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Abstract

Background: The tristetraprolin (TTP) family of mRNA-binding proteins contains three major members, Ttp, Zfp36l1, and
Zfp36l12. Ttp down-regulates the stability of AU-rich element—containing mRNAs and functions as an anti-inflammation
regulator.

Methods: To examine whether other TTP family proteins also play roles in the inflammatory response, their expression
profiles and the possible mMRNA targets were determined in the knockdown cells.

Results: Ttp mMRNA and protein were highly induced by lipopolysaccharide (LPS), whereas Zfp36/1 and Zfp36/12 mRNAs
were down-regulated and their proteins were phosphorylated during early lipopolysaccharide stimulation. Biochemical
and functional analyses exhibited that the decrease of Zfp36/2 mMRNA was cross-regulated by Ttp. Knockdown of
Zfp3611 and Zfp3612 increased the basal level of Mkp-T mRNAs by prolonging its half-life. Increasing the expression of
Mkp-1 inhibited the activation of p38 MAPK under lipopolysaccharide stimulation and down-regulated Tnfa, and Ttp
mRNA. In addition, hyper-phosphorylation of Zfp36l1 might stabilize Mkp-1 expression by forming a complex with the
adapter protein 14-3-3 and decreasing the interaction with deadenylase Cafla.

Conclusions: Our findings imply that the expression and phosphorylation of Zfp3611 and Zfp3612 may modulate the
basal level of Mkp-1 mRNA to control p38 MAPK activity during lipopolysaccharide stimulation, which would affect the

inflammatory mediators production. Zfp3611 and Zfp3612 are important regulators of the innate immune response.
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Background

Activated macrophages produce the classical pro-
inflammatory cytokines to initiate and maintain inflam-
mation. The activities of mitogen-activated protein
kinases (MAPKs) including ERK, JNK, and p38 are ne-
cessary for initiation of the innate immune response [1].
Both the activation of transcription factors by phos-
phorylation and the stabilization of AU-rich element
(ARE)-containing mRNAs can help cells produce pro-
inflammatory mediators or cytokines [2—4]. Some nega-
tive regulators such as MAPK phosphatase-1 (Mkp-1,
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also named Duspl, dual specific phosphatase 1) and
tristetraprolin (Ttp) can help cells return to the resting
state [5, 6]. MAPKs are inactivated by Mkp-1 through
dephosphorylation [7]. Mkp-1-deficient mice are highly
susceptible to endotoxic shock, which is associated with
enhanced production of serum cytokines and chemo-
kines [8—11]. In Ttp-knockout mice, many inflammation
syndromes such as dermatitis, cachexia, spontaneous
arthritis, and neutrophilia are observed [12] because of
overproduction of the pro-inflammatory cytokine tumor
necrosis factor-a (Tnfa) through its prolonged mRNA
half-life [13]. Ttp (also called TIS11, NUP475, Zfp-36,
and G0S24) specifically binds to the ARE in the 3'UTR
of Tnfa mRNA. The ARE is a cis-acting RNA element
that is usually located in the 3'UTR of short-lived
mRNAs encoded by many inflammation- and cancer-
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associated genes [6]. TTP recognizes the ARE via its
tandem zinc finger domain, which contains two Cys-
Cys-Cys-His (C3H) zinc-binding motifs, and causes its
target mRNA to be deadenylated and rapidly degraded
[14-16].

The other TTP family proteins are Zfp36l1 (also called
TIS11b, cMG1, BRF1, ERF1, or Berg36) [17], Zfp3612 (also
called TIS11d, ERF2, or BRF2) [18] and Zfp3613 [19].
These members contain conserved tandem zinc finger do-
mains that show the same ability as Ttp to destabilize
ARE-containing mRNAs [15, 20]. Their RNA expression
levels vary among human tissues [21]. Zfp36/1-deficient
mice develop failure of chorioallantoic fusion, and em-
bryos die in utero [22]. Female mice containing a deletion
of the first exon of Zfp36/2 are completely infertile [23].
Zfp3612-knockout mice exhibit a defect in hematopoiesis
[24]. Zfp3613 is rodent-specific [19]; it is only expressed in
the placenta and extraembryonic tissues of mice.

Ttp mRNA and protein are induced by lipopolysacchar-
ide (LPS) [25]; however, Zfp36l1 and Zfp3612 proteins
have not been adequately characterized in LPS-stimulated
macrophages. To explore the functional roles of Zfp3611
and Zfp3612 in inflammatory response, we examined their
expression profiles and knocked down either Zfp36l1 or
Zfp3612 to find their possible mRNA targets in mouse
RAW264.7 cells. We observed that Z{p36l1 and Zfp3612
would modulate Mkp-1I mRNA expression in resting mac-
rophages, which inhibited p38 activation and Tnfa induc-
tion in response to LPS.

