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Abstract: Grey water footprint is included in the green development efficiency evaluation index
system of the chemical industry. From 2002 to 2016, the super efficiency Slack Based Measure (SBM)
model was used to measure the green development efficiency of the chemical industry in the Yangtze
River Economic Belt. Dagum Gini coefficient and its decomposition method were used to decompose
the regional differences of green development efficiency of the chemical industry in the Economic
Belt, and the coefficient of variation method and panel data regression model were used to test the
convergence characteristics. The following results were obtained. (1) The total grey water footprint
of the chemical industry in the Yangtze River Economic Belt showed a fluctuating downward trend
from 2002 to 2016. (2) The green development efficiency of the chemical industry in the Yangtze River
Economic Belt was significantly improved, and the spatial differentiation law of gradient decline in
the upper, middle, and lower reaches of the Economic Belt was shown. (3) The regional difference of
green development efficiency of the chemical industry in the Yangtze River Economic Belt initially
showed an expanding trend and then a narrowing trend. Regional differences in the upper reaches
of the Yangtze River increased while those in the middle reaches first increased and then decreased,
whereas those in the lower reaches decreased significantly. The variance in green development
efficiency of the chemical industry is the main cause of regional differences. (4) From 2012 to 2016,
the Yangtze River Economic Belt had obvious convergence in its whole region, middle reaches,
and lower reaches and an inconspicuous convergence in the upstream area. Regional difference
of green development efficiency of the chemical industry in the Economic Belt was the combined
effect of the results of environmental regulation, industrial structure, foreign investment intensity,
and scientific and technological advancements. Our results have high theoretical reference values
and practical guiding significance for implementing the green efficiency promotion strategy of the
chemical industry in Yangtze River Economic Belt by region and classification.

Keywords: chemical industry; green development efficiency; grey water footprint; regional differ-
ences; convergence; Yangtze River Economic Belt

1. Introduction

The Yangtze River Economic Belt is one of the most critical contradiction areas between
economic development and environmental protection in China [1]. A total 40% of available
freshwater resources and more than 20% of its wetland resources in China are concentrated
in the Yangtze River Basin, which covers 204 national aquatic germplasm resources pro-
tection zones. The River Basin is one of the important ecological security barriers and
economic centers in China [2]. The chemical industry is a basic and pillar industry of the
national economy, with high dependence on water and energy as well as high safety and
environmental risks [3]. China is the largest chemical producer in the world. In 2018, its
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chemical turnover was 119.8 million EUR, accounting for 35.8% of the global chemical
sales for the year [4]. The production value of chemical products in the Yangtze River
Economic Belt accounts for more than 40% of the country’s total. At present, “chemical
industry encircling the river” poses challenges to the Yangtze River Economic Belt. There
are more than 400,000 chemical enterprises, 5 steel bases, 7 oil refineries, and many large
petrochemical bases along the Yangtze River, leading to a greater risk of environmental
pollution [5]. In the “joint efforts to protect” and under the general requirements of “no
large-scale development”, the green transformation and development of the chemical
industry in the Yangtze River Economic Belt is particularly urgent.

The Chinese economy has entered a high-quality development stage from the high-
speed growth stage now. The traditional industrial development mode of high energy
consumption, high pollution, and high emission has gradually changed to the intensive,
efficient, and sustainable green development mode. The Chinese government has attached
great importance to the green development of the chemical industry in the Yangtze River
Economic Belt. On 14 November 2020, General Secretary Xi Jinping presided over a forum
that aimed to promote the comprehensive development of the Yangtze River Economic Belt,
stressing the need to make it the main battlefield of Chinese ecological priority and green
development. Relevant departments of the state have also issued a series of policies and
regulations, such as guiding opinions on strengthening the green development of industries
in the Economic Belt, the ecological environment protection plan for the area, the Law of
the People’s Republic of China on the Protection of the Yangtze River, and so forth. All of
these endeavors actively promote the green transformation and upgrading of the chemical
industry in the Yangtze River Economic Belt. In the past five years, more than 8000 chemical
enterprises along the Economic Belt have been reformed, relocated, transformed, or closed.
Remarkable achievements have been made in the green transformation and development
of the chemical industry. The ecological environment has been significantly improved. The
proportion of excellent water quality sections in the Yangtze River basin increased from
82.3% in 2016 to 91.7% in 2019 and further increased to 96.3% from January to November
2020. The elimination of poor V water bodies achieved for the first time in 2020. It can
be seen that comprehensively promoting the green development of the chemical industry
and improving its green development efficiency [6] are key to solving the dilemma of the
“chemical industry surrounding the river”, which ensures environmental and industrial
development safety and realizes the sustainable development of the chemical industry. The
Yangtze River Economic Belt includes 9 provinces, 2 cities, and 11 provincial administrative
units and covers an area of approximately 2.05 million km2 [7]. Due to the differences
in resource conditions, economic development levels, innovation abilities, and chemical
industry development histories, the spatial distribution and green development level of
the chemical industry show spatial heterogeneity, which increases the challenge for the
Economic Belt to promote the industrial green development. In order to measure the
gray water footprint and green development efficiency of the chemical industry in the
Yangtze River Economic Belt, to reveal the spatial differences and their convergence in the
green development efficiency of the chemical industry in 11 provinces and cities, and to
provide policy support for the green development of the chemical industry in the Yangtze
River Economic Belt, this research systematically studied the regional differences and
convergence of green development efficiency of the chemical industry in the Yangtze River
Economic Belt. The results are expected to be valuable in theoretical reference and practical
significance for implementing green development promotion strategy of the chemical
industry in different regions and categories.

