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Abstract: Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the gastrointestinal
tract. Recent studies demonstrate that the phenolic tannin paeonol (Pae) attenuates UC in mouse mod-
els by downregulating inflammatory factors. However, its molecular mechanism for UC treatment
has not been explored from the perspective of the gut microbiota and metabolomics. In this study, we
investigated the effects of Pae on colonic inflammation, intestinal microbiota and fecal metabolites in
3% dextran sodium sulfate (DSS) induced BALB/c UC mice. Pae significantly improved the clinical
index, relieved colonic damage, reduced cytokine levels, and restored the integrity of the intestinal
epithelial barrier in UC mice. In addition, Pae increased the abundance of gut microbiota, partially
reversed the disturbance of intestinal biota composition, including Lactobacillus and Bacteroides, and
regulated metabolite levels, such as bile acid (BA) and short-chain fatty acid (SCFA). In conclusion,
our study provides new insight on Pae remission of UC.

Keywords: paeonol; ulcerative colitis; dextran sodium sulfate; gut microbiota; metabolomics

1. Introduction

Inflammatory bowel disease is characterized by uncontrollable, non-specific, chronic
immune-mediated inflammation of the intestine and can be classified as Crohn’s disease or
ulcerative colitis (UC). The main lesions of UC in the mucosa and submucosa of the colon
and rectum present as continuous open ulcers, with common clinical signs of gastroenteritis,
fever, diarrhea, rectal bleeding, and fecal mucus [1–4]. Epidemiological studies suggest that
the incidence of UC is increasing every year, and it has been classified by the World Health
Organization as a “modern intractable disease” [5–7]. Nevertheless, the pathogenesis of UC
is not entirely clear. It is generally accepted that UC is associated with intestinal mucosal
damage, immune dysfunction, genetic susceptibility and microbial dysregulation [8,9]. In
this regard, an increase in inflammatory cytokines is thought to be an important trigger for
the development and progression of UC [10]. In addition, numerous studies have shown
that UC is a result of abnormal changes in the gut microbiota and metabolites, such as bile
acids (BAs), short-chain fatty acids and tryptophan, which initiate disruption of the intesti-
nal barrier, leading to increased paracellular permeability, reduced colonic tight junction
(TJ) protein integrity and an increased inflammatory response [11–15]. Interestingly, BAs
act as pleiotropic signaling metabolites that are involved in the UC developmental process
through dynamic interactions with the intestinal microbiota [11,16]. Some studies have
pointed out that BAs are FXR receptor agonists and that FXR induces small heterodimer
partner (SHP) in the liver and FGF19 (FGF15 in rodents) that bind with liver fibroblast
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growth factor (FGF) receptor 4 (FGFR4) via an endocrine mode after secretion from the in-
testine; both signal to inhibit CYP7A1, the rate controlling enzyme in the de novo synthesis
of bile acids [17–20], and restore bile acid homeostasis in models of colitis, thus delaying
the pathological progression of colitis [21]. Therefore, pathways related to the regulation of
the intestinal flora and metabolism are potential targets for UC prevention and treatment.

Current clinical treatments for UC include steroids, aminosalicylates, immunosup-
pressive agents and biologics. However, interventions with these drugs are frequently
associated with side effects, leading to a deterioration in the quality of life that drives many
UC patients to seek alternative and/or complementary therapies [22,23]. Based on their
general safety and presumed efficacy since ancient times, natural plants rich in bioactive
components have been considered as promising alternative options for the treatment of
these intestinal disorders.

Phenolic compounds, widely found in plants, are important natural antioxidants
that can improve human health. Polyphenols may improve gut health via their anti-
inflammatory and antioxidant activities, which are associated with protection of the in-
testinal barrier, modulation of immune function, increase in the relative abundance of
beneficial bacteria and inhibition of pathogenic bacteria [24,25]. Pae (Paeonol, 2’-hydroxy-
4’-methoxyacetophenone; C9H10O3) is a naturally occurring phenolic compound in peony
bark with a variety of biological effects [26,27], including anti-inflammatory [28], anal-
gesic [29], neuroprotective and anti-atherosclerosis effects [30,31]. Several studies have
reported that Pae’s anti-inflammatory effects may alleviate UC. Zong et al. [32] demon-
strated that Pae improves TNBS-induced UC by modulating pro/anti-inflammatory cy-
tokine levels. In addition, Ge et al. [33] showed that Pae improves dextran sodium sulfate
(DSS)-induced UC by reducing inflammatory damage and inhibiting pathogenic bacteria.
However, these studies are limited, focusing mainly on whether Pae intervention is protec-
tive against inflammation. Given the contribution of dysbiosis and metabolic disturbances
in UC, the precise role of Pae in UC, and in particular its effect on pathways related to gut
microbiota and metabolic regulation, needs further investigation.

The DSS-induced mouse model of UC behaves similarly to human UC and could serve
as a beneficial approach to study UC pathogenesis and pharmacological treatments [34–36].
Therefore, in this study, a 3% DSS solution was used to induce UC in mice and to investigate
the protective effect of Pae. We employed 16S rRNA sequencing and ultra-performance
liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) to further analyze the
potential mechanisms of action of Pae in ameliorating UC. In addition, we also explored
the effects of Pae on BAs-related pathways. The results provide a scientific basis for further
expansion of the clinical application of Pae in treating ulcerative diseases.

