 5B analysis with “all PPI”, see Fig EV4B for analysis with

“direct PPI” only), although singletons are in a space in which genes

are slightly more expressed and have a slightly larger number of

interactions. Paralogous genes that form heteromers clearly occupy a

space that is distinct from non-heteromeric ones, which brings them

closer to a more deleterious parameter space, in which genes are rela-

tively more expressed and have more protein interaction partners

(Fig 5C for analysis with “all PPI”, see Fig EV4C for analysis with

“direct PPI” only). We also show representative pairs of heteromeric

and non-heteromeric pairs of paralogs on the map (Figs 5C and

EV4C). For instance, Ubiquilin 1 and 4 (UBQLN1 and UBQLN4) form

a heteromer, are highly expressed, and have a large number of

protein interaction partners and their LOF is highly deleterious, as

seen by their location nearing the valley of the fitness landscape. On

A

B

C

Figure 5. Robustness landscape visualization showing regions of
deleteriousness to LOF as a function of mRNA expression and number of
interaction partners.

mRNA expression (lined on x-axis) and number of PPI partners (y-axis) are strong

determinants of the deleteriousness of gene LOF (measured in terms of average

CS across CS datasets, shown on z-axis).

A The landscape shows the effect of LOF of genes on cell proliferation (CS) as
a function of the two parameters. The region with high gene expression
levels and large number of interactions clearly shows relatively lower CS
values, indicating greater deleteriousness upon LOF.

B Kernel density estimates for paralogs and singletons are overlaid on the
landscape to indicate their level of occupancy. The density of paralogs is
located toward lower expression levels and small numbers of protein
interaction partners, compared to singletons.

C Similar to (B), kernel densities of heteromeric paralogs and non-heteromeric
ones are overlaid on the landscape. The location of heteromers is biased
toward higher expression levels and larger number of protein interaction
partners, compared to non-heteromers. Also, locations of representative
heteromeric (UBQLN1 and UBQLN4) and non-heteromeric pairs (COL5A1
and COL11A2) are annotated on the landscape.

Data information: Similar plots with direct PPIs only are shown in Fig EV4.
Source data are available online for this figure.
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the other hand, a non-heteromeric pair, collagen type V alpha 1 chain

(COL5A1) and collagen type XI alpha 2 chain (COL11A2) have lower

mRNA expression and lower number of PPI partners, setting their

position at the peak of the landscape with relatively non-deleterious

CS values. In terms of network features, paralogous pairs that

heterodimerize are more similar to singletons and have correspond-

ingly similar effects on proliferation when inactivated.

Potential consequences of the heterodimerization of paralogs

We examined the results from the meta-analysis further to explore

other potential features leading to the association between the

heteromerization of paralogs and their deleteriousness upon LOF.

Given that gene expression level appears to be one of the determi-

nants of the fitness effect of LOF, it is possible that mechanistically,

the ability of a paralog to buffer for the loss of its sister copy

depends on their relative abundance. For instance, if highly asym-

metrically expressed, the LOF of the most expressed gene of a pair

is unlikely to be buffered by the least expressed one. However, if

both are expressed at a comparable level, both would be expected

to affect cell proliferation in a comparable manner. In addition, Diss

et al (2017) showed that physical dependency between interacting

paralogs is often asymmetrical, the lowly expressed copy being

affected by the deletion of the highly expressed one more than in

A

C

D E

B

Figure 6.
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the reciprocal condition. They suggested that this asymmetry could

derive from the fact that the lowly expressed one may be post-trans-

lationally stabilized by the most expressed one. We therefore tested

whether asymmetry in mRNA expression influences which gene in a

pair is more deleterious upon LOF (Fig 6A).

