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Therapeutic Advances in 
Musculoskeletal Disease

Introduction
Systemic sclerosis (SSc) belongs to the group of 
systemic autoimmune diseases of the connective 
tissue. This disease remains one of the most 
severe and complex diseases in the field of rheu-
matology with a high disease-related mortality. 
Interstitial lung disease (ILD), pulmonary arterial 
hypertension (PAH), cardiac involvement, gas-
trointestinal (GI) involvement and, rarely, renal 
failure represent the main causes for mortality. In 
addition, SSc severely impairs quality of life.

SSc is characterized by three main clinical fea-
tures, namely, vasculopathy, inflammation and 
fibrosis. An early manifestation of vasculopathy is 
increased vascular contraction, evident in 
Raynaud’s phenomenon. Ischaemia and reperfu-
sion injury are associated with the development of 
obliterative vasculopathy causing digital ulcers, 
loss of acral tissue or PAH. The second typical 
feature is inflammation, which often results in 

fibrosis as third clinical feature and present at 
various degrees. Fibrosis often starts at the skin of 
the fingers and involves the proximal skin to vary-
ing degrees. To date, the pathogenesis of SSc has 
not been fully elucidated. In this manuscript, as 
broad look into the future, we describe the scien-
tific rationale for a novel SSc concept that has the 
potential to identify and develop new therapeutic 
approaches. This concept determines the struc-
ture of the review and is illustrated in Figure 1.

Environmental factors as important 
contributors for SSc
Since the description of toxic oil syndrome resem-
bling some of the clinical features of SSc, there is 
increasing evidence of the role of environment 
and exposure to toxic agents in SSc. Several envi-
ronmental factors (summarized as exposome in 
Figure 1) have been shown to promote or trigger 
the development of SSc such as exposure to epoxy 
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resins, asbestos, silica, silicone or particulate air 
pollution.1 Epidemiological studies of SSc identi-
fied strong associations with occupational factors 
such as exposure to silica and solvents with odds 
ratios (ORs) > 2 and weaker associations with 
epoxy resins and welding fumes.2 Interestingly, 
sex is an influencing factor to be considered in the 
increase of risk for SSc. For example, exposure to 
silica increased the risk of SSc by an OR > 3 in 
males, while it was lower in females. Pesticides 
increased the risk of SSc in females by an OR > 3 
in contrast to males, who did not show an 
increased risk.2

Another interesting area that alters the immune 
response and thus influences the pathophysiology 
of SSc is the microbiome. As indicated recently, 
faecal transplantation changing the gut microbi-
ome can improve at least some GI symptoms.3 
Further studies are currently underway to deter-
mine additional effects.

Deciphering the mechanisms of disease develop-
ment requires linking these environmental factors 
to individual genetic risk and clinic via multi-
OMIC approaches. Corresponding investigations 

have been initiated in the field of autoimmunity 
and helped to identify individual risk factors and 
to develop strategies for precision medicine.4 
Ideally, multi-OMIC approaches could be used to 
identify disease prevention strategies.

Interplay between environmental factors 
and expression of G protein-coupled 
receptors
G protein-coupled receptors (GPCRs) are acti-
vated by extracellular substances or signals and 
transmit them into the cell interior, leading to cel-
lular responses such as cell growth, changes in 
gene transcription, post-translational modifica-
tions and cell–cell interactions. These processes 
enable adaptations of the body to changing envi-
ronmental conditions.5,6 GPCRs are highly con-
served in vertebrates and have similar functions in 
different species. They are expressed in immune 
cells and also in selected tissue-resident cells, 
depending on the GPCR.5 For example, the angi-
otensin II receptor subtype 1 (AT1R) and 
endothelin receptor type A (ETAR) are expressed 
in fibroblasts and endothelial cells of the lung and 
also in the skin, heart and kidneys of healthy 

Figure 1.  Proposed concept for the development of SSc. Briefly, environmental factors determine the GPCR 
signature and, under the influence of genetic background and if chronically present, also the anti-GPCR 
signature. The anti-GPCR signature affects the function of abs from regulatory to disease-driving effector 
molecules. Specifically, the abs determine the threshold for and direction of immune cell migration, the place 
and severity of inflammation, and ab-mediated signalling. In severe inflammation, this will lead to loss of 
tolerance towards other autoantigens, epitope spreading and the development of SSc.
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donors.7,8 They are also expressed in monocytes, 
neutrophils, B-cells and T-cells.8–10 Traffic-
related air pollution with exposure to diesel 
increases the expression of ETAR, and experi-
mental bacterial infections increase that of AT1R 
in the lung.11,12 These data provide a causal rela-
tionship between predisposing conditions for SSc 
and AT1R/ETAR expression. In SSc, upregu-
lated AT1R and ETAR expression has been 
shown in the lung, in the skin as well as in the 
immune cells13–15 and was particularly identified 
in early disease.5,9 Therefore, it can be assumed 
that environmental conditions affecting the lungs 
or skin could result in increased AT1R as well as 
ETAR expression (see Figure 1).