Methods

Plasmid constructs

The Flag-tagged mouse Ttp, Zfp3611, and Zfp36I2 expres-
sion plasmids, the construct encoding the GST fusion with
mouse 14-3-3(, and pCMV-Tag2C-luciferase-Mkp-1 3’
UTR were constructed as described [26]. The sequence of
putative AREs of MKP-1 3'UTR was indicated previ-
ously [27]. T7 promoter containing Zfp3611 and Z{p3612
partial 3’'UTR were PCR cloning by using primers, 5'-
TAATACGACTCACTATAGGGGTTGCTTATCACTGC
ACATC-3’ and 5-AAACTGCAAATAGTCGTTAC-3 for
Zfp36l1, 5-TAATACGACTCACTATAGGGCACCACTG
CACCACAACTC-3 and 5-AAGCATGGTTTCTTCAT
GCG-3 for Zfp36[2. After sequences confirmed, these two
fragments were cloned into 3’ of luciferase gene in pCMV-
Tag2C-luciferase plasmid (Stratagene, La Jolla, CA).

Cell culture

RAW?264.7 cells were grown in Dulbecco’s modified Eagle
medium (Gibco, Grand Island, NY) containing 1.5 g- L™
sodium bicarbonate and supplemented with 10 % fetal bo-
vine serum (HyClone, Logan, UT) and 2 mM I-glutamine
(Gibco). HEK293T cells were grown in Dulbecco’s modi-
fied Eagle medium (Gibco) containing 3.7 g-L™" sodium
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bicarbonate and supplemented with 10 % fetal bovine
serum (Gibco). 100 ng-mL™" LPS and 20 uM of BAY11-
7082 were used (Sigma-Aldrich, St Louis, MO). Both
RAW264.7 and HEK293T cells were cultured at 37 °C in a
humidified incubator with 5 % CO,.

Preparation of whole-cell extracts and cytoplasmic/nu-
clear extracts

Confluent RAW264.7 cells in a 10-cm dish were washed
once with phosphate-buffered saline (PBS) and then har-
vested. To prepare whole-cell extracts, the harvested cells
(5 x 10°) were lysed in 400 uL of whole-cell extract buffer
(25 mM HEPES pH 7.7, 1.5 mM MgCl,, 0.2 mM EDTA,
0.5 mM dithiothreitol (DTT), 0.1 % v/v NP-40, 0.3 M
NaCl, protease inhibitor cocktail (Sigma-Aldrich) and
phosphatase inhibitor containing 0.01 M B-glycerol phos-
phate, 0.1 mM Na,MoQ,, 0.1 mM NazVO, pH 10, 0.01 M
NaF). The cell lysates were shaken at 4 °C for 30 min and
then centrifuged for 5 min at 13,000 rpm, 4 °C. The super-
natant was collected as a whole-cell extract. To prepare
cytoplasmic and nuclear extracts, harvested cells were
lysed in 400 pL hypotonic buffer (10 mM HEPES pH 7.5,
10 mM potassium acetate, 2.5 mM DTT, 0.05 % NP-40,
protease inhibitor, and phosphatase inhibitor). The cell ly-
sates were shaken at 4 °C for 30 min and then centrifuged
for 30 s at 9000 rpm, 4 °C. Each supernatant was collected
as a cytosolic extract, and each nuclear pellet was washed
once with hypotonic buffer and then resuspended in
50 pL of buffer C (20 mM HEPES pH 7.9, 400 mM NaCl,
1 mM EDTA, 1 mM EGTA, 1 mM DTT, protease inhibi-
tor, and phosphatase inhibitor). The nuclear suspension
was shaken at 4 °C for 30 min and then centrifuged for
5 min at 13,000 rpm, 4 °C. Each supernatant was collected
as a nuclear extract. For phosphatase treatment, 100 pg of
cytoplasmic extract was incubated with 1 pL of calf intes-
tinal phosphatase (New England Biolabs, Ipswich, MA) at
37 °C for 30 min.

Western blot analysis and antibodies

Four fold of SDS-PAGE sample buffer (200 mM Tris
pH 6.8, 8 % SDS, 0.4 % bromophenol blue, 40 % glycerol,
400 mM [-mercaptoethanol) was added to the sample to
a final concentration of 1 fold and then heated at 100 °C
for 5 min. Proteins were separated on 10 % polyacrylamide
gels and transferred onto a 0.45 um-pore-size polyvinyli-
dene difluoride membrane (Millipore, Billerica, MA) for
western blotting. The membrane was incubated for 1 h at
room temperature with an antibody against any of the fol-
lowing proteins: BRF1/2, phosphorylated p38 (p-p38)
MAPK T180/Y182, p-p44/42 MAPK (all from Cell Signal-
ing), hnRNPC1/C2, MKP-1, ERK1, JNK1 (all from Santa
Cruz Biotechnology), total-p38, p-JNK, Flag M2 (all from
Sigma-Aldrich), Ttp, Zfp3611, Zfp36l2, and p-tubulin [26].
After washing with PBST (PBS containing 0.1 % (v/v)
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Tween 20) for an appropriate time, the membrane was in-
cubated for 1 h at room temperature with a horseradish
peroxidase—conjugated secondary antibody: goat anti-
rabbit IgG (KPL, Gaithersburg, ML), goat anti-mouse IgG
(KPL), or rabbit anti-goat (Sigma-Aldrich). Western
Lightning enhanced chemiluminescence substrate (Perkin
Elmer, Norwalk, CT) was used for detection.