2. Literature Review

The concept of “green development” was first proposed by the United Nations Devel-
opment Programme in 2002. The essence of green development is to regard resources and
the environment as endogenous factors of growth and provide a balance between economic
growth and ecological environment protection by changing the dynamic mechanism of
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economic development to form a new sustainable development model [8,9]. From the
perspective of input and output, green development efficiency refers to the proportional
relationship between green development output and input. Green development efficiency
is an important indicator to analyze the degree of green development of industries and is
often used to reflect the completion degree, achievements, and effectiveness of green devel-
opment. Since data envelopment analysis (DEA) can consider a variety of input and output
and does not need to set specific function forms, it has become the mainstream method to
measure green development efficiency [10]. Pittman (1983) first included “undesirable”
output into the productivity analysis process [11]. Chung et al. (1997) proposed directional
distance function and the Malmquist–Luenberger Index (MLI), which carries out productiv-
ity evaluation after the “undesirable” output is considered reasonable [12]. Tone (2001, 2002)
proposed a SBM model that considers relaxation measures to effectively overcome radial
and angular defects [13,14]. A DEA analysis method based on the measurement of slack
variables, which puts the input and output slack directly into the objective function so that
it can directly measure the inefficiency caused by slack compared to the optimal production
frontier, thus solving the problem of input and output slack in the traditional DEA model,
removing the inefficiency caused by slack, and also solving the problem of productivity
evaluation in the presence of non-expected outputs. Many scholars used the DEA model
to discuss the green development efficiency of the chemical industry. Tanzil and Beloff
(2006) summarized the sustainability indicators and indicators of the chemical industry,
focusing on ecological efficiency and company-specific indicators [15]. Alessandro et al.
(2017) measured the environmental economic efficiency of Italian and German chemical
enterprises [16]. Yeh Jiahuey et al. (2019) calculated the total factor green energy efficiency
of China’s chemical industry [17]. Yijun Zhang et al. (2020) used the three-stage SBM–DEA
model and MLI to measure the green total factor productivity (GTFP) of China’s chemical
industry [6]. Sun Honghai (2017) used super-efficiency DEA to calculate the ecological
efficiency of 25 petrochemical enterprises in China [18]. Yuan Yaqiong (2018) used DEA and
value-driven analysis to evaluate the ecological efficiency of heavy chemical enterprises in
Beijing, Tianjin, and Hebei region from 2012 to 2016 [19]. Lu Qiuqin et al. (2020) used the
improved three-stage DEA model to evaluate the transformation and upgrading efficiency
of China’s coal chemical enterprises [20].

When using DEA, researchers usually take labor, capital, and energy as inputs, the
output value of the chemical industry as the expected output, and environmental pollutants
as the unexpected output to build an evaluation model of green development efficiency of
the chemical industry. These indicators do not consider the characteristics of the chemical
industry, which has a great impact on water environment. Tony Allan proposed “Virtual
Water”; Hoekstra et al. proposed the concept of “Water Footprint”. Grey water footprint
refers to the volume of freshwater required to dilute certain pollutants on the basis of
existing water quality standards and natural background concentration [21]. Given that
water footprint and grey water footprint can better represent the water consumption and
water pollution accounting of industries [22], they have been gradually incorporated into
the evaluation framework of the green development efficiency of regional industries [23,24].

The spatial distribution and environmental risk of the chemical industry in the Yangtze
River Economic Belt have always been hot areas of academic concern. For a long time,
the spatial layout of the chemical industry in the Economic Belt has reflected two major
factors: the proximity to raw materials and market. The chemical industry along the
Yangtze River is mainly distributed in the areas of Shanghai and Jiangsu [25]. In recent
years, the petrochemical industry had a trend of expansion along the river to the upstream.
The environmental pollution load gradient also shifted to the middle and upper reaches,
and the environmental risk increased [26,27]. Xiang et al. (2021) found that the spatial
differentiation characteristics of green development efficiency of the chemical industry in
the Yangtze River Economic Belt were obvious. Economic level, scientific and technological
innovation, industrial structure, and industrial agglomeration are the main factors affecting
the spatial differentiation of green development efficiency of the chemical industry in the
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Economic Belt. The impact of foreign investment intensity and environmental regulation
is relatively weak [28]. Therefore, it is necessary to guide the chemical industry of the
Yangtze River Economic Belt to gather in large coastal bases and raw material producing
or consumption areas, improve the rate of chemical enterprises entering the park, and
optimize the spatial layout of the chemical industry [29]. Some scholars also studied the
negative effects of the development of the chemical industry on the ecological environment.
Zhu Deming et al. (2006) showed that the development of the chemical industry along the
Yangtze River in Jiangsu threatened the drinking water source and water supply safety [30].
Intensive chemical enterprises and unreasonable industrial layout along the Yangtze River
Economic Belt have brought some potential environmental risks to the environmental
protection of the Yangtze River Basin [31,32]. Dong et al. (2020) found that the division
level of heavy chemical industry in the middle and upper reaches of the Yangtze River
Economic Belt decreased, which promoted the decline of the regional pollution level [33].

The contribution of this research is mainly reflected in the following aspects. Firstly, it
makes up for the industry characteristics that little considered the impact of the chemical
industry on the water environment in previous studies. In this study, water footprint and
grey water footprint are included in the green development efficiency measurement index
system of the chemical industry, and the green development efficiency of the chemical
industry is established by using DEA, which was calculated from 2002 to 2016 in the
Yangtze River Economic Belt. Secondly, Dagum Gini coefficient and its decomposition
method are used to decompose the regional differences of green development efficiency of
the chemical industry in the Economic Belt. Lastly, the convergence characteristics of green
development efficiency of the chemical industry in the Economic Belt and its upstream,
middle, and lower reaches are tested with the coefficient of variation method and panel
data regression model from three aspects, i.e., convergence, absolute convergence, and
conditional absolute convergence.

3. Materials and Methods
3.1. Regional Overview

The Yangtze River Economic Belt consists of the 11 provincial administrative units of
Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Guizhou, Chongqing, Sichuan,
and Yunnan (Figure 1) and covers an area of about 2.05 million km2, accounting for 21%
of the country and more than 40% of the total population and economy [7]. It is one of
the Chinese chemical industry agglomeration areas. In 2016, 11 provinces and cities in the
Yangtze River Economic Belt achieved a total sales value of 8253.40 billion RMB, accounting
for 43.46% of the total sales value in China. The sales output values of the chemical
industry in downstream areas, middle reaches, and upstream area were 530.18 billion RMB,
1816.96 billion RMB, and 1134.663 billion RMB, accounting, respectively, for 27.91%, 9.57%,
and 5.97% of that in China. The sales value of the chemical industry in Jiangsu province
was the highest at 2954.89 billion RMB, about 15.56% of the whole country, while that in
Yunnan province was the lowest at 139.00 billion RMB, accounting for 0.73% of that in the
whole country [28].
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Figure 1. Map of the Yangtze Economic Belt.