Autoantibodies against GPCRs are important 
players in SSc
Natural IgG autoantibodies (abs) against GPCRs 
can be detected in all individuals and represent an 
emerging field for understanding of chronic dis-
eases, including SSc. Anti-GPCR abs are thought 
to play an important role in immune cell homeo-
stasis.16 Most likely, they reflect the expression of 
their corresponding GPCR, which rely on envi-
ronmental conditions.5,6,16 As the foetal environ-
ment is different from those of infants and adults, 
autoimmunity to GPCR could escape from toler-
ance. Changes in the GPCR expression, in their 
conformation and complex formation with other 
receptors (dimerization) or proteins could result 
in tolerance break most likely by epitope spread-
ing.6 In line with this, epitopes of a specific anti-
GPCR ab differ in SSc and healthy donors.17 In 
addition, disease-specific ab cross-reactivities and 
receptor activations have been identified, which 
were different from the signalling induced by acti-
vation of just one receptor. It is likely that disease-
specific heterodimerizations of different GPCRs 
or proteins occur, and current studies support 
this hypothesis. In the future, we expect more evi-
dence for the hypothesis that phenotypic variabil-
ities in the GPCR abs and cross-reactivities to 
other receptors result in different ab function and 
contribute to the development and to the pheno-
type of SSc.

Among anti-GPCR abs, those abs targeting the 
AT1R as well as the ETAR could be centrally 
involved in the pathogenesis of SSc.18,19 They 
have the potential to modulate the function of 
AT1R and ETAR in resident tissue cells such as 
in endothelial cells, fibroblasts as well as in innate 
and adaptive immune cells.

Antibodies directed to AT1R and ETAR 
induce SSc pathways
Although present in physiological levels in all 
individuals,16 patients with SSc often show 
increased levels of anti-AT1R and anti-ETAR 
abs.8,18 However, low levels of anti-ETAR abs 
have been described particularly in acute vascular 
diseases such as in giant cell vasculitis. This may 
reflect increased ab binding to endothelial cells 
and consequently, a reduction in the circulatory 
ab levels.20 Our recent data indicate that long-
term use of endothelin receptor blockers is 
accompanied by low anti-AT1R ab levels.

In addition to quantitative differences of anti-
GPCR abs to healthy controls, anti-AT1R abs or 
anti-ETAR abs show disease-specific correlations 
with other abs and form a disease-specific func-
tional network. As shown before by using recep-
tor blockers, these abs exhibit other functions 
than those from healthy donors.16

As shown in vitro and ex vivo, anti-AT1R and anti-
ETAR abs derived from SSc patients are cross-
reactive and stimulate both receptors.7 In 
endothelial cells, anti-AT1R abs stimulate the 
expression of adhesion molecules, cytokines and 
chemokines.10,18 In fibroblasts, they also induce 
collagen expression.10 Our current data indicate 
that they contribute to lung and skin inflamma-
tion, skin fibrosis and obliterative vasculopathy. 
As suggested by our in vitro studies, the abs could 
exhibit independent, synergistic and different 
effects on the cells as the natural ligands.5,10,21 In 
addition, they act agonistic and as allosteric 
ligands. However, further studies on purified anti-
AT1R and ETAR abs are necessary to verify the 
role of quantitative and qualitative differences of 
these abs, which is still a challenge for the future.

The antibody network summarized as 
‘antibodiom’ is a possible contributor to SSc
In addition to anti-AT1R and anti-ETAR abs, fur-
ther antibodies are detected in patients with SSc, 
which form a specific network.16 So far, the bio-
logical function of other abs, which target, for 
example, fibroblast growth factors, the chemokine 
receptors CXCR3 and 4, Platelet-derived growth 
factor (PDGF) receptors or adrenergic receptors, 
is unknown or at least only partially understood. 
Artificial intelligence such as machine learning 
linking the different abs to clinical data will pro-
vide hypotheses about the potential role of indi-
vidual abs in the development of SSc. This will 
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require validation in different patient cohorts and 
mechanistic studies. By analysing multiple abs in 
different SSc symptoms, we expect several novel 
biomarkers for SSc as well as pathways, which will 
hopefully lead to the development of novel 
therapies.