We found that across cell lines, the paralog of a pair with the

highest level of expression (P1) shows significantly lower CS values

than the lowly expressed one (P2) (Fig 6B for analysis with hetero-

mers defined by “all PPI”, see Appendix Fig S11 for similar analysis

with heteromers defined by “direct PPI”). This means that the loss

of a paralog is more deleterious when it is the most expressed one

in a pair. Properties that determine the deleteriousness of LOF

across genes therefore also apply within pairs of paralogs. The frac-

tion of pairs across cell lines for which the LOF effect is greater than

the other paralog in the pair is strongly associated with their asym-

metry of expression (Fig EV5A for analysis with CS2.1 dataset, see

Appendix Fig S12 for similar analysis with CS2 dataset). Moreover,

investigating the relationship between the difference of average CS

of the paralog pair and asymmetry of mRNA expression levels, we

find that these two factors are more negatively correlated in the case

of heteromers than non-heteromers (see Fig 6C for analysis with

“all PPi” and Appendix Fig S13A for analysis with “direct PPI”. See

Fig EV5B and Appendix Fig S13B for distributions of correlation

coefficients in case of CS2.1 and CS2 datasets, respectively),

although the difference is statistically significant only in the case of

heteromers defined by “all PPI” and CS2.1 dataset. These correla-

tions indicate that if the heteromeric pairs of paralogs are asymmet-

rically expressed, then the difference in deleteriousness is larger

upon LOF than for non-heteromeric ones. This suggests that the

lowly expressed gene of a pair is less able to buffer the loss of the

highly expressed one in case of heteromers than non-heteromers.

This enhanced sensitivity appears to be counterbalanced at the

systems level by the fact that heteromeric paralogs are more likely

to have symmetrical expression (Fig 6D). Altogether, this suggests

that symmetrical expression imposes a stricter contingency for

heteromers than non-heteromers, arguably due to the need for

their stoichiometric balance in their physical assembly. Comparing

the mRNA expression of the heteromers across 374 cell lines

(Fig EV5C) and protein expression across 49 cell lines (Fig EV5D),

it appears that the heteromers are indeed on average more dosage

balanced than non-heteromers. This trend is observed in both the

comparisons and data from either PPI source, although it is statis-

tically significant only in the case of comparison of mRNA expres-

sion for heteromers defined by “all PPI”. This is potentially

because it covers more pairs or because those include more pairs

in large complexes, which are submitted to dosage balance

constraints (Papp et al, 2003; Teichmann & Veitia, 2004), and

because the proteomics data cover a smaller number of gene pairs

and cell lines.

Finally, we examined whether the enhanced deleteriousness of

LOF for heteromers could be due to their physical dependency,

which would be manifested as the alteration of one member of

a pair when the other member is absent as previously observed

by Diss et al (Pickett & Meeks-Wagner, 1995; Diss et al, 2014).

This could offer a mechanistic insight into some of our observa-

tions. It is difficult to predict the physical dependency of para-

logs, but one could hypothesize that it is more likely to occur

for strongly interacting pairs. We therefore used the size of the

interaction interface of heteromers as a proxy for the strength of

interaction [as in (Sousa et al, 2019), see Materials and Meth-

ods]. Using the data for 25 heteromers of paralogs, we indeed

observed a marginally significant negative correlation with the

average CS values (Fig 6E) of paralog pairs with the strength of

interactions, suggesting that codependency indeed could be a

mechanism that contributes to the enhanced deleteriousness of

paralogs pairs that interact with each other.

Discussion

The contribution of gene duplicates to cellular robustness has been

established for several individual genes prior to the era of large-

scale screening (Thomas, 1993; Melton, 1994; Pickett & Meeks-

Wagner, 1995; Gibson & Spring, 1998). It was well established for

model organisms such as yeast for which systematic gene deletion

experiments have been performed (Gu et al, 2003). Systematically

◀ Figure 6. Asymmetric expression of paralogs and mechanistic insights into the relatively greater deleteriousness of heteromeric paralogs.

A Schematic representing likely scenarios pertaining to the relationship between the asymmetry in mRNA expression of a pair of paralogs (P1 and P2) and their relative
deleteriousness upon LOF, as discussed in the text.

B The most expressed paralog (P1) of a pair is more likely to be deleterious than the least expressed (P2). mRNA expression data is composed of 374 cell lines. Each
point represents CS value of an individual cell line. P-value is from two-sided Mann–Whitney U test. On the violin plots, the medians of the distributions are denoted
by a horizontal black line, and quartiles of the distributions from the medians are indicated by a vertical thick black line. For clarity, the upper and lower tails of the
distributions are not shown. Heteromers in this analysis are defined from the “all PPI”s. For similar analysis with “direct PPI”s, see Appendix Fig S11.