3.2. Methods
3.2.1. Calculation of Grey Water Footprint of the Chemical Industry

Industrial wastewater is directly discharged into surface water. The main pollutants in
industrial wastewater can be measured directly, such as chemical oxygen demand (COD)
and ammonia nitrogen (NH+

4 -N) in chemical industry wastewater. Therefore, COD and
NH+

4 -N are used as the main indicators to measure the grey water footprint of the chemical
industry. The calculation formula is as follows [23]:

GWFind = max(GWFind(COD), GWFind(NH+
4 −N))

GWFind(i) =
Lind(i)

Cmax − Cnat
−Wed

GWFreg =
n

∑
i=1

GWFind(i)

where GWFind (billion m3) is the grey water footprint of the chemical industry, GWFind(i)
(billion m3) is the grey water footprint of the chemical industry with the standard of category
i pollutants, Wed (billion m3) is the discharge amount of chemical industry wastewater, and
GWFreg (billion m3) is the grey water footprint of the regional chemical industry. China’s
Standard Limits for Basic Items of Surface Water Environmental Quality Standard (GB
3838-2002) is used as the standard. In the standard, the water quality is required to meet the
class III water quality index, and the concentration limits of COD and ammonia nitrogen
(NH+

4 -N) in class III water are taken as the environmental concentration standards of COD
and ammonia nitrogen (NH+

4 -N) in water.

3.2.2. Measurement Model of Green Development Efficiency of the Chemical Industry

The SBM–undesirable model was proposed to measure the green development effi-
ciency of the chemical industry. It is calculated as [34]: Supposing there are n individual
DMUs, including input vector, expected output, and unexpected output, respectively, that
are recorded as x, x ∈ Rm, yg ∈ Rs1, and yb ∈ Rs2. The matrix is defined as

X = [x1, x2, . . . , xn] ∈ Rm×n, Yg =
[
yg

1 , yg
2 , . . . , yg

n

]
∈ Rs1×n, Yb =

[
yb

1, yb
2, . . . , yb

n

]
∈ Rs2×n
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According to the actual input and output, supposing xi > 0, yg
i > 0, yb

i > 0, productive
collection P, that is, N element input X. All combinations of expected and undesired outputs
can be defined as

P =
{
(x, yg, yb)

∣∣∣x ≥ Xλ, yg ≥ Ybλ, yb ≥ Ybλ(λ ≥ 0)
}

Therefore, the SBM–undesirable model can be expressed as

p∗ = min
1− 1

m

i
∑

i=1

S−i
Xi0

1 + 1
S1+S2

(
S1
∑

r=1

Sg
r

yg
r0
+

S2
∑

r=1

Sb
r

yb
r0

) , s.t.


X0 = Xλ + S−

yg
0 = Yg λ + Sg

yb
0 = Ybλ + Sb

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ ≥ 0

Type: S−i , Sg
r , and Sb

r , respectively, represent the first i0 input redundancy, expected
output deficiency, and expected output superscalar of each decision-making unit; S−i , Sg

r ,
and Sb

r , respectively, denote their corresponding vectors; and λ is the weight vector. The
optimal solution of the above formula is (λ*, S−*, Sg*, Sb*). P* = 1 only when the bad output
exists, that is, S−* = 0, Sg* = 0, Sb* = 0 when DMU0 is efficient.

3.2.3. Dagum Gini Coefficient and Decomposition Method

By using the Dagum Gini coefficient method, this study analyzes the spatial differences
and sources of green development efficiency of the chemical industry in the upper, middle,
and lower reaches of the Yangtze River Economic Belt. According to the Gini coefficient
and its subgroup decomposition method proposed by Dagum (1997), the definition of Gini
coefficient G is as shown in Equation (1) [35]:

G =
∑k

j−1 ∑k
h−1 ∑

nj
i−1 ∑nh

r−1

∣∣yji − yhr
∣∣

2n2y
(1)

where j and h are subscripts for different regions; i and r are the indexes of provinces and
cities, respectively; n is the total number of provinces and cities; k is the total number of
regions; and nj(nh) and j(h) are the number of provinces and cities within a region. yji(yhr)
is the green development efficiency of the chemical industry in j(h) regional provinces
and cities i(r), and y is the average value of green development efficiency of the chemical
industry in all provinces and cities. On the overall Gini coefficient G by region, according to
the average value of green development efficiency of the chemical industry in each region
k, the region is sorted and then the Gini coefficient G is divided into three parts: intraregion
(intra-group) difference pairs G contribution of Gw, interregional (inter-group) difference
pairs G contribution of Gnb, and interregional (inter-group) ultra-variable density pairs G
contribution of Gt. When the three meet, G = Gw + Gnb + Gt, in which the area j has a Gini
coefficient of Gjj and intraregional differences Gw. The calculation formulas are Formulas
(2) and (3), respectively; zones j and h have a Gini coefficient between Gjh and the regional
net difference Gnb. The calculation formulas are Formulas (4) and (5), respectively. The
calculation formula for the interregional super-variable density Gt is shown in Formula (6).

Gjj =

1
2yj

∑
nj
i=1 ∑

nj
r=1

∣∣yji − yjr
∣∣

n2
j

(2)

Gw = ∑k
j−1 GjjPjSj (3)

Gjh = ∑
nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

njnh(yj + yh)
(4)
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Gnb = ∑k
j−2 ∑j−1

h−1 Gjh(pjsh + phsj)Djh (5)

Gt = ∑k
j=2 ∑j−1

h=1 Gjh(pjsh + phsj)(1− Djh) (6)

In Equation (5), pj = nj/n, sj = njyj/ny, and j = 1, 2, 3. In Equation (7), Djh denotes
region j and h. See Formula (7) for the relative influence of green development efficiency
of the chemical industry. djh is the difference of the green development efficiency of
the chemical industry between regions (see Equation (8)). j, h all yji − yhr > 0 is the
mathematical expectation of the sample summation; pjh is the super-variable first-order
moment, representing the region. j, h all yhr − yji > 0 is the mathematical expectation of the
sample summation.

Djh =
djh − pjh

djh + pjh
(7)

djh =
∫ ∞

0
dFj(y)

∫ y

0
(y− x)dFh(x) (8)

pjh =
∫ ∞

0
dFh(y)

∫ y

0
(y− x)dFj(x) (9)

where Fj(Fh) represents the area j(h)C, which is the cumulative distribution function of
green development efficiency of the chemical industry.