RNA extraction, reverse transcription and real-time PCR
Total RNA was isolated with TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer's sugges-
tions. Cells (1 x 10°) in a six-well plastic culture plate were
washed once with PBS and directly lysed in a well with
1 mL TRIzol. RNA was used for reverse transcription as
described [26]. RNA was quantified with the Applied Bio-
systems 7300 Real-Time PCR system (Applied Biosystems,
Foster City, CA) in a volume of 20 pL, containing 10 pL
FastStart Universal SYBR Green Master (Roche, Mann-
heim, Germany), 4 pL of 10-fold diluted cDNA, 5.6 pL
diethylpyrocarbonate-treated H,O, and 04 uL of 5-
20 puM forward and reverse primer: 5'-TAGACTCCAT
CAAGGATGCTGG-3" and 5'-GCAGCTTGGAGAGG
TGGTGAT-3" for Mkp-1; 5 -GACCCTCACACTCA
GATCATCTTCT-3" and 5'-CCTCCACTTGGTGGTTT
GCT-3" for Tnfa; 5'-GGATCTCTCTGCCATCTACGA-
3" and 5'-CAGTCAGGCGAGAGGTGAC-3’ for Ttp; 5'-
CTGAAGACCTTAGGGCAGAT-3" and 5-AAGGAA
TGGGTCCAGACATAC-3" for Ccl2; 5-TGTCAGC
CACTGCCTTGGTA-3" and 5'-CAGGATCTGGTCCG
CTAGCT-3" for Icaml; 5-TGAGCGAAGTTTTATG
CAAGGG-3 and 5-GCTGGGCAGAGTGACCGAG-3’
for Zfp36l1, 5-GATGTCGACTTGTTGTGCAAGACG-3’
and 5-GCGTCCCTACCGCCTTCT-3" for Zfp36l2, 5'-
TCCTTCCTGGGCATGGAGTC-3" and 5'-ACTCAT
CATACTCCTGCTTG-3’ for -actin. The data were nor-
malized with B-actin according to the 274" relative
quantitation method in the manufacturer's manual.

RNA pull-down assay

Cytoplasmic extracts from LPS-stimulated RAW264.7
cells were collected as described above. Potassium acetate
was adjusted to 90 mM, and 0.1 U-uL™ RNasin (Pro-
mega, Madison, WI) and 20 pg-uL™ yeast tRNA were
added to each lysate. To prevent non-specific binding,
heparin-agarose (Sigma-Aldrich) was incubated with each
lysate for 15 min at 4 °C and then centrifuged for 1 min at
8000 rpm, 4 °C. Each supernatant was further cleaned
with streptavidin-Sepharose (8 pL; Invitrogen) for 1 h at
4 °C and then centrifuged for 1 min at 8000 rpm, 4 °C.
Mikp-1 3'UTR cloned in T7 promoter-containing plasmid
or T7 promoter-containing Zfp36/1 3’'UTR or Zfp36l2
3'UTR DNA fragment was used as a template and tran-
scribed into RNA in the presence of biotin-CTP by using
the T7-MEGA shortscript, High Yield Transcription kit
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(Ambion, Grand Island, NY) and then incubated with
above supernatants for 1 h at 4 °C. Biotin-labeled 18S
RNA was a negative control. Next, streptavidin-Sepharose
(8 pL) was added to the pulled-down biotinylated RNA
complex for 2 h at 4 °C. The pulled-down complexes were
washed four times with binding buffer (hypotonic buffer
containing 90 mM potassium acetate). Finally, the RNA
complexes were separated by SDS-PAGE (10 % acryl-
amide) and detected by western blotting.

Dual luciferase reporter assay

HEK293T cells were seeded in a six-well plastic culture
plate and transfected using calcium phosphate precipita-
tion with different plasmids (containing 0.25 pg Renilla
luciferase expression vector as a control of transfection
rate) at 30 % confluency. At 24 h post-transfection, the
cells (5x10%) were harvested and lysed in 50 pL of
passive lysis buffer (Promega). The samples were shaken
for 30 min at 4 °C and centrifuged for 5 min at
13,000 rpm, 4 °C. The supernatants were collected for
Dual-Luciferase reporter assay (Promega). The firefly lu-
ciferase activity was normalized with the Renilla lucifer-
ase activity. All the experiments were carried out in
duplicate and repeated for three times.

Lentivirus knockdown

Lentivirus vectors encoding shRNA targeted to mouse
Zfp36l1, Zfp36l2, and control Luciferase were purchased
from the National RNAi core facility (Academia Sinica) and
used in knockdown studies as described [26]. HEK293T
cells (1 x 10°) were seeded in a 10-cm dish for transfection
(calcium phosphate precipitation method) of virus produc-
tion vectors, 14 ug of CMV AR8.9.1, 2 ug of pMD.G, and
14 pg of specific ShARNA sequence—bearing pLKO.1 plas-
mids. At 8 h post-transfection, the culture medium was
replaced with fresh medium for RAW264.7 cells. Virus-
containing medium was collected 24 and 48 h later for
primary-infection and super-infection of RAW264.7 cells.
Virus-containing medium was replaced with fresh medium
for RAW264.7 cells 24 h after super-infection. To generate
stable knockdown clones, puromycin (3 pg-mL™) was
added and Green fluorescent protein signal served as a se-
lection marker. After puromycin selection for one week,
cells were harvested and analyzed by western blotting to
determine knockdown efficiency.