C Relationship between the difference in CS of the paralog pair (P1 � P2) and the asymmetry of mRNA expression levels, i.e., (P1 � P2)/(P1 + P2), where mRNA
expression of P1 is higher than P2. The values of asymmetry of mRNA expression levels close to 0 are cases in which the mRNA expression is symmetrical and
asymmetrical for values near 1. Error bars represent 95% confidence interval with respect to difference in CS (y-axis) of the paralog pairs defined by equal sized bins
of the asymmetry of mRNA expression (x-axis). The heteromers are defined by “all PPI”. Similar analysis with heteromers defined by “direct PPI” is shown in
Appendix Fig S13A. The relationship between the two factors in case of representative pairs of heteromeric and non-heteromeric paralogs is shown in Appendix Fig
S14. Comparison of distributions of the correlation scores between heteromers and non-heteromers is shown in Fig EV5B.

D Heteromeric paralogs tend to have more symmetric mRNA expression as compared to non-heteromers. Distribution of the asymmetry in the mRNA expression, i.e.,
(P1 � P2)/(P1 + P2), where mRNA expression of P1 is higher than P2. The values near 0 are cases in which the mRNA expression is symmetrical and asymmetrical for
values near 1.

E The deleteriousness of the heteromers upon LOF (lined on the y-axis) is negatively correlated with the number of residues at the interaction interface (x-axis). q is
Spearman’s correlation coefficient. P-values associated with the Spearman’s correlation coefficient are shown in the legend. Structures of representative heteromers
are shown in Appendix Fig S15.

Source data are available online for this figure.
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investigating the extent of the contribution of gene duplication to

cellular robustness in the context of human cells was only recently

made possible owing to large-scale CRISPR-cas9 screening (Wang

et al, 2015). Here, using three biologically independent datasets of

gene LOF that represent a large number of diverse cell lines and dif-

ferent experimental approaches (Table EV1), we find that paralogs

systematically contribute to cellular robustness across all cell lines

(Fig 1A).

Although the signal for the contribution of gene duplicates to

robustness is significant and reproducible across datasets, some

factors could limit the effects measured. The types of the cell lines

used, i.e., cancer cell lines (in case of CS1, CS2/2.1) and primary (in

case of CS3), clearly show a difference in terms of the correlations

(Appendix Fig S1). A second factor that is particular to the LOF

screens in mammalian cell lines is the robustness of these cells to

gene LOF. As seen from the distributions of the CS values across CS

datasets, most of the genes are robust to LOF (Fig EV1). The effec-

tive range of deleteriousness is thereby very narrow, limiting the

resolution of the comparisons. Another limiting factors is that not

all of the paralogs could be present as pairs in all cell lines, in partic-

ular in cancer cell lines that may have had additional duplications

and deletions, which may have altered the copy number of paralo-

gous genes. Although this effect may have biased our analyses, the

use of the dataset CS2, which has been corrected for copy-number

variation across the cell-line genomes (Meyers et al, 2017), shows

that the results are likely robust to these effects. Another factor that

may affect the results is that gRNAs could potentially inactivate both

paralogs of a pair, thereby leading to double gene LOF rather than a

single one (Fortin et al, 2019). For instance, the CS1 original dataset

(Wang et al, 2015) contained gRNAs that targeted multiple positions

in the genomes, many of which could be positions that correspond

to duplicated genes. This could lead to double gene LOF by Cas9

cutting and DNA repair but could also lead to chromosomal rear-

rangements, leading to even stronger effects (Després et al, 2018;

Kosicki et al, 2018) than double gene LOF (Fortin et al, 2019). For

this reason, we re-analyzed all data and considered only uniquely

aligned gene-specific gRNAs (see Materials and Methods). Neverthe-

less, it is not clear how many mismatches could be tolerated for effi-

cient mutagenesis by Cas9 activity to occur, so eliminating all

gRNAs that could lead to more than one gene LOF remains a diffi-

cult task.