3.2.4. Convergence Model

To investigate the evolution trend of green development efficiency of the chemical in-
dustry in the whole Yangtze River Economic Belt and the upper, middle, and lower reaches,
the convergence analysis is carried out, including σ Convergence and β Convergence.

σ Convergence refers to the trend where the deviation of green development efficiency
of the chemical industry in different regions is decreasing over time. σ Convergence is
measured by the coefficient of variation and can be calculated as [36]:
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where j indicates the number of areas (j = 1, 2, 3 . . . ), i indicates the number of provinces
and cities in the region (i = 1, 2, 3 . . . ), Nj is the number of provinces and cities in each
region, and Fij denotes that the region j exists t with an average value of green development
efficiency of the chemical industry in the period.

The β convergence model is [36]:

ln(
Fi,t+1

Fi,t
) = α + βFi,t + µi + νt + εit

The left side of the model is the growth rate of green development efficiency of the
chemical industry calculated by logarithmic difference, where µi is a fixed effect, vt is a
time-fixed effect, and εit is a random error term.

In condition β, the convergence model is absolute β. A series of control variables
is added to the convergence model. This study adds environmental regulation, indus-
trial structure, technical level, and foreign investment intensity as control variables. The
convergence model for condition β is

ln(
Fi,t+1

Fi,t
) = α + βFi,t + δX + µi + νt + εit

In the regression process, each variable is logarithmic. In this paper, a two-way fixed
effect model is adopted to improve the coefficient. In the β accuracy of estimation, the robust
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error standard of clustering is adopted to the provincial and municipal levels. If β < 0 and is
significant, the green development efficiency of the chemical industry in the Yangtze River
Economic Belt converges, or it diverges. The rate of convergence b = −ln(1+ β)/T.

3.3. Index Selection and Data Processing
3.3.1. Measurement Index of Green Development Efficiency of the Chemical Industry

According to existing research results, combined with the classification and character-
istics of the chemical industry, the evaluation index system of green development efficiency
of the chemical industry is constructed from input and output. Manpower, capital, energy,
and water for the chemical industry are selected as investment indexes. The sales output
value of the chemical industry is selected as the expected output index and the grey water
footprint of the chemical industry as the unexpected output index (Table 1).

Table 1. Evaluation index system of green development efficiency of the chemical industry.

Index Variable Variable Declaration

Input index

Human input

Average annual
number of employees
in chemical industry

(10,000)

Capital input
Net fixed assets of
chemical industry
(100 million CNY)

Energy input

Total energy
consumption of

chemical industry
(ten thousand tec)

Water input
Chemical industry
water consumption

(100 million m3)

Output index

Expected output Chemical industry
output value

Sales output value of
chemical industry
(100 million CNY)

Unexpected output Water pollution
Chemical industry

grey water footprint
(billion m3)

Considering the availability of data of the chemical industry, the scope of the chemical
industry is defined as five subsectors in the manufacturing industry by the China Industrial
Statistics Yearbook: petroleum processing, coking and nuclear fuel processing; chemical raw
materials and chemical products manufacturing; pharmaceutical manufacturing; chemical
fiber manufacturing; and rubber and plastic products manufacturing. Relevant data come
from the China Industrial Statistics Yearbook, China Environmental Statistics Yearbook, China
Statistical Yearbook, and statistical yearbooks of various provinces and cities from 2003 to
2017. China Industrial Statistical Yearbook, China Environmental Statistical Yearbook, and China
Statistical Yearbook are the most authoritative and important sources of data for conducting
research on China’s socioeconomic development, available in both paper and electronic
versions, published annually by the National Bureau of Statistics of China, and can be
accessed through a variety of official channels for direct access to relevant data. The details
are as follows. The missing data are estimated by intermediate interpolation method. There
are no direct statistical data of total industrial water consumption and wastewater discharge
in the statistical yearbook, so we apply the data of industrial wastewater and pollutant
discharge in wastewater for each subsector in China to estimate the data of pollutant
discharge in industrial wastewater for each subsector in each province [37]. Energy data
of the chemical industry are estimated by reference [38]. For the net fixed capital and
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industrial sales output value of the chemical industry, the fixed assets investment price
index of corresponding provinces and cities and the ex-factory price index of industrial
producers are used for price reduction, which is reduced to the level of 2000.

3.3.2. Variables Affecting the Efficiency of Green Development of the Chemical Industry

Using environmental regulations, industrial structure, foreign investment intensity
and technological progress as control variables, this paper studied their influence on the
green development efficiency of the chemical industry in the Yangtze River Economic Belt.
Among them, the total amount of environmental governance for environmental regulation
represents the proportion of GDP. Science and technology investment is represented by
the proportion of science and technology expenditure in fiscal expenditure, which is
representative of the investment amount of foreign-funded enterprises at the end of the
year. The proportion of the secondary industry in GDP represents the industrial structure.

4. Results
4.1. Evolution Characteristics of Grey Water Footprint of the Chemical Industry in the Yangtze
River Economic Belt

The grey water footprint of the chemical industry in the Yangtze River Economic Belt
declined from 2002 to 2016 with a trend of fluctuation. It decreased from 16.03 billion m3 in
2002 to 12.03 billion m3 in 2008 and then increased to 14.43 billion m3 in 2016. In 2008, due
to the impact of the financial crisis, the operation of chemical enterprises was impacted,
the production capacity decreased, and the total grey water footprint was at its lowest
point. After the financial crisis, thanks to the support of relevant national policies, chemical
enterprises gradually eliminated the crisis, the output of the chemical industry gradually
recovered, and the discharge of wastewater in the chemical industry increased, leading to
an increase in the total grey water footprint of the chemical industry.

The grey water footprint of the chemical industry in Jiangsu, Zhejiang, Hubei, Hunan,
Sichuan, and Yunnan provinces is relatively high. These provinces are the main concentra-
tion provinces of the chemical industry in the Economic Belt, with large-scale enterprises
that have high amounts of wastewater discharge. The chemical industry in Shanghai has
the lowest wastewater footprint. On the one hand, Shanghai has accelerated the adjustment
of its industrial structure, the proportion of the chemical industry in the national economy
has decreased, and the overall scale of the chemical industry has shrunk. In 2016, the sales
value of its chemical industry only accounted for 2.67% of that in China. On the other
hand, the chemical industry in Shanghai is gradually transforming and upgrading to the
direction of a high-end, green, and low-carbon chemical industry. Shanghai has carried
out the construction of a “Green Industrial zone” earlier in China, and its environmental
and economic indicators of 10,000 CNY of output value led the national level of the same
industry. The grey water footprint of the chemical industry in Guizhou is relatively low,
mainly because of the small scale of the chemical industry. In 2016, the sales value of the
chemical industry in Guizhou only accounted for 0.83% of the national total (Figure 2).