GST fusion protein production and GST pull-down assay

Glutathione-Sepharose 4B beads (approximately 8 pl, GE
Healthcare, Piscatway, NJ) were incubated with bacterially
expressed GST or GST-14-3-3 proteins in PBS containing
1 % (v/v) Triton X-100 on a rotary shaker for 20 min at
room temperature. After washing three times with the
same buffer, the beads were combined with 500 ug of each
cell lysate from LPS-stimulated RAW?264.7 cells in a final
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volume of 200 ul of buffer containing 20 mM HEPES,
pH 7.9, 100 mM NaCl, 2.5 mM MgCl,, 0.1 mM EDTA,
0.05 % NP-40, and 1 % Triton X-100, along with 1 mM
DTT, and 1 mM phenylmethylsulfonyl fluoride, on a rotary
shaker. The mixtures were incubated at 4 °C for 2 h, and
then the beads were washed four times with the same buf-
fer lacking DTT and phenylmethylsulfonyl fluoride but con-
taining 200 mM NaCl and washed once with 50 mM Tris,
pH 6.8. Bound proteins were eluted by boiling in SDS-
PAGE sample buffer and analyzed by immunoblotting.

Statistical analysis

All of the results are presented as the mean+ SD of at
least three independent experiments. The statistically
significant values were calculated by one-tailed Student's
t-test. One asterisk indicates P-value < 0.05, and two aster-
isks indicate P-value < 0.01. ns indicates non-significance.

Results

Constitutive expression and phosphorylation of Zfp3611
and Zfp3612 during early LPS stimulation in RAW264.7
cells

Ttp plays a key role in the innate immune response. Ttp
mRNA and protein were highly induced by LPS (Fig. 1a, b).
To investigate the roles of two other TTP family proteins,
Zfp3611 and Z{p3612, in the inflammatory response, we first
examined their RNA and protein expression profiles in
LPS-stimulated RAW264.7 cells. Zfp3611 and Z{p36l2 pro-
teins were near consistently maintained in the cytoplasm
during early LPS stimulation (Fig. 1a) although their RNA
expression levels decreased (Fig. 1b). Multiple forms of
Zfp3611 and Zfp36l2 were detected by western blotting,
and LPS treatment resulted in a shift in their bands (Fig. 1a).
When cytoplasmic extracts from 120-min LPS-stimulated
cells were treated with calf intestinal phosphatase for
30 min, the higher-migrating protein bands of Zfp36l1 and
Zfp3612 shifted back to their lower positions (Fig. 1c).
These observations suggested that Zfp36l1 and Zfp3612
proteins were maintained at a constant level and were
phosphorylated under LPS stimulation. They might play
functions in resting state and their activity might be regu-
lated by protein phosphorylation.

Down-regulation of Zfp36/1 and Zfp36/2 mRNA by Ttp
during LPS-stimulation

We are interested in the molecular mechanism of down-
regulation of Zfp36/1 and Zfp36/2 mRNA in response to
LPS treatment. Their mRNA 3'UTR contains potential
AREs (Additional file 1: Figure S1), we examined whether
their mRNA half-life was regulated by LPS. As shown in
Fig. 2a, the half-life of Zfp36/1 mRNA was longer than
that of Zfp36/2 mRNA, which was 5.2 h for Zfp36[1 and
39 min for Zfp36[2. The half-life of Zfp36/2 mRNA was
significantly shortened to 13 min at 20 min of LPS
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treatment, and then restored to 33 min at 50 min treat-
ment. Although the half-lives of Zfp3611 mRNA were also
decreased upon LPS treatment, they still maintained to
near 4 h (Fig. 2a). It was known that Ttp induced by LPS
can destabilize ARE-containing mRNA [13, 25]. We have
demonstrated that NF-kB signaling pathway was required
for Ttp induction [28]. To examine whether Ttp expres-
sion plays roles in the down-regulation of Zfp36/1 and
Zfp3612 mRNA, we compared the mRNA expression of
Ttp, Zfp36lland Zfp36/2 in the presence of the inhibitor
(BAY) of NF-kB pathway. The pretreatment with BAY
inhibited the mRNA level of T¢p in LPS-stimulation for
0.5 h and 2 h, which was consistent with the increases of
Zfp3612 mRNA level (Fig. 2b), but no correlation with the
levels of Zfp36/1 mRNA. The increase of Zfp36/2 mRNA
under BAY treatment was due to the increase of mRNA
half-life, whereas BAY treatment would shorten Zfp36/1
mRNA half-life (Fig. 2c). Moreover, the biotin-labeled par-
tial 3UTR from Zfp36l1 or Zfp36l2 associates with Ttp
proteins in RNA pull-down analysis (Fig. 2d), and the
3UTR-mediated luciferase activity was down-regulated
when cotransfection with Ttp expression vector (Fig. 2e).
Although both Zfp36l1 and Zfp36/2 3’UTR showed phys-
ical and functional interaction with ectopic expressive Ttp,
only endogenous Zfp36/2 mRNA was decreased by LPS-
induced NF-kB signals. The results suggest that in
addition to Ttp there are other factors involved in the
regulation of Zfp36/1 mRNA stability during LPS
stimulation.