2. Materials and Methods
2.1. Reagents

Paeonol (Pae, MedChemexpress, HY-N0159, Figure 1), dextran sulfate sodium (DSS,
36,000–50,000 kDa; MP Biomedical, California, USA), and Salazosulfapyridine (SASP,
Lot No. 09190605, Shanghai Xinyi Tianping Pharmaceutical Co., Ltd.) were stored as
recommended by the manufacturers and used at the indicated concentrations.
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Figure 1. Paeonol chemical structure.

2.2. Animal Experiments and Sample Collection

A total of 40 male BALB/c mice of SPF grade, (6-8 weeks old, weight 20~22 g) were
purchased from Chengdu Dashuo Co. The mice were housed under standard conditions
(temperature 25 ± 2 ◦C, relative humidity 40 ± 5%, light and dark cycles 12/12 h, free access
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to water and standard diet) throughout the experimental period. Animal experiments
were reviewed and approved by the Experimental Animal Ethics Committee of Shaanxi
University of Chinese Medicine.

After 7 days of adaptive feeding, the mice were randomly divided into 5 groups
(Control, DSS, DSS+ Pae-L, DSS+ Pae-H and DSS+SASP; n = 8/group). The Control
group was given 0.5% CMC-Na solution and the other groups were treated with 3% DSS
(wt./vol, dissolved in distilled water and administered ad libitum) for 7 consecutive days
to induce UC. While modeling, the treatment groups were administered low-dose Pae
(Pae-L, 50 mg/kg), high-dose Pae (Pae-H, 100 mg/kg) or the anti-inflammatory agent SASP
(500 mg/kg) twice a day (once in the morning and once in the evening) by gavage with
0.5% CMC-Na solution as solvent. From day 1 to day 7, the mice were monitored daily
for mental status, water consumption, body weight, fecal consistency, and fecal properties.
During the modeling period, 1 mouse in the Pae-L group died.

At day 7 of the experiment, fresh mouse feces were collected and quickly frozen at
−80 ◦C. The mice were fasted for 12 h before euthanasia. The colon length was measured,
and the blood, liver, ileum, and colon tissues were quickly collected. A portion of ileal and
colonic tissues was placed in 4% paraformaldehyde solution, another portion of colonic
tissues was placed in 4% glutaraldehyde solution, and the rest was stored at −80 ◦C for
subsequent analysis.

2.3. Disease Activity Index (DAI)

The DAI scoring in mice was performed using the following equation, according to
the method of Bang et al. [37]: DAI = (weight loss score + stool trait score + blood in stool
score)/3. Scoring details are shown in Table 1.

Table 1. The DAI scoring standards.

Body Weight Loss Stool
Consistency

Presence of Gross Bleeding or
Bloodstain Score

No loss Normal Negative 0
1–5% 1
5–10% Loose stools Positive 2

10–15% 3
Over 15% Diarrhea Gross rectal bleeding 4

2.4. Histological Examination

Tissues of the distal colon of mice were fixed in 4% paraformaldehyde overnight,
dehydrated in gradient ethanol, embedded in paraffin, sectioned, stained with hematoxylin
and eosin and then observed under a microscope (Nikon Eclipse ci microscope).

2.5. Transmission Electron Microscopy (TEM)

The colon tissue fixed in 4% glutaraldehyde was sectioned, fixed, gradient dehydrated,
embedded, cured, cut into thin sections, double stained with uranyl acetate and lead citrate,
and placed under TEM for observation and photography.

2.6. ELISA Analysis

Inflammatory markers in mouse serum were determined using IL-4, IL-1β, IL-6 and
TNF-α kits (Hangzhou Unitech Biotechnology Co., Ltd.), and all steps were performed
strictly according to the manufacturer instructions. The absorbance was measured at
450 nm using an enzyme marker (Spectra Max i3x, Molecular Device, USA).

2.7. Immunohistochemistry

Immunohistochemical analysis was performed according to the reported method.
Briefly, the paraffin-embedded distal colon was incubated with ZO-1 (1:100) and Occludin
(1:200) primary antibodies, and the liver and ileum were incubated with FXR (1:200)
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and FGF15 (1:200) primary antibodies overnight at 4 ◦C, followed by 40 min incubation
with biotinylated secondary antibodies. The signals were then visualized using the DAB
concentration kit and hematoxylin re-staining.

2.8. RT-qPCR

Total RNA was extracted from ileal and liver tissues using an RNA Rapid Extraction
Kit (AC0202, Sparkjade, Jinan, China) and measured using a NanoDrop 2000C spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, United States). Then, RT-qPCR was
performed according to the direction of Fast SYBR Mixtrue (AH0104-B, Sparkjade, Jinan,
China) and analyzed on an ABI 7500 FAST system. The 2(-∆∆Ct) method was used, with
GADPH as an internal control. The primer sequences are provided in Table 2.

Table 2. Primer sequences of the genes used for qRT-PCR.