The presence of physiological levels of anti-
GPCR abs and their high plasticity in the interac-
tions to other GPCRs as well as to intracellular 
proteins could provide a rationale for the develop-
ment of an autoimmune response to intracellular 
antigens and for disease-specific autoimmune 
responses.6 Anti-GPCR abs could be a weak link 
for the development of classical abs to intracellu-
lar antigens. This hypothesis needs to be proven 
in the future. Furthermore, linking specific GPCR 
signatures to specific ab signatures and to envi-
ronmental factors could help to discover mecha-
nisms of how environmental factors are translated 
into the development of SSc and its phenotype.

However, the regulatory effects of anti-GPCR abs 
and of immunoglobulins in general are a novel fas-
cinating field. Injection of IgG from SSc patients 
into mice induced signs of vasculopathy and 
inflammation, not present by application of IgG 
from healthy donors.7 Transfer of peripheral blood 
mononuclear cells from SSc patients induced 
antinuclear antibodies, anti-AT1R abs, severe 
inflammation in the lung, in the muscles as well as 
in the kidneys, which was diminished upon B-cell 
depletion.22 These data indicate a causal role of 
B-cells and of abs as their main effector molecules 
at least for some of the SSc features such as for 
ILD. As reflected by the use of intravenous immu-
noglobulins (IVIGs) in various autoimmune  
diseases, the sum of all individual antibodies,  
the ‘antibodiom’, exhibits regulatory effects. 
Accordingly, IVIGs from healthy donors induced 
several cytokines and regulatory proteins in mono-
cytic THP1 cell lines.23 In contrast, IgG from SSc 
patients transferred individual and disease-specific 
pathways into monocytes and induced an inflam-
matory and profibrotic cytokine milieu in the 
supernatants.23 Machine learning was able to link 
this ab-induced proteome to disease symptoms 
and pathways present in the corresponding 
donors. This suggests that the induced proteins 
reflect disease processes and could thus provide a 
window to identify pathways.23 For those analy-
ses, monocytes and monocyte-derived cells are 
very interesting immune cells. They show a broad 
functional and morphologic variability, which is 

also accompanied by a high variability in the 
expression of GPCR and other proteins. Their 
stimulation could help to identify novel biomark-
ers and proteins involved in individual disease pro-
cesses. In a recent study, purified IgG from diffuse 
SSc patients was shown to modify the phenotype 
of healthy donor-derived dermal fibroblasts and 
induced profibrotic properties.24 The ab-induced 
transcriptome and protein profile was particularly 
more pronounced in patients positive for topoi-
somerase I antibodies. These data show that SSc 
patient-derived abs could induce a fibrotic fibro-
blast phenotype. Whether abs also induce epig-
enomic changes remains to be studied.

Recently, novel technologies such as single-cell 
RNA sequencing have emerged allowing to glob-
ally study effects of antibodies. By this method, a 
specific signallome induced by a single pathogenic 
factor can be measured in various rare and fre-
quent cells, which could help to understand dis-
eases and their underlining mechanisms. This 
method can also allow to study the possible contri-
bution of a specific antibody in SSc pathogenesis. 
This hypothesis is currently investigated.

Extracellular vesicles: another interesting 
player in SSc pathogenesis
Extracellular vesicles (EVs) are further potentially 
important players in disease-associated processes 
and in the regulation of the intercellular communi-
cation. EVs are phospholipid bilayer particles that 
comprise exosomes with a size of 40–150 nm and 
micro-vesicles with a size of >150 nm.25 Micro-
vesicles are generated by shedding of the plasma 
membrane, while exosomes are released into the 
extracellular space after fusion of multivesicular 
bodies (MVBs) with the plasma membrane. 
Therefore, exosomes have an intraluminal origin 
and contain membrane embedded proteins such 
as GPCRs, cytoplasmic proteins, receptors, 
cytokines, chemokines, major histocompatibility 
complexes, enzymes, chaperones, lipids like cho-
lesterol, ceramides, different nucleic acids (mRNA, 
miRNA, dsDNA), tetraspanins and, importantly, 
disease-related autogenic peptides.26,27

The levels of micro-vesicles are increased in SSc 
and show associations with inflammation and 
fibrosis.28 They are also capable of inducing apop-
tosis in circulating angiogenic cells and may thus 
contribute to impaired vasculogenesis in SSc.29 
The function of exosomes varies depending on 
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the cell of origin, which determines their size, 
membrane structure and activation status.