Zfp36l1 and Zfp36l2 destabilize Mkp-1 mRNA in resting
RAW264.7 cells

Because Zfp36l1 and Zfp36l2 were expressed in control
macrophages, we inferred that they play roles in controlling
mRNA stability under resting conditions. The strategy to
identify the mRNA targets of Zfp36l1 and Z{p36l2 was to
knockdown Zfp36l1 and Zfp3612 levels using lentivirus-
carrying short hairpin RNAs (shRNAs) in RAW264.7 cells.
The knockdown efficiency of shRNA specific to Zfp36/1
and Zfp36/2 was confirmed by western blotting (Fig. 3a).
ARE-containing immediate early genes as well as inflamma-
tory mediator genes such as Ttp, Mkp-1, Tnfa, Ccl-2, and
Icam-1 were candidate targets of Zfp36ll and Zfp36I2
[29, 30]. Expression of these candidate RNAs was examined
by real-time PCR in different knockdown cells, including
Zfp36l1 knockdown, Zfp3612 knockdown, and Zfp36l1/
Zfp3612 dual-knockdown cells. We predicted that the
mRNA targets of Zfp36l1 and Zfp36l2 would increase in
knockdown cells because Zfp36l1 and Zfp36I2 function in
mRNA destabilization. We found that Mkp-I mRNA was
significantly increased in all knockdown cells (Fig. 3b). We
determined the half-life of Mkp-I mRNA in the different
knockdown cell types; the half-life increased from 19 min
in control cells to near 100 min in knockdown cell types
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(Fig. 3c). In contrast, Ttp, Tnfa, Ccl-2, and Icam-1 mRNA
levels were decreased in the knockdown cells or slightly in-
creased but no significance (Fig. 3d). These results sug-
gested that both Zfp3611 and Zfp36l2 down-regulate Mkp-
1 mRNA stability in resting macrophages but enhance the
mRNA expression of Tnfa and Ccl-2.

Zfp36l11 and Zfp36I2 interact with the Mkp-71 3'UTR and
recruit the deadenylase Caf1a in RAW264.7 cells

We further explore the molecular mechanism underlying
Zfp3611 and Zfp3612 regulated Mkp-1 mRNA stability in
resting macrophages. We have demonstrated that TTP
family proteins including Ttp, Zfp36l1 and Zfp36l2 inter-
acted with Mkp-1 mRNA 3'UTR during differentiation of
3 T3-L1 preadipocytes [26, 27], and Mkp-1 3'UTR-derived
luciferase activity was reduced when co-transfected with
Zfp36l1 or Zfp36l2 expression plasmid in human embry-
onic kidney (HEK293T) cells [26]. The deadenylase CAF1
(Ccré4-associated factor) is recruited by TTP through
interacting with NOT1 to destabilize target mRNAs
[31-34]. Both Zfp36l1 and Zfp36l2 contain NOTI1-
binding domain [35]. A recent report showed that

ZFP36L1 immunoprecipitated CAF1 (also named
CNOT?7) [36]. To understand how Zfp36l1 and Zfp3612
regulate Mkp-1 mRNA stability during LPS stimulation,
an RNA pull-down assay was performed to examine the
RNA-protein interaction. Biotinylated Mkp-1 3'UTR was
incubated with cytosolic lysates from LPS-stimulated
RAW?264.7 cells. The ribonucleoprotein complexes were
precipitated with streptavidin-Sepharose and then sub-
jected to SDS-PAGE for western blotting with anti-
Zfp36l1 and anti-Zfp3612 (Fig. 4a). The interaction
between Zfp3611 and Mkp-1 3'UTR appeared to be con-
stant during LPS stimulation, whereas the precipitated
amount of Zfp3612 byMkp-1 3'UTR was varied from
relative level 1 to 0.34 (Fig. 4a). Interestingly, the lowest
level of precipitated Cafla by Mkp-1 3'UTR was ob-
served in LPS stimulation for 15 min, suggesting that
Mkp-1 mRNA would be stabilized after LPS stimulation.