4.2. Spatial and Temporal Evolution of Green Development Efficiency of the Chemical Industry in
Yangtze River Economic Belt

From 2002 to 2016, the green development efficiency of the chemical industry in the
Yangtze River Economic Belt showed an overall development and evolution trend of first
decreasing and then increasing, with an average of 0.5163, only reaching the optimal level
of 51.63% (Table 2). This trend showed that the overall level of green development efficiency
of the chemical industry is not high and still has great growth potential. Note that the green
development efficiency of the chemical industry showed a downward trend from 2002 to
2005, which may be due to the reversal of China’s economic model in the later stage of
its 11th Five-Year Plan. Moreover, the chemical industry turned back to the development
model of high consumption, high pollution emission, and low efficiency. The average
green development efficiency of the chemical industry in the Yangtze River Economic Belt
increased significantly during 2012 and 2016, which is the reason that provinces and cities
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in the Economic Belt accelerated the green development, transformation, and upgrading of
the chemical industry and achieved remarkable results after the 18th National Congress.

Figure 2. Grey water footprint of the chemical industry in Yangtze River Economic Belt.

Table 2. Green development efficiency of the chemical industry in the Yangtze River Economic Belt
from 2002 to 2016.

2002 2004 2006 2008 2010 2012 2014 2016 Year Average

Guizhou 0.2809 0.2351 0.2131 0.2176 0.1984 0.1916 0.1973 0.2612 0.2271
Sichuan 0.2390 0.2538 0.2836 0.3366 0.3461 0.3634 0.4109 0.4922 0.3387
Yunnan 0.2243 0.2401 0.2581 0.3114 0.2640 0.2395 0.2422 0.2916 0.2569

Chongqing 0.2508 0.2370 0.2204 0.2526 0.2517 0.2742 0.3041 0.3918 0.2728
Hubei 0.3794 0.3117 0.3173 0.3687 0.3447 0.4368 0.4817 0.5043 0.3883
Hunan 0.2938 0.2609 0.2718 0.3177 0.3363 1.0000 1.0000 1.0000 0.5312
Jiangxi 0.3132 0.2679 0.2746 0.2770 0.3506 0.3521 0.4005 0.4052 0.3273
Anhui 0.3129 0.3177 0.3099 0.3357 0.3410 0.3593 0.4124 0.4346 0.3512
Jiangsu 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9860

Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Zhejiang 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Upstream area 0.2488 0.2415 0.2438 0.2795 0.2650 0.2672 0.2886 0.3592 0.2739
Midstream area 0.3288 0.2802 0.2879 0.3211 0.3438 0.5963 0.6274 0.6365 0.4156

Downstream area 0.8282 0.8294 0.8275 0.8339 0.8352 0.8398 0.8531 0.8586 0.8343
Whole area 0.4813 0.4658 0.4681 0.4925 0.4939 0.5652 0.5863 0.6164 0.5163

From the upstream, midstream, and downstream areas, the average green develop-
ment efficiency from 2002 to 2016 of the chemical industry in the downstream area was
0.8343, which was in a high-level development state with a small overall change range.
The average green efficiencies of the chemical industry in the midstream and upstream
areas were 0.4156 and 0.2739, respectively, which are relatively low and generally show an
evolutionary trend of first declining and then rising (Table 2).

In terms of provinces and cities, the green development efficiency of the chemical
industry in Shanghai, Zhejiang, and Jiangsu has been maintained at the optimal state of 1.00
(except when it was at 0.79 in 2005), while that in Hunan province also reached the optimal
state of 1.00 from 2012 to 2016. The green development efficiency of the chemical industry in
Anhui, Hubei, Chongqing, Sichuan, Guizhou, and Yunnan provinces increased to varying
degrees, showing a development trend of first decreasing and then increasing. However,
there is still a large gap in the green development efficiency of the chemical industry
between these provinces and the Shanghai, Zhejiang, and Jiangsu provinces (Figure 3).
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Figure 3. The average green development efficiency of the chemical industry from 2002 to 2016.

4.3. Regional Difference Analysis of Green Development Efficiency of the Chemical Industry in the
Yangtze River Economic Belt

To further reveal the regional differences and sources of green development efficiency
of the chemical industry in the Yangtze River Economic Belt, Dagum Gini coefficient and
its decomposition method were used to calculate and decompose its relative level.

4.3.1. Overall Regional Differences

From 2002 to 2016, the average regional difference of green development efficiency of
the chemical industry in the Yangtze River Economic Belt was 0.3080, showing a develop-
ment trend of first expanding and then narrowing. The maximum and minimum regional
differences of green development efficiency of the chemical industry appeared in 2007 and
2016 at 0.3347 and 0.2577, respectively. From 2007 to 2010, the green development efficiency
of the chemical industry fluctuated greatly, due mainly to the impact of the financial crisis
and the inconsistent degree of recovery of such efficiency in various provinces and cities.
From 2012 to 2016, the regional differences in green development efficiency of the chemical
industry narrowed, mainly because since the 18th National Congress of the Communist
Party of China, the middle and upper reaches with low green development efficiency
of the chemical industry have strengthened the treatment of the chemical industry, im-
proved its resource and energy utilization efficiency, reduced waste water discharge, and
improved the green development efficiency, thereby reducing the regional differences in
green development efficiency of the chemical industry.

4.3.2. Intraregional Differences

On the whole, the regional difference of green development efficiency of the chemical
industry in downstream areas is the largest, with an average of 0.1472. The second is the
middle reaches, with an average of 0.1043. The upstream area is the smallest, with an aver-
age of 0.0873. From the evolution trend, from 2002 to 2012, the regional difference of green
development efficiency of the chemical industry in the middle and lower reaches showed
an upward trend in fluctuation. From 2012 to 2016, it showed a downward trend. From
2002 to 2016, the green development efficiency of the chemical industry in the upstream
region showed an upward trend in fluctuation, indicating that the regional differences are
expanding. Note that, although the regional differences of green development efficiency of
the chemical industry in the upstream region is the smallest, they are expanding. Hence,
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it is necessary to strengthen the regulation of regional difference of green development
efficiency of the chemical industry in the upstream region. Although there are great regional
differences in the green development efficiency of the chemical industry in the middle
reaches and downstream areas, these have narrowed significantly since 2012.