We examined whether specific features of paralogous genes

could affect their ability to buffer each other’s LOF effect. We

focused on their heteromerization because recent reports have

shown that paralogous proteins often physically associate and that

these physical associations could reduce their ability to buffer each

other’s LOF (DeLuna et al, 2010; Diss et al, 2017). This observation

led to the prediction that due to their physical and thus potential

functional dependency, paralogs that form heteromers could contri-

bute less to cellular robustness than non-heteromers, essentially

behaving like singletons. We found that these paralogs indeed lead

on average to larger effects on cell proliferation when inactivated by

LOF mutations (Fig 2A). However, this is largely explained by larger

number of protein interaction partners and higher expression levels

for this class of paralogs (Fig 4). On the robustness landscape

outlined by the two factors (Fig 5A), expression levels and numbers

of protein interaction partners clearly separate genes based on their

deleteriousness. It also helps in understanding the major

determinants of buffering effect of paralogs in general (Fig 5B) and

the greater deleteriousness of heteromers (Fig 5C).

One limitation of our analysis is the use of physical interactions

between paralogs as a proxy for dependency. Indeed, physical inter-

actions may not be necessary nor sufficient for paralogs to be depen-

dent (Kaltenegger & Ober, 2015). It is possible that dependency

concerns only obligate heterocomplexes, which are difficult to distin-

guish in large-scale data. However, our analyses using protein inter-

action interface size as a proxy for interaction strength suggest that

this could be a potential mechanism. Dependency between paralogs

could also evolve by other means than physical interactions. Addi-

tionally, it is also difficult to determine from large-scale proteomics

data if two paralogs are part of the same complex simultaneously or

if they occupy the same position but switch according to cellular

compartments of expression timing (Ori et al, 2016). In this latter

case, it would be unlikely that paralogs are dependent on each other,

although the proteomics data would inaccurately suggest that they

physically interact by being in the same complex. Finally, there is

also an issue with the sparseness of the known interactome. For

instance, we still lack evidence for direct physical interactions (i.e.,

direct PPI) for most cases. This eventually obscures analysis because

of lack of statistical power (as in the case of Appendix Fig S5).

Our results show that the association between paralog

heteromerization and strong fitness effects is largely if not comple-

tely driven by the fact that it is also associated with expression

levels and number of protein interaction partners. This is in line

with the observation made by Wang et al (2015) who showed that

essential genes tend to be more expressed and have a larger number

of protein interaction partners. Recent observations supporting this

trend were made by showing that LOF variants are rarer in humans

for proteins with large number of protein interaction partners

(preprint: Karczewski et al, 2019). Here, we observe a similar result

and identified that such features are enriched among paralogs that

form heteromers. It is therefore difficult to determine if heteromer-

ization indeed prevents buffering directly because of cross-depen-

dency, or if all of the effects measured are caused by abundance

itself. Our analysis showed that heteromeric paralogs have a

tendency to be often associated with particular molecular functions

(Fig 3) and these functions appear to lead to stronger effects on cell

proliferation when inactivated. Heteromers of paralogs could there-

fore also have a lower buffering capacity overall because they asso-

ciate with specific functions, including, for instance, transcription

factors and protein kinases.

The capacity of paralogs to buffer each other’s LOF also likely

depends on their mechanisms of maintenance, which can be for

instance subfunctionalization or neofunctionalization (Force et al,

1999; Lynch & Force, 2000; Lynch et al, 2001; Innan & Kondrashov,

2010). Which one applies here for each paralog pair is difficult to

determine without knowledge of the ancestral functions of the genes

prior to duplication. Paralogs could fall into three categories. First,

the duplication could be mostly neutral and has not been main-

tained by natural selection. Under this scenario, and in the absence

of other changes, gene duplicates should be able to compensate

each other’s loss as long as they persist. Their function should not

depend on each other’s. The second possibility is that one copy or

the other or both have neofunctionalized (reviewed in Innan &

Kondrashov, 2010). In this case, the novel function acquired by a

paralog could not be compensated by the other copy but all
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ancestral functions could. Dependency in this case could arise from

the acquisition of new functions by both paralogs at the same time.

This has been seen, for instance, by Boncoeur et al (2012) who

showed that the drug-pumping specificity of some ABC transporters

are specific to heterodimers of paralogs and cannot be performed by

individual homodimers. Buffering of this function would be possible

by neither of the paralogs. For transcription factors, the neofunc-

tionalization of one copy could be to become a repressor of the

second copy, essentially given the heteromer a new functionality

(Bridgham et al, 2008). The heteromer would now have a new regu-

latory mode that depends on the presence of both paralogs.