It has been reported that the interaction between phos-
phorylated Ser92 and Ser203 of Zfp36l1 and the protein
14-3-3 can inhibit the mRNA decay activity of Z{p36l1 after
insulin stimulation [37, 38]. Because LPS-induced Zfp36l1
phosphorylation did not affect its RNA-binding activity
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Fig. 2 mRNA stability regulation of Zfp36/2 by Ttp during LPS-stimulation. a mRNA half-life determination. RAW264.7 cells stimulated with LPS for 0, 20
and 50 min, and actinomycin D (10 pg - mL ") was added for 0, 10, 30, and 50 min to stop transcription for Zfp36/12 mRNA detection, and added for 0O,
1,2 and 4 h for Zfp36/1 mRNA detection. RNAs was isolated for quantitative PCR by using primers of B-actin, Zfp36/1 and Zfp3612. The remaining Zfp36l1
and Zfp3612 mRNA levels were shown after normalized with the level of S-actin. The mRNA half-lives were calculated by exponential regression: 5.2 h,
4.2 h,and 3.5 h for Zfp36/1 at 0, 20 min, and 50 min of LPS treatment, respectively; 39 min, 13 min and 33 min for Zfp36/2 at 0, 20 min, and 50 min of
LPS treatment, respectively. b TTP family mRNA analysis under BAY treatment. RAW264.7 cells were pretreated with or without 20 uM of BAY for 0.5 h
followed by adding 100 ng-mL" LPS for 0.5 and 2 h. Total RNAs were isolated for quantitative PCR. ¢ BAY treatment stabilizes Zfp36/2 mRNA.
RAW264.7 cells pretreated with or without 20 puM of BAY for 0.5 h followed by adding 100 ng-mL™" LPS for 20 min, and actinomycin D was added for
0,0.5, 1,2, and 4 h to stop transcription. RNAs was isolated for quantitative PCR and Zfp36/1 and Zfp36/2 mRNA half-lives were determined. d RNA
pull-down analysis. Biotin labeled Zfp36/1 3'UTR, Zfp36/2 3'UTR and control 185 RNA were incubated with cytosolic extracts from RAW264.7 cells treated
with LPS for 0, 05, 1 and 2 h, respectively. After extensive washes, the RNA-protein complexes were analyzed by western blotting with anti-Ttp. e
Luciferase reporter analysis. 293 T cells were cotransfected with of 0.25 ug Zfp36/1 3'UTR- or Zfp3612 3'UTR-containing luciferase reporter and different
amounts of Flag-tagged Ttp expression plasmid. After normalized with internal control of Renilla luciferase activity, the relative firefly luciferase activity
was shown. All experiments were independently repeated at least two times

(Fig. 4a), a glutathione-S-transferase (GST) pull-down assay
was performed to study whether Zfp36l1 that becomes
hyper-phosphorylated during LPS stimulation interacts with
14-3-3. As shown in Fig. 4b, only hyper-phosphorylated
Zfp36l1l formed a complex with 14-3-3. This complex
might repress the mRNA destabilization function of
Zfp36l1. No prominent Zfp3612 was detected in this pull-

down assay (data not shown). These results suggest that
Zfp36l1 and Zfp3612 bind to Mkp-1 3'UTR and may recruit
RNA degradation complex in the resting macrophages.
During LPS stimulation Zfp3611 would be phosphorylated
and sequestrated by 14-3-3 to decrease its mRNA
destabilization effect, and the phosphorylated Z{p3612 de-
creased its interaction with Mkp-1 3'UTR.
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Fig. 3 Zfp36l1 and Zfp3612 destabilize Mkp-1 mRNA in resting RAW264.7 cells. a shLuc, shlL1, shL2, shL1 + L2 represent luciferase knockdown
cells, Zfp36l1-knockdown cells, Zfp3612-knockdown cells, and dual Zfp3611- and Zfp3612-knockdown cells, respectively. The upper two panels
show the knockdown efficiency. 3-tubulin was used as a loading control. Whole-cell extracts were collected for western blotting analysis using
the indicated antibodies. b Basal levels of Mkp-1 mRNA were detected by quantitative PCR in different knockdown cells. ¢ Analysis of Mkp-1
MRNA half-life in different knockdown cells. Actinomycin D (10 ug - mL™") was added to stop transcription for 0, 0.5, T or 2 h. The remaining
mRNA was detected by quantitative PCR. Mkp-1 mRNA half-life was calculated by exponential regression, 19 min in control cells and 91, 96 and
95 min in Zfp36l1, Zfp3612 and dual knockdown cells, respectively. d Basal levels of Ttp, Tnfa, Icam-1, and Ccl-2 mRNAs were examined by
quantitative PCR in different knockdown cells and normalized to the shlLuc control. All of experiments were independently performed at least
three times
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least three times, and representative data were displayed

Induction of Mkp-1 mRNA early during LPS stimulation is

post-transcriptionally modulated by Zfp36l1 and Zfp36I2

To further investigate the regulation of Mkp-1 mRNA
during early LPS stimulation in RAW?264.7 cells, we exam-
ined the expression of its mRNA (Fig. 5a). Mkp-1 mRNA
increased significantly after LPS stimulation from 15 to
30 min but decreased rapidly after 45 min. To verify the
functions of Zfp36l1 and Zfp3612 immediately following
LPS treatment, we examined the level of Mkp-1I mRNA in
Zfp36l1- and Zfp3612-knockdown cells after LPS stimula-
tion for 15 min, in this time point Ttp protein was not in-
duced significantly and the lowest level of brought-down
Cafla by Mkp-1 3’'UTR was observed in Fig. 4a. The ob-
served marked rise in the mRNA level in all knockdown
cells compared with control knockdown cells implied that
the decrease in Z{p3611 and Zfp3612 protein expression fa-
cilitated the expression of Mkp-I mRNA in response to
LPS (Fig. 5b); furthermore, the relative Mkp-1 mRNA
half-life at LPS-stimulation 15 min in control, Zfp36l1,
Zfp3612, and dual-knockdown cells was 32 min, 55 min,
68 min, and 42 min, respectively (Fig. 5¢). Our results in-
dicate that knockdown of Zfp36l1, Z{p3612, or both pro-
teins also cause the increase of Mkp-I mRNA half-life at
early LPS stimulation for 15 min like at the resting status.
Moreover, Mkp-1 mRNA at early LPS stimulation in con-
trol shLuc cells appeared more stable (half-life is 32 min)