Gene Forward Primer Reverse Primer

FGF15 ACCAGAAACCCTCAAACT CTACATCCTCCACCATCC
FXR CCATTTACAGGCTACGGA ACTTGAGGAAACGGGACA
SHP CCCAGCAAGGACACTGAGCAAG CCTCGAAGGTCACAGCAT

LRH-1 CTGAGTCAATGATGGGTTA CTTTTCTTGCCTGTTTCG
β-KLOTHO ACCATTTGCTCATTTCTCG ACTCTGCTGTGGCCTTTC

FGFR4 TGGGCTAATGAGGGAGTG AGGCGGAGGTCAAGGTAC
GAPDH CCCAGCAAGGACACTGAGCAAG GGTCTGGGATGGAAATTGTGAGGG

2.9. Western Blotting

Total colonic tissue proteins were extracted with radioimmunoprecipitation assay
(RIPA) lysis buffer, and total mouse ileal terminal and liver tissue protein concentrations
were determined by the BCA method. The following antibodies were used for protein blot-
ting as described [38]: CYP7A1 (1:1000, Cat.#:861909; ZenBio), FXR (1:1000, Rb#bs-12867R;
Bioss), FGF15 (1:1000, Mouse#sc-514647; Santa), and β-actin (1:1000, Mouse#AF0003; Be-
yotime). Mouse ileal terminal tissue was assayed for FXR and FGF15, and liver tissue
was assayed for CYP7A1, FXR, and FGF15. Finally, the images were examined using the
enhanced chemiluminescence (ECL) detection system (Bio-Rad, Richmond, CA, USA), and
the grayscale of each band was quantified using ImageJ analysis software.

2.10. Gut Microbiota Profiling by 16S rRNA Sequencing

Total microbial genomic DNA was extracted from fecal samples using the Power-
Soil DNA Isolation kit (Qiagen) according to manufacturer’s instructions. The quality
of DNA extraction was verified using 1.0% agarose gel electrophoresis, and the DNA
concentration and purity were further determined using NanoDrop2000. The hypervari-
able region of the 16S rRNA gene V3-V4 was PCR amplified using the primers 338F
(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’).
PCR amplification cycling conditions were as follows: initial denaturation at 95 ◦C for
3 min, followed by 27 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s
and extension at 72 ◦C for 45 s, a single extension at 72 ◦C for 10 min, and a final 4 ◦C step.
Amplification products were purified using the QIAquick PCR purification kit (Qiagen),
pooled in equimolar amounts, and paired-end sequenced on an Illumina MiSeq PE300
platform (Illumina, San Diego, USA).

2.11. Targeted Fecal Metabolomics Analysis

Fecal samples were thawed on ice. The metabolomics analysis was performed on a
Q300 Kit (Metabo-Profile, Shanghai, China) according to the instructions of the manufac-
turer. Briefly, approximately 5 mg of each lyophilized sample was weighed and transferred
to a new 1.5 mL tube with 25 µL of water. The samples were homogenized with zirconium
oxide beads for 3 min, and 120 µL of methanol containing internal standard was extracted
for gut metabolites. The samples were homogenized for another 3 min and then centrifuged
at 18,000 rpm for 20 min. Then, 20 µL of supernatant was transferred to a 96-well plate
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with 20 µL of freshly prepared derivative reagents, and the derivatization was carried out
at 30 ◦C for 60 min. After derivatization, 330 µL of ice-cold 50% methanol solution was
added to dilute the sample. Then the plate was stored at −20 ◦C for 20 min, followed by
centrifugation at 4,000 g at 4 ◦C for 30 min. A total of 135 µL of supernatant was transferred
to a new 96-well for analysis.

All target standards were purchased from Sigma-Aldrich (St. Louis, MO, USA),
Steraloids Inc. (Newport, RI, USA) and TRC Chemicals (Toronto, ON, Canada). Each
sample or standard curve sample was loaded onto the ACQUITY UPLC BEH C18 1.7 µM
VanGuard pre-column (2.1 × 5 mm) and ACQUITY UPLC BEH C18 1.7 µM analytical
column (2.1 × 100 mm). The column temperature was 40 ◦C and the sample manager
temperature was 10 ◦C. The mobile phase was water (A) plus 0.1% formic acid; acetonitrile
(B); IPA (70:30). The following gradient elution procedure was used: 0–1 min (5% B),
1–5 min (5–30% B), 5–9 min (30–50% B), 9–11 min (50–78% B), 11–13.5 min (78–95% B),
13.5–14 min (95–100% B), 14–16 min (100% B), 16–16.1 min (100–5% B), 16.1–18 min (5%
B), flow rate 0.40 mL/min, injection volume 5.0 uL. Raw data files generated by UPLC-
MS/MS were processed using MassLynx software (v4.1, Waters, Milford, MA, USA) for
peak integration, calibration and quantification for each metabolite. The self-developed
platform iMAP (v1.0, Metabo-Profile, Shanghai, China) was used for statistical analyses,
including PCA, PLS-DA, univariate analysis, and pathway analysis.

2.12. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 7.04 (GraphPad, San Diego,
CA). Data are presented as the mean ± SEM. One-way or two-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparison’s test was used to compare multiple
groups. p < 0.05 was considered statistically significant.

3. Results
3.1. Pae Attenuates the Effect of DSS-Induced UC in Mice

To confirm that Pae has an ameliorative effect on UC mice, we divided mice into five
groups: Control (untreated, n = 8), Model (3% DSS, n = 8), Pae-L (3% DSS + 50 mg/kg
Pae, n = 7, Pae-H (3% DSS + 100 mg/kg Pae, n = 8) and SASP (3% DSS + SASP, n = 8).
The mice were treated for one week (Figure 2A), and throughout the treatment period, the
body weight and DAI were recorded as indicators of the success of UC model construction.
As expected, DSS caused a weight decrease (starting at day 3) and a rise in the DAI score
(starting at day 2). Furthermore, these changes were decreased by the anti-inflammatory
agent SASP, as expected. The DAI and weight changes were also suppressed by Pae-H,
although the Pae-L group did not significantly inhibit body weight loss (Figure 2B,C).
Consistently, the colon length was significantly shorter in the DSS group than in the Control
group, but this effect was significantly suppressed in the Pae-L, Pae-H and SASP groups
(Figure 2D,E).