The final scenario is often supported for the maintenance of para-

logs and involves the accumulation of complementary degenerative

mutations that lead to subfunctionalization (Force et al, 1999;

Lynch et al, 2001). In this case, paralogs are maintained but without

a net gain of function. This degeneracy would prevent compensation

for the functions that have been lost in one or the other paralog.

However, any function that did not subfunctionalize could be

compensated for the second paralog upon the deletion of the first

one. One way subfunctionalization could lead to dependency would

be by complementary degenerative mutations (Kaltenegger & Ober,

2015) that maintain the heterodimer but lead to the loss of the

homomers when proteins need to act as multimers (Pereira-Leal

et al, 2007). In this case, the heteromeric form could replace the

homomers while making the presence of both paralogs necessary

and preventing their mutual compensation. Dependency is therefore

compatible with several modes of paralog maintenance but how

frequent it is in each case remains to be examined and may require

detailed functional characterization of paralog pairs.

We found that the relative expression level of paralogs is signifi-

cantly associated with which one would be the most deleterious

upon LOF (Fig 6A and B), revealing that buffering capacity is depen-

dent on relative expression levels. Consistent with our observation,

Barshir et al (2018) recently showed that genetic diseases that are

tissue specific and that affect paralogous genes tend to affect tissues

in which the second copy of a pair is generally lowly expressed,

reducing its buffering capacity. These observations and ours have

important consequences regarding the buffering effects of paralogs

and their evolution. Qian and Zhang (2008) and Gout et al (Gout

et al, 2010; Gout & Lynch, 2015) showed that expression levels

alone could be a strong determinant for the maintenance of paralo-

gous genes. According to their model, paralogs would drift from one

another in terms of expression levels (Gu et al, 2002) because only

their cumulative abundance is gauged by natural selection. Func-

tional divergence at the protein level would therefore not be neces-

sary for paralogs in order to lose their buffering ability, and

divergence of expression would be enough. Once a paralog is domi-

nating expression level, the loss of the second copy becomes almost

inconsequential, rendering its loss effectively neutral. Our results

support this model by showing that the loss of the least expressed

paralog of a pair is generally less consequential than the loss of the

most expressed ones (Fig 6B). If gene expression levels evolve at a

faster rate than protein functions, this type of subfunctionalization

could be the dominating cause of paralog maintenance and at the

same time contribute largely to shape the robustness landscape of

cells to LOF mutation. Interestingly, we found that in general,

heteromerizing pairs of paralogs have more symmetrical expression

levels than non-heteromerizing ones (Fig 6D). Heteromerization

could slow down gene expression drifting and contribute to paralog

maintenance, which could explain the relatively older age (higher

dS) of heteromers (Fig 2D). Interestingly, for heteromerizing ones,

the difference of deleteriousness between paralogs is strongly corre-

lated with their asymmetry in mRNA expression (Figs 6C and

EV5B), indicating that there are larger differences in terms of the

deleteriousness when the paralogs have different abundances. In

addition, maintenance of better dosage balance through regulation

at the transcriptional and post-transcriptional levels (Fig EV5C and

D) indicates a potential contingency on their stoichiometry, most

likely imposed by the requirement for the assembly of the hetero-

mers. Finally, we observed that heterodimers of paralogs could be

more dependent on each other if their interaction is stronger. Our

results concern a very small set of proteins and uses a proxy for

binding strength. They will therefore need to be investigated further.

Overall, our analyses show that not all paralogs are equally likely

to buffer each other’s LOF in human cells. The underlying mecha-

nisms for this ability remain to be fully understood beyond gene

expression and protein–protein interactions and may depend on the

specific function of paralogs. Overall, considering the frequent occur-

rence of copy-number variations in cancer cells, the insights

obtained from this study regarding the mechanism of robustness of

duplicates could be relevant in the development of cancer therapies.

However, more detailed functional analyses will be required to fully

determine what is the role of paralog dependency and how depen-

dency could be driven by the physical assembly of paralogs. Since

previous studies have shown that this dependency could take place

through post-translational regulation, a systematic combination of

gene LOF and protein abundance measurements would be the next

important step to efficiently identify dependent paralogous genes.