Initially thought to be waste products of cells, it is 
now widely accepted that EVs play an important 
role in intercellular and paracrine communication 
and thus contribute to immune regulation. EVs can 
be internalized by other cells or bind to other cells 
via their surface receptors.30 For example, lung 
endothelial cells take up EVs from vascular smooth 
muscle cells of SSc, which promotes endothelial 
cell migration and angiogenesis.30 In SSc, 
exosomes contain micro-RNAs. These EVs 
induce a profibrotic phenotype in cultured fibro-
blasts.31 Moreover, EVs from human endothelial 
cells derived from PAH patients administered 
proliferation of human smooth muscle cells and 
thus can contribute to the development of PAH.32,33 
These data indicate a paracrine way to spread path-
ogenic factors from tissues, for example, to endothe-
lial cells and from these to the blood stream. The 
lung as barrier organ with a low number of tissue 
cells seem to be ideal for the spreading of informa-
tion. Taken together, EVs can induce paracrine 
and systemic disease mechanisms and profibrotic 
properties. They also can affect the cellular compo-
sition in tissues. In SSc, the interaction of EVs with 
abs is a novel emerging field to investigate.

Mechanisms of fibrosis and the role of 
fibroblasts
Fibroblasts are a key effector cell in SSc and as 
discussed before, various factors such as abs and 
exosomes can alter their phenotype.24,31 To deter-
mine the contribution of a particular factor to the 
alteration of the fibroblast phenotype, it is crucial 
to characterize the fibroblast population of 
patients. There is increasing evidence that fibro-
blasts are a heterogeneous cell population with 
distinct, sometimes opposing functions. These 
functional differences are particularly overt in dis-
ease context. In fibrotic diseases such as SSc, the 
fibroblast pool is dominated by fibroblast sub-
populations that synthesize large amounts of 
extracellular matrix (ECM). In contrast, in rheu-
matoid arthritis, a prototypical chronic inflamma-
tory disease, fibroblast populations proliferate 
promoting matrix degradation and inflammation 
through the release of matrix degrading enzymes 
and proinflammatory mediators. The increasing 
availability of single-cell OMIC techniques ena-
bled the identification of individual subpopula-
tions based on transcriptional differences. In SSc, 

recent seminal work from the Lafyatis laboratory 
identified 10 subpopulations of fibroblasts in skin 
from SSc patients.34 Characterizing functionally 
distinct subpopulations of fibroblasts may have 
therapeutic implications. An individualized tar-
geting of pathogenic subpopulations may not only 
provide increased efficacy but also limit adverse 
events by sparing subpopulations required to 
maintain tissue homeostasis. However, the factors 
that contribute to the differentiation and persis-
tence of these subpopulations often remain 
unclear. We are just beginning to understand 
these regulatory mechanisms.

The transcription factor PU.1, a member of the 
Erythroblast Transformation Specific (ETS) fam-
ily of transcription factors encoded by the SPI1 
gene, serves as an essential orchestrator of profi-
brotic gene expression programmes in fibroblasts 
and may thus be required for differentiation into 
profibrotic fibroblast subsets.35 The expression  
of PU.1 is upregulated in a subset of profibrotic 
fibroblasts in SSc and in other fibrotic diseases. 
PU.1 induces the expression of fibrosis-associ-
ated gene signatures and can convert proinflam-
matory and resting fibroblasts into profibrotic 
fibroblasts with increased expression of contrac-
tile proteins and ECM components such as type I 
collagen. Pharmacological or genetic inactivation 
of PU.1 blocks profibrotic transcriptional net-
works and enables re-programming of fibrotic 
fibroblasts into homeostatic fibroblasts with anti-
fibrotic effects across different organs.35