4.3.3. Differences between Regions

From the mean value of green development efficiency of the chemical industry among
the three regions, the regional difference between the downstream and upstream areas is
the largest at 0.5081, between the lower and middle reaches is 0.3805, and between the
middle reaches and the upper reaches is the smallest at 0.1872. From the changing trend,
the regional difference between the middle and upper reaches tends to expand, whereas
those between downstream and upstream and between downstream and midstream tend
to narrow (Figure 4).

Figure 4. Regional differences in green development performance of the chemical industry in the
Yangtze River Economic Belt.

4.3.4. Source of Difference

From the perspective of difference sources, the contribution of inter-group differences
is the largest with an average value of 0.2545, which is higher than that of regional differ-
ences with an average value of 0.0453, and the contribution of over variable density with
an average value of 0.0082. The evolution trend of inter-group differences is similar to that
of overall regional differences, and the contribution rate of the average value of inter-group
differences is as high as 78.94%. This percentage showed that the difference between groups
is the main factor affecting the overall regional difference of green development efficiency
of the chemical industry in the Yangtze River Economic Belt. The contribution rates of
intra-group difference and hypervariable density were 14.05% and 2.54%, respectively,
which have relatively small contributions to the overall regional difference (Table 3).

4.4. Regional Convergence Analysis of Green Development Efficiency of the Chemical Industry in
the Yangtze River Economic Belt
4.4.1. σ-Convergence Test

The σ-convergence test method is used to calculate the σ-convergence coefficient of the
whole Yangtze River Economic Belt and the upper, middle, and lower reaches, as shown
in Figure 5. From 2002 to 2004, the global σ-convergence coefficient of the Economic Belt
increased and showed a divergent state. From 2006 to 2016, the global σ-convergence
coefficient generally showed a downward trend, indicating that the global σ-convergence
occurred. This means that the regional differences in the green development efficiency of
the chemical industry in the Yangtze River Economic Belt are shrinking.
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Table 3. Regional differences in green development efficiency of the chemical industry in the Yangtze
River Economic Belt.

Year Overall G Inter
Group

Between
Groups

Hypervariable
Density Upstream Midstream Downstream Midstream–

Upstream
Downstream–

Upstream
Downstream–

Midstream

2002 0.3224 0.0415 0.2786 0.0023 0.0456 0.0579 0.1556 0.1386 0.5380 0.4413
2003 0.3327 0.0408 0.2900 0.0019 0.0151 0.0597 0.1588 0.1264 0.5540 0.4677
2004 0.3312 0.0392 0.2921 0.0000 0.0153 0.0403 0.1542 0.0741 0.5490 0.4950
2005 0.3220 0.0463 0.2753 0.0003 0.0350 0.0419 0.1829 0.0831 0.5239 0.4621
2006 0.3321 0.0426 0.2885 0.0010 0.0638 0.0351 0.1564 0.0894 0.5448 0.4849
2007 0.3347 0.0446 0.2867 0.0034 0.0832 0.0679 0.1531 0.1058 0.5411 0.4848
2008 0.3089 0.0435 0.2605 0.0049 0.0930 0.0634 0.1494 0.1006 0.4980 0.4487
2009 0.2869 0.0389 0.2438 0.0042 0.0610 0.0405 0.1484 0.1051 0.4767 0.4070
2010 0.3093 0.0412 0.2672 0.0010 0.1074 0.0092 0.1479 0.1325 0.5188 0.4187
2011 0.3054 0.0414 0.2615 0.0025 0.1148 0.0381 0.1394 0.1211 0.5045 0.4253
2012 0.3110 0.0551 0.2345 0.0215 0.1287 0.2414 0.1430 0.3834 0.5178 0.2529
2013 0.3029 0.0541 0.2280 0.0208 0.1227 0.2369 0.1420 0.3654 0.5024 0.2503
2014 0.2933 0.0517 0.2228 0.0188 0.1522 0.2123 0.1291 0.3717 0.4944 0.2264
2015 0.2691 0.0494 0.2003 0.0194 0.1332 0.2122 0.1241 0.3174 0.4421 0.2233
2016 0.2577 0.0493 0.1875 0.0209 0.1380 0.2077 0.1235 0.2931 0.4160 0.2194

Figure 5. Absolute convergence graph.

From different regions, the σ-convergence coefficient of downstream areas showed a
downward trend from 2002 to 2016 and σ-convergence, indicating that the regional differ-
ence in green development efficiency of the chemical industry in downstream areas had
narrowed. From 2002 to 2012, the σ-convergence coefficient in the middle reaches increased
and then decreased, and after 2012, it continued to decline, showing σ-convergence. After
2012, the regional difference of green development efficiency of the chemical industry in
the middle reaches was reduced. From 2002 to 2016, the σ-convergence coefficient in the
upstream region basically showed an upward trend and no σ-convergence, indicating that
the difference in green development efficiency of the chemical industry in the upstream
region was expanding.

Overall, the green development efficiency of the chemical industry in the whole region
and the downstream areas of the Economic Belt has σ-convergence. After 2012 in the middle
reaches, the green development efficiency of the chemical industry also had σ-convergence.
There is no σ-convergence in the upstream region, and the regional imbalance of green
development efficiency of the chemical industry intensified, which is basically consistent
with the analysis results of Gini coefficient.

4.4.2. Absolute Convergence of β

The Hausman test shows that the panel data model with time and individual double
fixed effects is more appropriate, and so the β absolute convergence mechanism was tested.
The results show that the β absolute convergence coefficients in the whole region and
the upper, middle, and lower reaches of the Yangtze River Economic Belt are negative,
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indicating that the green development efficiency of its chemical industry exists in β absolute
convergence. Among them, the significance of the whole region, the upstream region, and
the middle reaches region passed the significance test of 1%, 5%, and 5%, respectively.
These results showed that the growth rate of green development efficiency of the chemical
industry in the whole region, the upstream region, and the middle reaches region of the
Yangtze River Economic Belt converged, while the significance of the downstream region
did not pass the test. In terms of convergence speed, the upstream region is the fastest,
followed by the midstream region (Table 4).