than which at the resting condition (half-life is 19 min)
showed in Fig. 3c. It might be due to phosphorylation of
Zfp36l1 and Zfp36l2 upon LPS stimulation leading to
protein inactivation.

p38 MAPK activity is regulated by Zfp3611 and Zfp3612
through Mkp-1 in LPS-stimulated RAW264.7 cells

Because Mkp-1 has been reported to decrease p38 and
Jnk activity as an anti-inflammation regulator [39], we
further examined the three MAPK activities in Zfp3611-
and Zfp36lI2-knockdown cells. Under resting conditions,
p38 activity inversely correlated with Mkp-1 expression,
but the activities of Erk and Jnk were unchanged
(Fig. 6a). Following LPS stimulation, Mkp-1 expression
was detected much earlier in knockdown cells than in
control cells, and it down-regulated p38 activity
(Fig. 6b). Ttp and Tnfa mRNA expression was reduced
in all knockdown cells under LPS stimulation, presum-
ably as a result of decreased p38 activity by Mkp-1
(Fig. 6¢). We examined the mRNA expression of some
of ARE-containing cytokines including IL-1, IL-6 and
Ccl2 [40]. Their expression was decreased in Zfp36l11
and Zfp3612 knockdown cells (Additional file 2: Figure
S2). Collectively, our results suggest that both Zfp36l11
and Zfp36l2 are necessary for the initiation of the innate
immune response in macrophages.
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Zfp3611, Zfp3612, and dual-knockdown cells, respectively. All of experiments were carried out at least three times

T 1

Discussion

Our data show that the levels of Zfp36l1 and Zfp36I2
mRNA decreased during LPS stimulation, and their pro-
teins were consistently expressed and phosphorylated in
response to LPS. Knockdown of Zfp3611 and Z{p3612 in-
creased the expression of Mkp-1, and the activity of p38
MAPK was down-regulated under resting conditions.
Thus, p38-mediated expression of Ttp and Tnfa mRNAs
was repressed. According to these results, we propose
the following model for the mechanism of Zfp3611- and
Zfp3612-regulated Mkp-1 expression in mouse macro-
phages (Fig. 7). Under a resting condition, Zfp36l1 and
Zfp3612 destabilize Mkp-1 mRNA, and the cells are sen-
sitive to stimuli such as LPS due to low Mkp-1 expres-
sion. During transient LPS stimulation, Mkp-1 mRNA is
induced post-transcriptionally by hyper-phosphorylated
Zfp36l1, which inhibits mRNA degradation, and by
lower interaction with Zfp36l2.

There are two interesting features the expression pro-
files of endogenous TTP family genes during LPS stimu-
lation in mouse macrophage RAW264.7 cells. One is
that the protein expression profiles of these three TTP
family members differed, and the second is that the
mRNA and protein expression profiles of Zfp36l1 and
Zfp3612 were not correlated. Ttp was induced after LPS
stimulation, and Zfp36l1 and Z{p3612 were consistently

expressed. This observation indicates that Zfp36l1 and
Zfp36l2 may play important roles under resting condi-
tions. The mRNA expression profiles of Zfp36/1 and
Zfp36l2 were not correlated with their protein profiles
after LPS stimulation (Fig. la, b). Similar observations
regarding Zfp36/1 and Zfp36/2 mRNA expression pro-
files were reported by Liang et al. [41] and Cao et al.
[42]. We had demonstrated that Zfp36/2 mRNA was
negatively regulated by Ttp (Fig. 2). This cross-
regulation in TTP family proteins was also reported in
yeast orthologs, Cthl and Cth2 [43]. Furthermore, post-
translational modifications such as phosphorylation may
alter protein stability [44, 45]. Zfp36l1 and Zfp3612 may
be more stable in the hyper-phosphorylated forms than
in the hypo-phosphorylated forms. Thus, their protein
expression levels are nearly constant even if their mRNA
levels decrease after LPS stimulation. However, a recent
report showed that Zfp36l2 protein is also down-
regulated during LPS treatment [46]. This might be due
to a higher dose of LPS and longer stimulation times
that were used.