Another transcription factor involved into the dif-
ferentiation of resting fibroblasts into profibrotic 
fibroblast subsets is Engrailed 1 (EN1). EN1 is a 
member of the family of homeodomain-contain-
ing transcription factors. During the developing 
murine dermis, EN1 positive fibroblasts gradually 
replace EN1 negative fibroblasts in earlier stages 
of skin development, but the expression decreases 
before birth.36 However, former EN1-positive 
cells can give rise to a subpopulation of fibroblasts 
that has a high capacity for ECM production and 
is required for skin scaring in adult mice.36,37 
Györfi and coworkers characterized EN1 as a 
molecular amplifier of TGF-β signalling in myofi-
broblast differentiation in the context of SSc. They 
demonstrated that EN1 is induced in some sub-
sets of fibroblasts in a TGF-β/SMAD3-dependent 
manner and that EN1 in turn facilitates the tran-
scription of a subset of profibrotic TGF-β target 
genes to promote cytoskeleton organization and 
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ROCK activation required for fibroblast-to-myofi-
broblast differentiation. Mechanistically, EN1 
does not directly bind to the promoters of profi-
brotic target genes, but predominantly signals in 
trans by modulating the activity of the specificity 
protein (SP) family members. Knockdown of 
EN1 prevented cytoskeletal reorganization, inhib-
ited fibroblast-to-myofibroblast transition and 
ameliorated experimental skin fibrosis in mouse 
models and human skin models.

Nuclear receptors – key regulators of 
critical transcriptional programmes
Nuclear receptors form a superfamily of tran-
scriptional regulators with 48 members identified 
to date. Several members of the nuclear receptor 
family are associated with the pathogenesis of SSc 
and other fibrotic diseases.

PPARγ (NR1C3) was the first nuclear receptor 
implicated in fibroblast activation. The expression 
of PPARγ is downregulated in SSc skin and also 
in cultured SSc fibroblasts by TGF-β–SMAD-
dependent pathways.38 The downregulation of 
PPARγ, in turn, promotes TGF-β signalling as 
PPARγ competes with SMAD3 for the transcrip-
tional coactivator histone acetyltransferase 
p300.39,40 Activation of PPARγ, for example, with 
pharmaceutical agonists, inhibits TGF-β-induced 
fibroblast-to-myofibroblast differentiation and 
ameliorates experimental fibrosis.39,41–43 However, 
the pan-PPAR agonist lanifibranor failed to dem-
onstrate antifibrotic efficacy in a randomized, 
controlled, phase II trial in patients with dc SSc. 
Selective PPARγ agonists have been withdrawn 
from the market due to cardiovascular adverse 
events and are thus currently not available for 
clinical studies.

NR4A1 (also known as Nur77 or TR3) is also 
downregulated in SSc as well as in other fibrotic 
diseases.44 Under physiologic conditions, NR4A1 
inhibits the expression of profibrotic genes down-
stream of TGF-β by transrepression of SP1.44 
However, in SSc and other fibrotic diseases,  
persistently high levels of TGF-β represses the 
antifibrotic effects of NR4A1 by histone deacety-
lase-induced silencing of the gene encoding 
NR4A1 and phosphorylation of NR4A1, which 
promotes its degradation.44,45 NR4A1 agonists 
exert antifibrotic effects in multiple rodent mod-
els of fibrosis including common mouse models 
of SSc.44

VDR (vitamin D receptor, NR1I1) has also been 
shown to exert antifibrotic effects in models of 
SSc and other fibrotic disorder. The expression of 
VDR is decreased in the skin of patients with 
SSc,46 and vitamin D deficiency is common in 
SSc and other chronic diseases.47–52 Activated 
VDR binds to phosphorylated SMAD3 to inhibit 
canonical TGF-β–SMAD-signalling.46 Treatment 
with VDR agonists ameliorates fibrosis in murine 
models of SSc and other fibrotic diseases.53–57

Epigenetic modifications – tissue memory as 
a target for therapeutic intervention
Fibroblasts explanted from SSc skin display a 
profibrotic phenotype with increased expression of 
contractile proteins and ECM. As mentioned 
above, abs from SSc patients as well as EVs could 
continuously activate fibroblasts. However, this 
activated phenotype persists for several passages in 
vitro. The persistence of the profibrotic phenotype 
is caused by epigenetic modifications in SSc fibro-
blasts that establish a profibrotic tissue memory. 
Prolonged exposure of fibroblasts to a profibrotic 
environment induces a complex pattern of differ-
ent epigenetic alterations. These epigenetic changes 
render SSc fibroblasts partially independent of 
external stimuli and maintain the profibrotic 
myofibroblast phenotype.58,59 So far, the role of abs 
to induce epigenetic modifications remains to be 
studied. Epigenetic alterations including DNA 
methylation, histone acetylation, histone methyla-
tion and non-coding RNAs such as microRNAs 
(miRNAs) or long non-coding RNAs (lncRNAs) 
are increasingly recognized as drivers of progres-
sive fibrotic tissue remodelling.58,60–66 Selected 
examples and potential approaches for novel thera-
peutic strategies are discussed below.