A primary pathological feature of UC is the expansion of intestinal inflammation and
subsequent disruption of epithelial barrier function. As expected, histopathological analysis
revealed no obvious tissue pathological morphology for the Control group. However, for
the DSS group, severe defects were observed in the upper colonic mucosa, and DSS also
caused crypt damage, localized erosions and ulcers, and inflammatory cell infiltration,
which were improved to different degrees by the administration of Pae-L, Pae-H and SASP
(Figure 2F).
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Figure 2. Pae attenuates the effect of DSS-induced UC in mice. (A) Experimental design. (B) Changes
in body weight (n = 8). (C) Disease activity index (DAI) scores (n = 8). (D,E) Images of colon
samples and changes in colon length (n = 7 or 8). (F) Representative images of hematoxylin and eosin
(E,H)-stained colon tissue and the scores of (E,H), scale bar = 200 µm, (n = 5). (G–J) Expression levels
of TNF-α (G) IL-1β (H), IL-6 (I) and IL-4 were detected by enzyme-linked immunosorbent assay
(ELISA) (n = 6-8). Data are shown as mean ± sem. ## p < 0.01; ### p < 0.001, compared with Con
group, * p < 0.5; ** p < 0.01; *** p < 0.001, compared with DSS group.

To further verify the effect of Pae on inflammation in UC mice, we evaluated the levels
of inflammatory cytokines by ELISA. The levels of IL-6, TNF-α and IL-1β pro-inflammatory
cytokines in the serum of mice from the DSS group as compared to the Control group were
significantly increased, while the anti-inflammatory factor IL-4 was significantly decreased.
Furthermore, Pae-L, Pae-H and SASP significantly reversed these trends, with the exception
that the effect of Pae-L on IL-4 was not significant (Figure 2G–J). Taken together, these
results emphasize the palliative effect of Pae, and especially Pae-H, in UC mice.

3.2. Pae Restores Intestinal Barrier Function in DSS-Induced UC

Inflammatory cytokine overexpression, which disrupts intestinal function, leads to
alterations in tight junction (TJ) proteins in the intestinal epithelial barrier [39]. To assess the
protective effect of Pae on colonic epithelial mucosal integrity in UC mice, we performed
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TEM. Compared with the Control group, the TJs between colonic epithelial tissues in the
DSS group were loosened, blurred, and less dense, and the bridging granular structures
were lost. However, the Pae-L, Pae-H and SASP groups showed different degrees of
improvement in the TJs, with clear tight links, narrowed cell gaps and smaller organelles
for the Pae-H group (Figure 3A).
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of colon tissue observed under a transmission electron microscopy (×10,000) (n = 3). (B,C) Immuno-
histochemistry staining (scale bar, 50 mm) (n = 5). (D,E) quantitative analysis of Occludin and ZO-1
protein content in the colon (n = 5). Data are shown as mean ± sem. ### p < 0.001, compared with
Con group, *** p < 0.001, compared with DSS group.

We also performed immunohistochemistry to detect the effect on Occludin and ZO-1
(Figure 2B,C), which are associated with tight linkage. Compared with the Control group,
the expression levels of these proteins were significantly lower in the DSS group; while
compared with the DSS group, their expression was significantly higher in the Pae-L, Pae-H,
and SASP groups (Figure 3D,E). The treatment effect was best for the Pae-H group, which
is consistent with the observation of TEM. Therefore, these results support the protective
effect of Pae on the TJs in UC mice.