Materials and Methods

Protein–protein interactions

The human protein–protein interaction data were obtained from

BioGRID (Data ref: BioGRID, 2018; Chatr-Aryamontri et al, 2015,

2017) and IntAct (Orchard et al, 2014; Data ref: IntAct, 2019). While

defining all methods of detection for protein–protein interactions

(“all PPI”), co-fractionation, protein-RNA, co-localization, proximity

Label-MS, and affinity capture-RNA were removed because they are

not strictly speaking capturing PPIs. A subset of these methods

capturing “all PPI”, defined as two-hybrid, biochemical activity,

protein-peptide, PCA and Far Western were considered as methods

detecting “direct PPIs”. The number of PPI partners per gene is

provided in Dataset EV6.

Gene sets: paralogs and singletons

The set of human paralogs was obtained from the Lan et al study

(Lan & Pritchard, 2016) and is enriched for small-scale duplication

events (1,436 pairs). This set of paralogs was completed with a set of

paralogs from whole-genome duplication events, obtained from the

Ohnologs-2 database (Singh et al, 2015) using the “strictest” set (Data

ref: Ohnolog, 2018). As a complete set, 3,132 non-redundant pairs of

paralogs were used in the study (Dataset EV1). Only the paralogs for

which annotations exist in the Ensembl Compara database (Herrero
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et al, 2016) were used in the analysis. For the merging of the datasets,

gene ids of the paralogs were obtained from both Ensembl release 75

and 95 (Zerbino et al, 2018). Protein ids of the paralogs were

retrieved from Ensembl Compara (Herrero et al, 2016).

Pure singletons were identified using BLASTP (Altschul et al,

1990) searches of the unique sequences from human proteome

(Data ref: Human proteome sequences, 2018) against itself. Any

protein that had no hits with E-value smaller than 0.001 over a

segment longer that 0.6 times the smaller protein was considered as

singleton. Gene symbols were used to merge the data from paralogs

and protein interaction data.

The list of paralogs and singletons is included as Dataset EV1.

Gene sets: heteromers and homomers

From the protein–protein interactions, heteromers of paralogs were

identified as the pairs of paralogs that physically interact with each

other. The rest of the paralog pairs were classified as “not

heteromer”. Homomers are proteins that interact with themselves.

This classification was carried out considering both “all PPI” and

“direct PPI”. The number of homomers and heteromers identified

by each method is indicated in Appendix Table S1.

The gene sets (i.e., heteromers and homomers) identified

through PPI from BioGRID and IntAct datasets were merged by

taking intersections. For instance, heteromers identified in both

datasets were considered in the merged dataset. If the dataset

(BioGRID or IntAct) is not mentioned, the merged dataset is used in

the given analysis.

The list of heteromers and homomers is included as Dataset EV1.

Gene sets: essential and non-essential genes

Sets of essential and non-essential genes were derived from the

union of gene sets reported by DepMap (2018) and BAGEL (Hart &

Moffat, 2016).

The list of essential and non-essential genes is included as

Dataset EV1.

Sequence divergence scores and age groups of paralogs

dS scores were estimated using codeml (Yang, 2007). Protein

sequences and coding sequences (CDS) of the paralogs were obtained

from GRCh38 assembly of the human genome (Ensembl genome

version 95), using pyEnsembl (Rubinsteyn et al, 2017). dS value

greater than 5 was not considered in the analysis (Fig 2D), because

larger values are likely saturated and non-reliable.

The age groups of the paralogs, i.e., evolutionary distances in

terms of the taxonomy levels, were retrieved from Ensembl Compara

(Herrero et al, 2016). The evolutionary distances of taxonomy levels

were obtained from the Ensembl species tree (Ensembl Species Tree

https://ensembl.org/info/about/species.html).

dS values, age groups, and evolutionary distances of the age

groups are included in Dataset EV1.