DNA methylation
DNA can be methylated at position C5 of the 
pyrimidine ring of cytosine residues by three 
DNA methyltransferases (DNMTs): DNMT1, 
DNMT3A and DNMT3B.67 The interaction of 
methyl-CpG-binding domain (MBD) proteins 
with these methylated cytosine residues promotes 
the recruitment of repressor complexes to silence 
transcription.68 Several studies demonstrated a 
role of altered DNA methylation in fibrotic dis-
eases including SSc.58,69–72 The best studied gene 
regulated by DNA methylation in SSc is Friend 
leukaemia integration factor 1 (FLI1), a tran-
scription factor of the ETS family.58,73,74 FLI1 
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exerts antifibrotic effects and limits TGF-β-
induced fibroblast activation under homeostatic 
conditions.75 In fibrotic conditions with chronic 
activation of TGF-β signalling, however, FLI1 
expression and activity are repressed by epige-
netic and post-translational mechanisms. TGF-β 
induces DNMT-dependent methylation of the 
FLI1 promoter to silence its expression62,76 as 
well as PKCδ-mediated phosphorylation of FLI1 
to foster its degradation.77 Moreover, DNMT-
induced silencing of the suppressor of cytokine 
signalling 3 (SOCS3) facilitates prolonged activa-
tion of JAK2/STAT3 signalling and may thus 
sensitize SSc fibroblasts to TGF-β (Dees et al.70). 
DNA methylation also promotes activation of 
canonical WNT signalling by silencing of the 
endogenous WNT antagonists DKK1 and 
SFRP1. Treatment with the DNMT inhibitor 
5-Aza-2′-deoxycytidine, which is in clinical use 
for myelodysplastic syndromes, has consistently 
been shown to exert antifibrotic effects in murine 
models of SSc and other fibrotic diseases.62,70,78

Histone modifications
Histone modifications include acetylation and 
methylation at various sites. First evidence for a 
role of histone modulations in the pathogenesis of 
SSc was provided by the observation that treat-
ment with histone deacetylation inhibitors reduced 
the activation of SSc fibroblasts and ameliorated 
bleomycin-induced skin fibrosis,79 providing evi-
dence that histone acetylation regulates the expres-
sion of profibrotic genes in fibroblasts.

Histone acetylation also modulates the outcome 
of fibrotic diseases by fine-tuning autophagy. 
Autophagy describes the catabolic cellular process 
of degradation of unnecessary or dysfunctional cel-
lular organelles in particular during starvation or in 
response to cellular stress.80 However, components 
of the autophagy machinery are involved in uncon-
ventional secretion of proteins.81–83 Aberrant acti-
vation of autophagy has been implicated into the 
pathogenesis of fibrotic diseases with cell type and 
context-dependent outcomes.84–92 Zehender et al. 
demonstrated that autophagy is activated in a 
TGF-β-dependent manner in SSc fibroblasts. 
TGF-β represses the expression of the H4K16 his-
tone acetyltransferase MYST1 via SMAD3 to pro-
mote the expression of core components of the 
autophagy machinery. The resulting activation of 
autophagy induces fibroblast activation and tissue 
fibrosis. Re-establishment of the epigenetic control 
of autophagy by forced expression of MYST1 in 

fibroblasts impairs myofibroblast differentiation 
and ameliorates experimental dermal and pulmo-
nary fibrosis.

The expression of the profibrotic transcription 
factor PU.1 is controlled by a complex network of 
epigenetic effector mechanisms involving histone 
modifications.35 In resting fibroblasts, PU.1 
expression is silenced, and the promoter and the 
–17 kb upstream regulatory element of the PU.1 
locus are dominated by the presence of repressive 
H3K9me3 and H3K27me3 marks. In fibrotic or 
inflammatory environments, the –17 kb upstream 
regulatory element of the PU.1 locus becomes 
active as shown by H3K27 acetylation and loss of 
H3K9me3 and H3K27me3. These epigenetic 
alterations at the PU.1 locus promote expression 
of PU.1 protein in fibrotic fibroblasts. However, 
they are not sufficient to induce PU.1 protein in 
inflammatory fibroblasts due to post-transcrip-
tional block of PU.1 translation by miR-155.