3.3. Pae Attenuates DSS-Induced Dysregulation of the Gut Microbiota in Mice with UC

Next, we evaluated the fecal microorganisms of mice by 16S rDNA amplicon se-
quencing to explore the alleviating effect of Pae on DSS-induced UC. Among 39 samples,
1400 operational taxonomic units (OTUs) were obtained, of which 400 were common to
the five groups. There were 238, 39, 17, 24, and 11 OTUs specific to the Control, DSS,
Pae-L, Pae-H, and SASP groups, respectively (Figure 4A). Furthermore, the abundance and
diversity of the intestinal microbiota in the DSS group were significantly less than those in
the Control group, while this reduction was less apparent after Pae or SASP administration
(Figure 4B,C). These results indicate that Pae partially reversed the dysregulation of the
intestinal microbiota in UC mice. Consistent with these findings, principal coordinate
analysis of the Bray-Curtis distances also showed a significant separation between the
Control and DSS groups. Interestingly, the OTU of mice treated with Pae or SASP showed
a trend of separation with regional crossover, but the Pae-H group was completely separate
from the DSS group and close to the Control group (Figure 4D).
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Figure 4. Effects of Pae on the fecal gut microbiota alterations in DSS-induced UC mice. (A) Venn
diagram showing common species comparison with the five groups. (B) The Shannon index of the
gut microbiota. (C) The Simpson index of the gut microbiota. (D) Multiple sample PCoA of the
Bray-Curtis distance based on OTUs. (E) Microbial community bar plot at phylum level. (F) Relative
abundance of the gut microbiota at the genus level. (G,H) Relative abundance of the significantly
altered bacteria at the family and genus levels from the five groups. Data are presented as the mean
± sem. n = 7 or 8. ** p < 0.01; *** p < 0.001.
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Further analysis of the taxonomic distributions showed differences in microbial com-
position between the groups of mice (Figure 4E,F, Supplementary Tables S1 and S2). At the
phylum level, Firmicutes and Bacteroidota accounted for the largest proportion of phyla,
which is consistent with previous findings [40,41]. The relative abundance of Patescibacteria
was significantly lower in the DSS group than in the Control group, while the relative abun-
dance of Verrucomicrobiota was significantly higher and the abundance of Proteobacteria
showed a trend of being higher. In both the Pae-L and Pae-H groups, there was signifi-
cantly higher Patescibacteria relative to the abundance in the DSS group; and the Pae-H
group displayed lower abundance of Proteobacteria and Verrucomicrobiota relative to the
abundance in all administration groups (Figure 4G) At the genus level, the DSS group had
significantly lower abundance compared to the levels in the Control group of BA-related
bacteria, including the probiotic Lactobacillus, Bacteroides spp., while Pae-H (but not SASP
and Pae-L) significantly increased the abundance of these species (Figure 4H). In addition,
relative to the Control group, the DSS group displayed significantly increased abundance of
Turicibacter, Romboutsia Akkermansia, Lactococcus and the harmful bacteria Escherichia
coli-Shigella. Interestingly, Pae-L, Pae-H and SASP each restored the DSS-induced intestinal
gut microbiota imbalances in Akkermansia and Lactococcus; while SASP also significantly
reversed the UC-associated increase in Romboutsia, and Pae-H also significantly reversed
the UC-associated increases in Turicibacter, Bacteroides, and Romboutsia and promoted
a trend of decrease in Escherichia-Shigella. These results suggest that Pae can increase
the proportion of probiotic bacteria, reduce pathogenic bacteria, enhance intestinal barrier
function and promote the recovery of the gut microbiota.

3.4. Effect of Pae on Fecal Metabolic Disorders Caused by DSS-Induced UC in Mice

Gut microbiota actions are closely linked to the host microbial metabolic axis, for
which metabolomics is a useful tool to reveal the interactions between the host and the
gut microbiota. Thus, we further investigated the fecal metabolism of DSS-treated UC
mice using UPLC-MS/MS. A total of 163 metabolites were identified and quantified,
including amino acids, short-chain fatty acids, BAs, fatty acids, carbohydrates, organic
acids, benzenoids, pyridines, phenols, phenylpropanoic acids, benzoic acids, indoles,
phenylpropanoids and carnitines. In PCA analysis, the quality control sample points
were close to each other and aggregated to a high degree, suggesting good stability of the
instrumental assay (Figure 5A). Furthermore, in partial least squares-discriminant analysis,
there was clear separation between the control and DSS groups, while the Pae treatment
group was distant from both the Control and DSS groups (Figure 5B), which supports the
possibility that Pae regulates the metabolism of the intestinal microbiota.



Metabolites 2022, 12, 956 10 of 20

Metabolites 2022, 12, x FOR PEER REVIEW 10 of 20 
 

 

induced changes in “Bile Acid Biosynthesis” and “Ammonia Recycling” (Figure S3). 

 

Figure 5. Effects of Pae on fecal metabolism in DSS-induced UC mice. (A) Principal Component
Analysis (PCA) score plot of Con, DSS, Pae-L, Pae-H and SASP groups and QC samples. (B) Partial
Least Squares Discriminant Analysis (PLS-DA) score plot from Con, DSS, Pae-L, Pae-H and SASP
groups. (C) Heatmap of fecal differential metabolite profiles in mice. (D) Metabolic pathway enrichment
analysis. (E) Total BA concentrations in fecal contents. (F) Quantitative abundance of significantly altered
BAs from different groups (nmol/g). Date are shown as mean ± sem. n = 7 or 8.# p < 0.5; ## p < 0.01;
### p < 0.001, compared with Con group, * p < 0.5; ** p < 0.01, compared with DSS group.
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Based on the criteria of p < 0.05,|log2(FC)| > 1 and VIP > 1 for screening, 45 metabo-
lites were significantly changed in the DSS group compared with the Control group, with
25, 24, and 34 metabolites significantly reversed after SASP, Pae-L, and Pae-H treatment,
respectively (Figure 5C, Supplementary Table S3). Using the MetaboAnalyst online web-
site, the top three metabolic pathways in the Control versus DSS groups were “Alpha
Linolenic Acid and Linoleic Acid Metabolism”, “Bile Acid Biosynthesis”, and “Alanine
Metabolism” (Figure S1). Furthermore, Pae-H significantly reversed the DSS-induced
changes in “Linolenic Acid and Linoleic Acid Metabolism” and “Bile Acid Biosynthesis”
(Figure 5D), Pae-L significantly reversed the DSS-induced changes in “Alpha Linolenic
Acid and Linoleic Acid Metabolism” (Figure S2), and SASP significantly reversed the
DSS-induced changes in “Bile Acid Biosynthesis” and “Ammonia Recycling” (Figure S3).