CRISPR score dataset CS1 (Wang et al, 2015)

The CS values of set CS1 were derived from data from genome-wide

CRISPR-Cas9 screening experiments from Wang et al (2015). The

raw sequencing read counts were re-analyzed to remove all gRNA

that hit more than one locus in the genome (multi-hit gRNAs) as

these could possibly lead to double gene knockouts, particularly for

young paralogs. For the cell lines with replicated experiments, repli-

cates of the read count data were averaged. The resulting raw read

counts were used as input of BAGEL (Hart & Moffat, 2016) to calcu-

late the fold changes. The fold changes calculated by BAGEL were

then multiplied by �1 (in order to scale them according to the gene

essentiality), so that lower values indicate higher relative deleteri-

ousness. Z-score normalized fold-change values were used as CS

values per gene. Gene-wise CS values from the CS1 dataset are

included in Dataset EV3.

CRISPR score dataset CS2 (DepMap, 2018)

We used the published data from the DepMap consortium

(DepMap, 2018) (18Q3 release) that corresponds to genome-wide

CRISPR knock-out screen in cancer cell lines. The CS values in

this case are corrected for copy-number variation using CERES

(Meyers et al, 2017). A total of 450 cell lines with replicated

experiments were considered in this dataset (Table EV1). CS

values obtained from the DepMap repository (DepMap, 2018; file

name: gene_dependency.csv) were z-score normalized and inte-

grated in the overall CS dataset. Gene-wise CS values are included

in Dataset EV3.

CRISPR score dataset CS2.1 (DepMap, 2018)

The CS2.1 dataset was generated by analyzing data for the same

experimental system as CS2 (DepMap, 2018) (18Q3 release) but

with the removal of “multi-hit” gRNAs that may lead to double

paralog knockouts. gRNA-wise fold-change values (file name:

logfold_change.csv) were used in the analysis. The associated gRNA

to gene map (file name: guide_gene_map.csv) was used to obtain

gene-wise CS values. The fold-change values per gene were calculated

using BAGEL (Hart & Moffat, 2016) as mentioned above. Z-score

normalized fold-change values were used as CS values per gene.

Gene-wise CS values are included in Dataset EV3.

CRISPR score dataset CS3 (Shifrut et al, 2018)

CS values for the CS3 dataset were obtained from a genome-wide

CRISPR-Cas9 screening experiment in primary T cells (Shifrut et al,

2018). This dataset serves as an independent reference to the cancer

or immortalized cell lines used in the other datasets. gRNAs from

the study were first filtered to remove all the multi-hit gRNAs that

may lead to double paralog knockouts. CS values per gene were

obtained by processing the gRNA counts using BAGEL (Hart & Mof-

fat, 2016) as described above. Z-score normalized fold-change

values were used as CS values per gene. The CS3 dataset is included

in Dataset EV3.

Merging of CRISPR score datasets

For the comparative analysis of the four datasets, CS values in

each dataset were first quantile normalized and individual datasets

were merged by gene symbols (Ensembl release version 75).

Cell-line-wise merged CS datasets are available in the BioStudies
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database (http://www.ebi.ac.uk/biostudies) under accession number

S-BSST233, and aggregated CS values from all datasets are provided

in Dataset EV3.

In case of datasets CS2 and CS 2.1, as an aggregated CS value per

gene, the average CS value per gene over cell lines was computed.

Mean and median aggregations were found to correlate very

strongly (pearson’s r ~ 0.99); therefore, mean aggregation was used.

Unless mentioned otherwise, the average CS values across datasets

are used as a vector of gene-wise CS values, for instance, in case of

Figs 3 and EV2.

GO enrichment analysis

The GO Molecular Function enrichment analysis was performed

using GSEA (Subramanian et al, 2005) and Enrichr (Chen et al,

2013a; Kuleshov et al, 2016) through gseapy tool (https://github.c

om/zqfang/GSEApy). Note that GO gene sets may originate from

evidence which may not entirely be independent from the rest of

the data used in the meta-analysis. Therefore, potentially confound-

ing sources of evidence pertaining to the sequence orthology

[Inferred from Sequence Orthology (ISO) and Inferred from Physical

Interaction (IPI)] were removed from the gene set annotation file.