Table 4. β Absolute convergence table.

Variable Whole
Region

Upstream
Region

Midstream
Region

Downstream
Region

β
−0.1734 *** −0.2545 ** −0.1806 ** −0.2691

(−4.43) (−3.86) (−7.13) (−0.92)

Constant term
−0.1996 *** −0.4009 ** −0.2761 ** −0.0877

(−5.31) (−4.46) (−9.73) (−1.31)
R2 0.0736 0.3676 0.4548 0.1027

Convergence rate 0.0127% 0.0196% 0.0132% -
Note: ** and ***, respectively, represent significance at the confidence levels of 5% and 1%, and T statistics are in
brackets. “-” means empty.

Conditional β convergence does not require different regions to have the same basic
characteristics, i.e., different regions can be at different growth paths and steady-state
levels. If conditional β convergence exists, they eventually converge to their respective
steady states by virtue of their own characteristics. In this paper, the green development
efficiency of chemical industry in the Yangtze River Economic Belt is examined in four
aspects, namely environmental regulation, industrial structure, foreign investment intensity,
and scientific and technological progress, to investigate which factors contribute to the
green development efficiency of chemical industry in Yangtze River Economic Belt to reach
the conditional convergence. After controlling the control variables, such as environmental
regulation, industrial structure, foreign capital intensity, and scientific and technological
progress, the β absolute convergence coefficient in the whole region and the upper, middle,
and lower reaches of the Yangtze River Economic Belt was still negative. In addition,
the significance of the whole region and the middle reaches passed the significance test
at 1% and 5%, respectively. This shows that the green development efficiency of the
abovementioned regional chemical industry follows the trend of β absolute convergence,
which is under the consideration of environmental regulation, industrial structure, foreign
capital intensity, and scientific and technological progress. In terms of convergence rate,
the convergence rate in the middle reaches is faster.

In the panel data regression model of the whole region and the upper, middle, and
lower reaches of the Yangtze River Economic Belt, the regression coefficients of the control
variable environmental regulation are negative, and the whole region and the upper
reaches pass the 5% and 10% significance tests, respectively. This finding showed that the
environmental regulation of the whole region and the upper reaches restricts the reduction
in regional difference in the green development efficiency of the chemical industry. The
regression coefficients of industrial structure in the whole region, the middle reaches, and
the downstream regions are positive, while those of the upstream regions are negative,
but they all fail to pass the significance test. The regression coefficient of foreign capital
intensity in the whole region, the upstream region, and the downstream region is positive,
while that of the middle reach region is negative, but only the upstream region passes
the significance test. The results showed that the foreign capital intensity helps reduce
the regional difference of green development efficiency of the chemical industry in the
upstream region. The regression coefficients of scientific and technological progress in
the whole region, upstream, midstream, and downstream regions are positive, but only
the whole region passes the significance test. The outcome means that the improvement
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of scientific and technological level helps reduces the difference in green development
efficiency of the chemical industry in these regions but is not the main reason (Table 5).

Table 5. β Conditional convergence table.

Variable Whole
Region

Upstream
Region

Midstream
Region

Downstream
Region

β
−0.1564 *** −0.2476 −0.1920 ** −0.3976

(−3.61) (−1.25) (−8.18) (−1.41)
Environmental

regulation
−37.6551 ** −11.4104 * −51.8642 −30.9161

(−3.04) (−2.43) (−1.00) (−1.01)

Industrial structure
0.3754 −0.4512 1.5735 0.3231
(1.53) (−1.93) (1.02) (2.01)

Foreign capital
intensity

0.8206 7.6279 ** −5.4985 0.9576
(1.26) (4.49) (−0.65) (2.04)

Science and
technology

1.7491 ** 6.4771 2.5444 1.8611
(2.89) (1.08) (0.99) (1.30)

Constant term
−0.3230 *** −0.3667 −0.6851 −0.3956

(−3.72) (−1.79) (−1.44) (−2.28)
R2 0.0250 0.0854 0.1260 0.0748

Convergence rate 0.0113% - 0.0142% -
Note: *, **, and ***, respectively, represent significance at the confidence levels of 10%, 5%, and 1%, and T statistics
are in brackets. “-” means empty.

5. Discussion

First, the problem of water ecological environment in the Yangtze River Economic Belt
has attracted increasing research attention. Grey water footprint has been widely recognized
as an indicator of pollution intensity [39,40]. The industrial grey water footprint index can
better reflect the water pollution of industrial production activities than the wastewater
pollutant discharge index can [23]. In this study, grey water footprint is incorporated
into the evaluation framework of green development efficiency of the chemical industry.
It can better reflect the impact of chemical industry production activities on the water
environment and provide new research ideas for the calculation of green development
efficiency of the chemical industry. In recent years, the green development, transformation,
and upgrading of the chemical industry in the Economic Belt has achieved remarkable
results. Nonetheless, in the future, we should still focus on the dynamic change trend of
pollutant discharge in chemical industry wastewater, further strengthen the water pollution
control of the chemical industry, optimize the industrial scale, reduce the grey water
footprint of the chemical industry, and improve the efficiency of grey water footprint of
the chemical industry. On the basis of this calculation model, provinces and cities can also
build a measurement model of green development efficiency of the chemical industry based
on grey water footprint, monitor the green development of the chemical industry, and put
forward governance strategies. However, the water consumption and grey water footprint
data of the chemical industry used in this paper were estimated using the provincial and
industrial data in the Yearbook of China Economic Census (2008) and reference [38], and there
is a certain error with the actual value. In future research, it is still necessary to improve the
accuracy of data estimation or expand the channels for obtaining water environment data
of the chemical industry.