The gut microbiota is thought to play important roles in the development of UC by
regulating the pool size and composition and altering the chemical and signaling properties
of BAs [22,42,43]. Therefore, we identified and quantified 27 BAs that were significantly
lower in the DSS group compared to the Control group. Furthermore, the decrease in the
levels of the BAs was significantly reversed after the administration of Pae-L, Pae-H and
SASP (Figure 5E). Specifically, the levels of 13 BAs metabolites were significantly lower in
the DSS group compared to the Control group and also were significantly higher in the
Pae-H group compared to the DSS group (Figure 5F). This includes ligands related to the
nuclear receptor FXR of BAs, including CDCA, LCA, and DCA. Thus, Pae intervention
of BA metabolism via modulation of the gut microbiota may contribute to its ability to
alleviate UC in the DSS mouse model.

3.5. Pae Improves UC via Pathways Involving Gut Microbiota-BAs-FXR/FGF15 Signaling

As intestinal flora is strongly associated with bile acids and is closely related to the
development of colitis, we explored the relationship between Pae regulation of altered gut
microbiota and BAs homeostasis in UC mice, and tentatively validated the FXR/FGF15
pathway associated with BAs.

Compared with the expression in the Control group, CYP7A1 protein expression
was significantly higher and FXR and FGF15 expression was significantly lower in the
livers of the DSS group of mice (Figure 6A,B). After administration of Pae-L and Pae-
H, CYP7A1 protein expression was significantly reduced, while the effect on FXR and
FGF15 expression was not significant; and after administration of SASP, FXR protein
expression was significantly higher, while the effect on CYP7A1 and FGF15 expression
was not significant. We also evaluated the expression of FXR and FGF15 proteins in the
ileum (Figure 6C). Compared to expression in the Control group, the expression of FXR
was not statistically different in the DSS group of mice, and the expression of FGF15 was
significantly lower. After the administration of Pae and SASP, the expression of FGF15 was
significantly upregulated in the Pae-H and SASP groups (p < 0.05), while there was no
statistical difference in the Pae-L group (Figure 6D). In immunohistochemical analysis of the
ileum (Figure 6E), FGF15 expression was significantly lower in the DSS group compared
with the Control group, whereas there was no statistical difference in FXR expression.
Additionally, FGF15 expression was significantly upregulated in the Pae-H and SASP
groups, and FXR expression was significantly upregulated in the Pae-H group (Figure 6F).
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Figure 6. Pae improves UC via pathways involving gut microbiota-BAs-FXR/FGF15 signaling.
(A,B) Representative immunoblots and the relative expression levels of CYP7A1, FXR and FGF15
proteins in liver tissues from different treatment groups. (C,D) Representative immunoblots and the
relative expression levels of FXR and FGF15 proteins in ileum tissues from different treatment groups.
(E,F) Immunohistochemistry staining and quantitative analysis of FXR and FGF15 protein content in the
distal ileum (scale bar, 50 mm). (G) The mRNA levels of FXR, FGF15, SHP and LRH-1 for each group in
the liver. (H) The mRNA levels of FXR, FGF15, β-Klotho and FGFR4 for each group in the ileum. Data
are presented as the mean ± sem. n =3 or 4. # p < 0.5; ## p < 0.01; ### p < 0.001, compared with Con
group, * p < 0.5; ** p < 0.01; *** p < 0.001, compared with DSS group.
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To further verify FXR-FGF15 signaling changes in the liver and ileum of UC mice, we
examined effects on mRNA expression. In the liver, there was no significant difference in
FXR and SHP mRNA expression, though the mRNA expression of LRH-1 was significantly
higher and the mRNA expression of FGF15 was significantly lower in the DSS group as
compared to the Control group. Furthermore, the expression changes of FGF15 and LRH-1
were reversed after Pae-H administration, and the expression change of LRH-1 was reversed
after SASP administration (Figure 6G). In ileum tissue, FXR was not significantly changed
in the DSS group compared with the Control group. However, mRNA expression of FXR
target genes, including Fgf15, β-klotho and FGFR4, was significantly decreased in the DSS
group, while after Pae-H intervention, FGF15 and β-klotho were significantly increased, and
after SASP intervention, FGF15 was significantly increased (Figure 6H). Altogether, these
data suggest that Pae may influence BA synthesis by modulating liver FXR-SHP/LRH-1
and ileum FXR-FGF15 signaling pathways, thereby improving UC in mice.

3.6. Integrated Map of the Mechanism of Pae in Ameliorating UC

To comprehensively evaluate our data and support a system-level understanding of
disease and drug mechanisms, we employed an integrative analysis of data from three
dimensions: genus-level gut microbiota, fecal metabolites, and phenotypic data [44]. Specif-
ically, we chose the Control, DSS and Pae-H groups for association analysis, given that
the treatment effect of the Pae-H group appeared to be superior to that of the Pae-L and
SASP groups. To start with, we evaluated intra-layer correlations, including correlations
between the gut microbiota, fecal metabolites and phenotypes; the gut microbiota and
fecal metabolites; and fecal metabolites and phenotypes. Data with correlation coefficients
greater than 0.6 were used to construct an integrated visualization network containing three
layers. As shown in Figure 7, nine taxa in the gut microbial layer, including Lactococcus,
Lactobacillus, Akkermansia and Bacteroides, and 33 metabolites in the fecal metabolite
layer, including LCA, CDCA, DCA, isoLCA, Acetylcarnitine and Glycine, were integrated
into the network. In the phenotypic layer, five phenotypic parameters, including colon
length, IL-4, IL-6, IL-1β, and TNF-α, were integrated. The results demonstrate that the lev-
els of six BAs, including LCA, isoLCA, DCA, HDCA, bHDCA, and GDCA, were positively
correlated with the abundance of Lactobacillus. Furthermore, LCA, TCDCA, isoLCA, DCA,
and CDCA were positively correlated with colon length; LCA, TCDCA, and isoLCA were
positively correlated with IL-4; LCA, TCDCA, DCA, and CDCA were negatively correlated
with IL-6; LCA and isoLCA were negatively correlated with IL-1β; and LCA, TCDCA,
isoLCA, and CDCA were negatively correlated with TNF-α. The comprehensive network
provides us with a holistic view of the therapeutic mechanism of Pae for UC.
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represented by blue lines and the between layer edges are represented by red lines.