The list of all the paralogs was used as the reference set, and the

list of heteromeric paralogs from the “all PPI” data (analysis shown

in Figs 3 and EV2) and from the “direct PPI” (analysis shown in

Appendix Fig S6) were used as the test sets. GO term annotations

used in the analysis are included as Dataset EV4, and P-values are

available in Dataset EV5.

mRNA expression

In order to obtain gene expression levels of paralogs, we used tran-

scriptomics data from the Cancer Cell Line Encyclopedia (CCLE;

Barretina et al, 2012). We considered data of the 374 cell lines that

had complementary CS data in the CS2 and CS2.1 datasets (see

Dataset EV2 for cell lines used). Raw RNAseq alignment files (BAM

format) were obtained from Genomic Data Commons (GDC) portal

(https://portal.gdc.cancer.gov/). Expression divergence of paralo-

gous genes may be underestimated due to their sequence similarity.

In order to address this confounding factor, we only considered

uniquely aligned reads. Such reads were obtained by filtering the raw

BAM files using SAMtools (Li et al, 2009) command: “samtools view

-bq 254 -F 512 $bamp | samtools rmdup -sS - $bamp.unique.bam”.

Here, $bamp is the path to the raw BAM file. Next, the FPKM values

were estimated using Cufflinks (Trapnell et al, 2012): “cufflinks -p 1

–max-frag-multihits 1 -g $gtfp -o output_folder $bamp.unique.bam”.

Here, $gtfp is path to the annotation file (Homo sapiens, assembly:

GRCh37, Ensembl release:75) and $bamp.unique.bam is the path to

the BAM file containing only unique reads (as made in the preceding

step). Gene-wise mRNA abundance is included as Dataset EV7.

Cell-line-wise mRNA abundance is available in the BioStudies data-

base (http://www.ebi.ac.uk/biostudies) under accession number

S-BSST233.

Protein expression

Protein expression data for 49 cell lines that are also represented in

the mRNA expression dataset and CS datasets were retrieved from

Ensembl expression atlas (Papatheodorou et al, 2018). This dataset

is available in the BioStudies database (http://www.ebi.ac.uk/bios

tudies) under accession number S-BSST233.

Classification models

The heteromeric state of the paralogs (either heteromer or not,

binary variable), mRNA expression, and number of PPI partners of

the protein were used as feature set to predict whether the gene is

deleterious or not upon LOF (target). Genes were classified into

sets of deleterious and non-deleterious ones on the basis of CS

value. The average of the minimum CS value of the non-essential

genes and maximum CS value of the essential ones was used as a

cutoff to segment the two target classes, i.e., deleterious and non-

deleterious genes. Four different classifiers that provide feature

importance values were used: Linear SVM, Random Forest,

AdaBoost, and Decision Tree. The classifiers were trained using

scikit-learn (Pedregosa et al, 2011). For training, fivefold cross

validations were carried out. In each cross validation, 40% of the

data was used as a testing set. For each classifier, default parame-

ters were used to train the models. In order to balance the unbal-

anced classes, equal-sized data were bootstrapped from the bigger

class. ROC-AUC value of a classifier was calculated as an average

of all the cross validation and bootstrapped runs.

Protein interaction interfaces

The size of the interaction interface between heteromeric paralogs

was obtained from Interactome INSIDER (Meyer et al, 2018). The

structures of the interacting paralogs (Appendix Fig S15) were

obtained from Interactome3D (Mosca et al, 2013).

Data analysis and visualization

For the retrieval of the CDS and protein sequences, PyEnsembl

(Rubinsteyn et al, 2017) was used. For mapping of ids, uniprot

REST API (UniProt Consortium, 2019) was used. Protein structures

were visualized using UCSF Chimera (Pettersen et al, 2004). For

general statistical analysis, SciPy (Jones et al, 2001) was used.

Partial correlations were estimated using Pingouin (Vallat, 2018).

Plots were generated using matplotlib (Hunter, 2007) and seaborn

(Waskom et al, 2018) while figures were generated using the

Python package rohan (Dandage, 2019). Machine learning model-

ing was carried out using scikit-learn (Pedregosa et al, 2011). The

anaconda virtual environment was used to install external

programs such as codeml (Yang, 2007).

Data availability

Cell-line-wise CS values, mRNA expression values, and protein

expression were deposited at the BioStudies database (http://

www.ebi.ac.uk/biostudies), under accession number S-BSST233.

The codes used for the curation of the data and meta-analysis in

the study are available at: https://github.com/Landrylab/human_

paralogs.

Expanded View for this article is available online.
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