Second, this study showed that the green development efficiency of the chemical
industry in the Yangtze River Economic Belt increased significantly from 2002 to 2016
and showed a development and evolution trend of first declining and then rising. Yijun
Zhang (2020) found that the overall green development performance of China’s chemical
industry showed a significant improvement trend from 2007 to 2017 [6]. Yeh Jiahuey (2019)
studied the green development performance of China’s chemical industry from 1980 to
2013 and found that it showed an evolution law of first declining and then rising from 2002
to 2013 [17]. These results are basically consistent with the results of the present research.
In recent years, the Chinese government has strengthened the construction of ecological
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civilization and actively promoted the green transformation and upgrading of the chemical
industry with remarkable results. In particular, the 18th Congress of the Communist Party
of China in 2012 proposed to give prominence to the construction of ecological civilization
and build a “Beautiful China.” According to the data of the China Development and Reform
Commission from 2016 to 2020, there were more than 8000 chemical enterprises along the
Yangtze River. Furthermore, the proportion of excellent water environment sections in the
Yangtze River Basin increased from 82.3% in 2016 to 91.7% in 2019 and further increased
to 96.3% from January to November in 2020, and the proportion of inferior class V water
quality in the Yangtze River Basin decreased from 3.5% to 0.6% during 2016 and 2019. The
elimination of inferior class V water bodies would be realized for the first time in 2020,
which showed that the green development of the chemical industry in the Economic Belt
has achieved remarkable results, thus supporting the conclusions of this paper from the
practical level.

Third, the regional heterogeneity of green development efficiency of the chemical
industry in the Yangtze River Economic Belt is very obvious. Affected by the natural
geographical environment and socioeconomic conditions, there are obvious gaps in the
socioeconomic development level, industrialization level, and scientific and technological
innovation ability in the upper, middle, and lower reaches of the Yangtze River Economic
Belt. The zonality of industrial ecological efficiency [41] and green development level [42] is
significant. This study found that the green development efficiency of the chemical industry
in the Yangtze River Economic Belt was the highest in the lower reaches from 2002 to 2016,
followed by the middle reaches, and the lowest in the upper reaches. The overall regional
difference and interregional difference tended to narrow, and the intraregional difference
expanded. Our result is similar to the research conclusions of Yunbo Xiang (2021) on the
spatial differences of green development efficiency of the chemical industry in the Yangtze
River Economic Belt [28], but there are some differences in specific values, which may be
caused by different measurement indicators and used models. According to the above
research results, in the future, the focus of the chemical industry governance in the Yangtze
River Economic Belt would still be to accelerate the green development, transformation,
and upgrading of the chemical industry in the middle and upper reaches, improve the
green development efficiency of the chemical industry, and reduce regional differences. At
the same time, we should pay attention to controlling regional differences and preventing
their expansion. The middle and upper reaches should improve the green development
efficiency of the chemical industry by means of technological innovation, optimizing the
industrial scale, adjusting industrial structure, and strengthening environmental regulation.
At the same time, we should promote the diffusion of technology, capital, and talents in
the lower reaches to the middle and upper reaches. We should promote the green and
coordinated development of the chemical industry in the Yangtze River Economic Belt.

6. Conclusions

This research studied the regional differences, influencing factors, and convergence
of green development efficiency of the chemical industry in the Yangtze River Economic
Belt by using the super efficiency SBM model, Dagum Gini coefficient, coefficient of
variation method, and panel data regression model. The green development efficiency
measurement model of the chemical industry constructed in this paper can more objectively
and comprehensively reflect the impact of the chemical industry on the water environment
than in previous studies and is very consistent with the industrial characteristics of the
chemical industry and the regional water environment problems of the Economic Belt.
Accurately measuring the green development efficiency of the chemical industry in the
Economic Belt can provide theoretical support for chemical water treatment and green
development in the area. Analyzing the difference, influence, and convergence of green
development efficiency of the chemical industry in the Yangtze River Economic Belt can
provide reference for formulating strategies to improve the green development efficiency
of the chemical industry by region and classification.
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The main conclusions of this paper are as follows.
First, from 2002 to 2016, the total grey water footprint of the chemical industry in the

Yangtze River Economic Belt showed a downward trend, while the green development
efficiency of the chemical industry showed an upward trend as a whole. This finding means
that remarkable achievements have been made in environmental governance and green
development of the chemical industry in the Yangtze River Economic Belt in recent years.

Second, there are significant regional differences in the green development efficiency
of the chemical industry in the Yangtze River Economic Belt. From the perspective of space,
the green development efficiency of the chemical industry in the lower reaches is high,
while that in the middle and upper reaches is low. In terms of time, the overall regional
differences and interregional differences tend to narrow, and the intraregional differences
expand. From the source of difference, regional difference is the main source of regional
difference in green development efficiency of the chemical industry in the Yangtze River
Economic Belt.

Third, there is σ-convergence in the green development efficiency of the chemical
industry in the whole region, the middle reaches, and the lower reaches of the Yangtze
River Economic Belt, while there is no σ-convergence in the upper reaches. There are β
absolute convergence and β conditional convergence in the green development efficiency
of the chemical industry in the whole region and the upper, middle, and lower reaches of
the Yangtze River Economic Belt.

Fourth, there is spatial heterogeneity in the impact of environmental regulation, in-
dustrial structure, foreign capital intensity, and scientific and technological progress on
the green development efficiency of the chemical industry in the Yangtze River Economic
Belt. This spatial heterogeneity suggests that in the governance of the chemical industry in
the Yangtze River Economic Belt, common but differentiated policy measures should be
formulated and precisely applied according to the characteristics of the region, by region
and by industry. The middle and upper reaches should strengthen environmental regula-
tion, adjust the structure of chemical industry, strengthen supervision and management
of foreign investment, and improve environmental access standards. The lower reaches
should focus on scientific and technological innovation, promote the upgrading of chemical
industry value chain, and enhance the resilience of chemical industry.

It should be noted that, due to the limitation of statistical data, the paper uses the
proportion of COD and ammonia nitrogen (NH+

4 -N) emissions in industrial wastewater of
the chemical industry by industry nationwide to estimate the COD and ammonia nitrogen
(NH+

4 -N) emissions in wastewater of the chemical industry by industry in each province
when calculating the gray water footprint, without distinguishing the proportion of COD
and ammonia nitrogen (NH+

4 -N) emissions in wastewater between provinces and regions
differences. To some extent, this underestimates the differences in gray water footprints
of chemical industries in the Yangtze River Economic Belt among provinces and cities.
Meanwhile, the study of the differences in the overall green development efficiency of
the chemical industry in the Yangtze River Economic Belt and its convergence can help to
grasp the green development efficiency of the chemical industry in provinces and cities in
general, but in-depth studies on the gray water footprint and green development efficiency
of five subsectors are needed in the future to reveal the differences between industries and
to develop more refined governance strategies for the chemical industry.
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