4. Discussion

UC is a clinically common inflammatory bowel disease characterized by intestinal
inflammation, bloody diarrhea, and abdominal pain, requiring long-term effective pharma-
cological treatment [45]. Pae is a natural phenolic compound widely found in the root bark
of the peony flower, a medicinal and food plant that has been found to show potential in the
treatment of UC [33]. Recent results of the latter study show that clinical symptoms of UC in
mice can be significantly improved after Pae intervention, which encouraged us to further
investigate the mechanism by which Pae ameliorates UC. In this study, we confirmed the
therapeutic effect of Pae on UC and further demonstrated that its mechanism is closely
related to the inflammatory status of the colon, as well as the intestinal microbiota and
metabolites. Our findings enabled us to construct a comprehensive network to synthesize
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the understanding of several interrelated Pae mechanisms in improving UC in the DSS
mouse model.

One measure of the extent and prognosis of UC is the DAI, which is calculated based
on disease signs and symptoms and is usually considered a standard index of UC [46]. We
verified that DSS significantly increased the DAI. Furthermore, mice in the Pae group had
increased body weight, longer colonic length, thicker fecal viscosity and less blood in the
feces compared to mice the DSS group, which resulted in a significantly lower DAI in the
Pae group. In histopathological assessments of colonic tissue, Pae alleviated upper colonic
mucosal defects, crypt damage, local ulceration and inflammatory cell infiltration in UC
mice, thereby restoring intestinal epithelial mucosal integrity. Therefore, these results verify
the therapeutic potential of Pae.

There is growing evidence of a role for intestinal epithelial barrier disruption and
inflammation in UC. Changes in TJ proteins lead to disruption of the intestinal epithelial
barrier, which allows microorganisms in the intestinal lumen to promote abnormal immune
responses, with excessive leakage of bacterial antigens from the mucosa gradually degrad-
ing the TJs [47,48]. TNF-α impairs the intestinal barrier by inducing apoptosis in epithelial
cells and altering the structure and function of the TJ [49], while IL-1β has been shown to
increase TJ permeability in human intestinal epithelial cells [50]. In Caco-2 cells, IL-6 regu-
lates TJ permeability through PI3K and MEK/ERK pathways, and the intestinal mucosa of
IL-6-overexpressing mice exhibits increased expression of TJ proteins, which negatively
correlates with cellular by-pass [51]. On the other hand, IL-4 has been shown to reduce the
epithelial barrier function of a T84 cell monolayer [52]. Therefore, re-establishment of the
integrity of the intestinal barrier may be a beneficial strategy for mediating the inhibition of
inflammation in UC. In our study, we confirmed that oral administration of Pae (50 or 100
mg/kg) decreased the expression of inflammatory cytokines and increased the expression
of the TJ proteins ZO-1 and Occludin, suggesting a mechanism by which Pae restores the
structure and function of the epithelial barrier to alleviate the effects of UC.

Many previous studies have shown that the gut microbiota plays a key role in the
pathogenesis of UC, with changes in the gut microbiota associated with repair of the intesti-
nal mucosa, improvement in the inflammatory response, and enhanced immunity, leading
to remission or even a cure for the disease [53,54]. In the present study, we demonstrated
that UC mice treated with either Pae or SASP showed a significant change in intestinal
microbial composition, suggesting that the protective effect of Pae on DSS-induced UC
may be related to the regulation of the gut microbiota. These observations are consistent
with previous reports demonstrating that reprogramming the balance of the intestinal
microbiota improves UC [40]. Notably, Pae treatment significantly increased the abundance
of Lactobacillus and Bacteroides. Specifically, Lactobacillus and Bacteroides are known
to enhance intestinal barrier function by promoting the expression of intestinal epithelial
cell TJ proteins, reducing apoptosis of epithelial cells and regulating the thickness of the
intestinal mucus layer [55–57]. The latter reports support the possibility that Pae may
reduce DSS-induced intestinal inflammation in UC mice by increasing the abundance of
Lactobacillus and Bacteroides. We also observed significant elevation of pathogenic bacteria
such as Escherichia-Shigella upon DSS-induced UC, which is consistent with the results of
another study [58,59]. Escherichia-Shigella are typical genera of Aspergillus that includes
LPS-producing Gram-negative bacteria and are thought to cause an imbalance in Th17/Treg
conversion, leading to disruption of intestinal immune homeostasis [60,61]. Other studies
have indicated that Escherichia-Shigella coli adherence to colonic mucosal epithelial cells
positively correlates with pro-inflammatory cytokines, leading to high expression of inflam-
matory cytokines and thus disrupting the integrity of the intestinal barrier [60]. Therefore,
the increase in potential beneficial bacteria and decrease in pathogenic bacteria observed in
our study suggests that Pae may restore the intestinal microbiota to maintain the stability
and function of the internal environment.