Reactivation of developmental pathways 
in SSc–hedgehog and WNT signalling as 
targets for therapeutic intervention
Several lines of evidence from different groups in 
complementary model systems demonstrate that 
hedgehog signalling and WNT signalling are cen-
tral pathways of fibroblast activation in SSc and 
other fibrotic diseases.93–101 As both of these path-
ways are essentially required for embryonic devel-
opment, they are often referred to as developmental 
pathways. In most cell types in adults except stem 
cells, these pathways are inactive under homeo-
static conditions. However, they can be reacti-
vated upon injury to promote proliferation and 
differentiation of target cells. The persistent acti-
vation of these developmental pathways in fibrotic 
diseases indicates a failure of appropriate termina-
tion of these pathways in SSc; indeed, at least for 
canonical WNT signalling, epigenetic alterations 
may interfere with termination of WNT signalling 
by repression of endogenous WNT antagonists.

The expression of the ligand sonic hedgehog 
(SHH) and of the downstream transcription fac-
tor GLI2 is upregulated in the skin of patients 
with SSc (Horn et al., 2012).102 Moreover, SHH 
concentrations are elevated in the blood of 
patients with SSc and correlate with the extent of 
fibrosis.102 Hedgehog signalling is highly inter-
linked with TGF-β signalling. TGF-β induces the 
expression of SHH and of GLI2 in fibroblasts 
(Horn et  al.,97,98). Activation of hedgehog 
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signalling stimulates fibroblast-to-myofibroblast 
transition and promotes experimental skin fibro-
sis (Horn et  al.,97,98), whereas pharmacologic or 
genetic inactivation of hedgehog signalling ame-
liorates experimental fibrosis in murine models of 
SSc and other fibrotic diseases.103–106

β-catenin-dependent WNT signalling, also 
referred to as ‘canonical’ WNT signalling, is 
active in SSc as well as multiple fibrotic condi-
tions. Activation of canonical WNT signalling 
occurs at different levels with upregulation of 
WNT proteins, downregulation of endogenous 
WNT inhibitors and by transcriptional syner-
gism with other transcription factors and cofac-
tors.93,94,107–111 As for hedgehog signalling, 
multiple interactions of canonical WNT signal-
ling with TGF-β have been unravelled in SSc. 
TGF-β can activate canonical WNT signalling in 
fibroblasts. This regulation occurs in particular at 
the level of endogenous WNT antagonists such 
as dickkopf 1 (DKK1) or secreted frizzled-related 
protein 1 (SFRP1).112–114 Canonical WNT sig-
nalling is sufficient and required for fibrotic tis-
sue remodelling, and targeted inhibition of WNT 
signalling exerts potent antifibrotic effects in 
various preclinical models of SSc and other 
fibrotic diseases.35,70,93,101,107,111,114–120

Despite their crucial role in embryonic develop-
ment and stem cell maintenance, hedgehog and 

WNT signalling are both assessable for pharma-
cologic intervention. For hedgehog signalling, 
smoothened inhibitors are already in clinical use 
for neoplastic diseases, and GLI2 inhibitors are 
used in clinical development.121 Compounds with 
WNT inhibitory activity such as pyrvinium are 
also in clinical use and more selective and potent 
WNT inhibitors such as porcupine or tankyrase 
inhibitors are in use in clinical development. 
However, fibrotic diseases such as SSc require 
long-term treatment; given the roles of WNT and 
hedgehog signalling in stem cell regeneration, 
specific strategies such as intermittent dosing  
or low-dose combination therapies will be 
required to minimize the effects on the stem cell 
compartment.

Therapeutic implications
At the present time, immunosuppressive drugs 
represent the key drug strategy for the treatment 
of inflammation and of inflammation-mediated 
fibrotic changes in SSc. However, immunosup-
pressive drugs often do not achieve sufficient 
therapeutic efficacy regarding fibrotic changes. 
Therefore, there is a high unmet medical need for 
the identification of new therapeutic strategies. 
The induction of profibrotic pathways by regula-
tory abs or EVs and the characterization of key 
mechanism of fibrosis offer several therapeutic 
opportunities as illustrated in Figure 2.