To identify the possible mRNA targets of Zfp36l1 and
Zfp36l2 in resting macrophages, we knocked down
Zfp36l1 and Zfp3612 using lentivirus-carrying shRNA.
Based on previous reports, the candidate mRNA targets
are chosen for analysis by the number of AREs in their
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Tnf-a

3"UTRs, their association with Ttp, and their mRNA expres-
sion profiles, which categorized them as immediate-early
genes [27, 30]. We found that Mkp-I mRNA increased in
Zp36l1-, Zfp3612-, and Zfp3611/Zfp3612-knockdown cells
because of mRNA stabilization (Fig. 3b, ). Tnfa is a well-
known target of TTP family proteins. Much to our surprise,
Tnfx mRNA expression decreased in all knockdown cells in
the resting state (Fig. 3d). This result may be attributable to
the importance of the transcriptional regulation of Tnfx
mRNA controlled by activation of p38 MAPK [47]. There-
fore, the increased Mkp-1 expression in Zfp36l1- and
Zfp3612-knockdown cells repressed the activity of p38
MAPK (Fig. 6a), which down-regulated 7Tnfa mRNA

expression. Similarly, Cc/-2 mRNA expression is also acti-
vated by p38 MAPK [48]. This result is consistent with
previous reports showing that Mkp-1 overexpression may
inactivate Jnk and p38 and thereby inhibit Tnfa and IL-6
expression [39, 49]. However, expression of Ttp and Icam-
1 mRNA was not significantly different in control and
Zfp36l1- or Zfp3612-knockdown cells (Fig. 3d). One pos-
sible explanation is that expression of their mRNAs is
controlled equally at the transcriptional and post-
transcriptional levels [50, 51].

The mRNA targets of TTP family proteins are not all
the same, although their RNA-binding domains are
highly conserved. Ttp-, Zfp36l1-, and Zfp3612-knockout
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mice exhibit different phenotypes. Ttp-sensitive targets
identified in knockout cells, such as GM-CSE, polo-like-
kinase 3, and Ier3, are not regulated in Zfp36l1-knockout
cells [22, 25, 52]. On the other hand, ACTH stimulates ad-
renocortical cells to induce Zfp3611 and results in down-
regulation of vegf and star mRNAs [53, 54]. IL-3 mRNA is
abnormally stabilized in Zfp3611-mutated cells [55]. Previ-
ously, induced Mkp-1I mRNA was reported as a Ttp target
during the rapid degradation stage after induction
[27, 29], and also as a Zfp36l1 and Zfp36l2 target in 3 T3-
L1 preadipocytes [26]. In this study, we demonstrated that
Zfp36l1 and Zfp3612 control Mkp-1 mRNA expression in
the resting stage. Thus, Mkp-1 mRNA stability might be
modulated temporally by Ttp family members in LPS-
stimulated macrophages. Interestingly, knockdown of
either Zfp36l1 or Zfp3612 affected Mkp-1 mRNA expres-
sion, and no significant additive effect was observed in the
double-knockdown cells (Fig. 3b, c). This suggests that
there is a functional connection between Zfp36l1 and
Zfp3612.

Figure 4a shows that the interaction between Zfp36l1
and the Mkp-1 3'UTR was maintained during LPS stimu-
lation, but the interaction between Zfp3612 and the Mkp-1
3'UTR was decreased. This may be due to the phospho-
sphorylation of Zfp3612. Knockdown of Zfp36l1 and
Zfp3612 caused the level of Mkp-1 mRNA highly increased

but its stability not increased dramatically in the early
stage of LPS stimulation (Fig. 5b, c). It implied that
Zfp36l1 and Zfp36l2 might be inactivated in LPS-
stimulated control cells through phosphorylation. This
result confirms that the activation of Mkp-I mRNA is reg-
ulated by Zfp36l1 and Zfp3612 after LPS stimulation. As-
sociated proteins may change the functions of Zfp36l1
and Zfp3612. Zfp36l1 and Zfp36l2 may also promote
the deadenylation of class II ARE-containing mRNAs
[20, 56, 57]. After LPS stimulation, however, Zfp36l1
may be phosphorylated and form a complex with 14-3-3
(Fig. 4b). This complex may repress Zfp36l1 function
and thereby stabilize Mkp-1I mRNA.

Conclusion

Expression of proinflammatory mediators is suppressed
in resting cells of the innate immune system, whereas it
is rapidly induced in response to inflammatory stimula-
tion. These suppression and induction require tight
controls to maintain the function of immune system. In
addition to transcriptional control, these mediator
mRNAs are post-transcriptionally regulated [58]. It has
been reported that the ribonuclease regnase-1 brakes
IL-6 mRNA expression in resting macrophages, and NF-
kB signaling would cause phosphorylation and degrad-
ation of regnase-1, thereby releasing this brake [59]. As
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shown in Fig. 7, our study suggests that Zfp36l1 and
Zfp3612 brake Mkp-1 mRNA expression in resting mac-
rophages for rapid cellular responses to inflammatory
stimulation. Upon stimulation, their mRNA levels were
decreased and protein was inactivated by phosphoryl-
ation to release Mkp-1 mRNA blocking.

Additional files

Additional file 1: Figure S1. The potential AREs located in 3'UTR of
Zfp3611 and Zfp36/2 mRNA from sequence NM_007564 2252-2960 and
NM_001001806, respectively. The AREs were underlined.

Additional file 2: Figure S2. The relative expression levels of IL-15, Il-6

and Ccl2 mRNAs in different knockdown cells after LPS stimulation for
15 min. RNA was isolated and performed real-time PCR analysis.
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