Evidence suggests that alterations in the composition of gut microbiota may modu-
late metabolic pathways, which impacts energy and mucosal immune homeostasis [62].
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Therefore, we analyzed fecal metabolite profiles to further understand the host microbiota
interactions associated with UC. In this context, our results show that the levels of BAs,
organic acids and fatty acids were significantly reduced in DSS-induced UC mice, and alter-
ations in selected metabolites were significantly reversed after Pae treatment. In particular,
the concentrations of the secondary BAs DCA, LCA and CDCA in the feces of UC mice
were significantly increased after Pae treatment; however, changes in the concentrations of
primary BAs CA were not significant, which could be explained by individual differences
in mice or the complexity of their metabolites. Nevertheless, the general trend of this
change is consistent with the well-characterized role of BAs in UC, with evidence for a
potential role for Pae in reversing their production.

Previous studies have also shown that deletion of unbound and secondary BAs leads to
activation of the farnesol X receptor (FXR), which may impair anti-inflammatory pathways
and intestinal barrier function, ultimately contributing to the pathogenesis of inflammatory
bowel disease [11,63]. Additionally, DSS-induced UC has been shown to promote the
accumulation of BAs in the colon by inhibiting the activation of the FXR-FGF15 signaling
pathway [64]. FXR in the ileum has also previously been shown to activate the expression
of FGF15, which enters enterohepatic circulation, binds to β-KLOTHO-mediated FGFR4
and downregulates the expression of CYP7A1, thus inhibiting the synthesis of BAs [65,66].
In our recent study, we suggest that the mechanism by which Pae regulates the metabolic
pathway of BAs in UC may be through the regulation of hepatic FXR-SHP/LRH-1 and ileal
FXR-FGF15 pathways, which in turn affects the expression of CYP7A1, thereby enhancing
the synthesis of BAs. Consistently, in this study we demonstrated that in the liver, the
expression of FXR and FGF15 trended downward in the DSS group of mice and upward
after the administration of Pae. Pae intervention also increased the expression of FXR
mRNA, FGF15 mRNA and SHP mRNA, and down-regulated LRH-1 mRNA expression.
In the ileum, Pae trended to or significantly reversed the DSS-induced changes in the
expression of FXR and FGF15, leading to the inhibition of CYP7A1 expression. We further
demonstrated that FGF15, β-KLOTHO and FGFR4 mRNA levels in the ileum were signifi-
cantly decreased in the DSS group. With Pae intervention, FGF15 and β-KLOTHO mRNA
levels were significantly increased, and FXR and FGFR4 mRNA expression had a trend of
increase, indicating that the synthesis of BAs in ileal tissues might be inhibited after Pae
administration.

To gain a comprehensive understanding of the mechanisms of Pae in improving
UC, we constructed an association network using the Spearman’s hierarchical correlation
method, with data regarding the genus-level gut microbiota, fecal metabolites, and phe-
notype of UC mice. Interestingly, the abundance of Lactobacilli correlated with increased
levels of LCA and CDCA, which have been used to establish therapeutic effects on col-
itis in animal models [67,68]. Lactobacillus is the main bacterial genus involved in BA
uncoupling and converts uncoupled primary BAs (e.g., CDCA) to secondary BAs (e.g.,
LCA) via CYP7A1-mediated 7α-dehydroxylation [64], suggesting that Pae may indirectly
increase fecal secondary BA (e.g., LCA) levels by promoting the growth of related intestinal
flora (e.g., Lactobacillus). Additionally, elevated BA levels were closely associated with
inflammatory responses. BAs can directly act on epithelial cells to regulate the production
of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, which suggests that BAs
may in turn improve the disruption of intestinal microbiota through the regulation of
inflammatory cytokines and thus improve the intestinal function of UC [69,70]. Taken
together, the three-dimensional association network suggests that Pae may be useful in
treating UC by modulating the composition of BAs, which in turn improves intestinal
barrier function and microbial composition by increasing the proportion of probiotic bac-
teria and reducing pathogenic bacteria, thereby reducing clinical intestinal inflammatory
symptoms in UC mice.

In summary, our study supports findings suggesting that Pae significantly improves
colonic injury caused by UC and demonstrates that Pae protects intestinal mucosal integrity
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by restoring gut microbiota dysbiosis and regulating metabolic disorders to prevent DSS-
induced UC symptoms.

5. Conclusions

In conclusion, our study demonstrates for the first time that Pae reverses DSS-induced
UC in mice by interfering with gut microbes and fecal metabolites. This study demonstrates
that Pae treatment increases the abundance of Lactobacillus in the feces of UC mice, which
indirectly activates hepatic FXR-SHP/LRH-1 and ileal FXR-FGF15 pathways associated
with the synthesis of BAs to intervene with the expression of CYP7A1, the rate-limiting
enzyme for BAs, thus restoring the metabolism of fecal BAs (e.g., DCA, LCA vs. CDCA)
and ultimately ameliorating DSS-induced disruption of intestinal barrier function and
colonic inflammation. In short, our findings provide a new biochemical mechanism of
Pae against UC, which serves as a foundation for developing Pae as a clinical agent for
treating UC.
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