Figure 2.  Concept of cell activation by abs and EVs and of therapeutic targets derived from this concept.
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A causal treatment strategy to prevent formation 
of abs supports the use of B-cell- and plasma cell-
targeting therapies. As a proof of concept, autolo-
gous stem cell transplantation reduces the levels 
of anti-AT1R and anti-ETAR abs.21 This could 
be a rationale for the use of B-cell-targeting thera-
pies, which show promising results in recent clini-
cal studies particularly for the therapy of ILD and 
inflammatory skin fibrosis in SSc.122 Whether the 
levels of ati-AT1R abs could predict the response 
to rituximab remained to be studied. Current 
studies are ongoing to support the use of B-cell- 
and plasma cell-targeting therapies. In addition, 
recent studies revealed an important role of 
T-cells in the generation of anti-GPCR abs (Yue 
et al.123). Therefore, particularly CD4+ T-cells 
might become an important target for the treat-
ment of SSc. Recently, aptamers have been intro-
duced to remove anti-GPCR abs with first 
successful applications. Their potential role in the 
treatment of SSc is currently studied in preclini-
cal models.

A further therapeutic strategy is to block the recep-
tor targeted by abs. An established approach in 
treatment of SSc is the use of endothelin receptor 
blockers and drugs affecting the renin-angiotensin 
system. These are particularly used for treatment 
of vascular complications such as PAH, digital 
ulcers and renal crisis.124,125 Cross-reactivities of 
the abs may indicate insufficient blockade by only 
one receptor blocker and therefore, combination of 
receptor blockers or the generation of blockers tar-
geting several receptors might be reasonable. The 
presence of stimulating abs also indicates the 
necessity to continuously block the receptors to 
achieve clinical effects. In the future, more mecha-
nistic studies are required to distinguish ab effects 
from those of the natural ligands.

Specific blockade of ab-mediated signalling 
remains a future target. Proteins, also induced by 
abs, emerged as therapeutic targets. As example, 
anti-cytokine therapy targeting interleukin-6 has 
recently been approved by the Food and Drug 
Administration (FDA) and is now under consid-
eration by the European authorities. Other 
cytokines such as IL-8, MCP-1, TGFß or CCL18 
could also be interesting targets in SSc, which 
need to be explored in the future. In addition; 
IVIGs are successfully used in severe autoim-
mune diseases including in SSc patients.126 As 
shown by our group,23 IVIGs exhibit regulatory 

function by induction of several proteins, for 
example, in monocytes. They could compete with 
the IgGs from SSc patients.

In addition to the potential role of EVs to spread 
information and to induce disease pathways,  
EVs can also be applied therapeutically. Thus, 
EVs from mesenchymal stem cells exhibit anti-
inflammatory and protective effects, for example, 
in vascular remodelling.31 Remarkably, neutro-
phil-derived EVs demonstrate the ability to bind 
specifically to local sites of inflammation, release 
bioactive payloads and abrogate inflammation.127 
For future therapy strategies, EVs can serve as 
potential biological scaffolds able to deliver anti-
inflammatory treatments target-specific when 
administered systemically as well as exhibit 
immune-regulatory effects that resemble the cells 
from which they originated.128,129

So far, data providing evidence that anti-GPCR 
abs reflect pathologic environmental factors are 
missing. However, anti-GPCR abs could be cru-
cial in the identification of patients at risk for 
severe infections as currently shown in COVID-
19 infection, a disease with some similarities to 
SSc.130 Here, AT1R abs were among the best to 
discriminate severe from mild COVID-19 infec-
tion. The identification of vulnerable persons 
could help to avoid harm at an individual basis.131

Targeting processes in main effector cells such as 
in fibroblasts, epigenetic drugs and small mole-
cule agonists/antagonists of nuclear receptors are 
addressed in clinical studies to translate preclini-
cal findings on antifibrotic effects into the clinic. 
Targeting pathogenic fibroblast subpopulations 
and boostering regenerative subpopulations could 
provide another novel concept for precision 
medicine.

Taken together, in this article, we present both a 
holistic approach and a focused approach on a 
specific cell type, which are both complementary 
and indispensable to identify mechanisms of SSc 
and of novel future targets for therapies. However, 
this article is driven by the perspectives of the 
authors. Abs and EVs are an upcoming field, and 
we are still in the beginning of mechanistic studies 
to decipher the alphabet of GPCR ab functions. 
Novel technologies emerged to identify novel 
phenotypes and pathways. Table 1 summarized 
some prospects for the future.
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