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Abstract: Laser-induced graphene (LIG) has recently been receiving increasing attention due to
its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based
electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For
this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE)
on a polyimide substrate. After the laser engraving of LIGE, the chitosan–glucose oxidase (GOx)
composite was immobilized on the LIGE surface to develop the biosensor for glucose detection. It
was observed that the developed LIGE biosensor exhibited good amperometric responses toward
glucose detection over a wide linear range up to 8 mM. The GOx/chitosan-modified LIGE biosensor
showed high sensitivity of 43.15 µA mM−1 cm−2 with a detection limit of 0.431 mM. The interference
studies performed with some possible interfering compounds such as ascorbic acid, uric acid, and
urea exhibited no interference as there was no difference observed in the amperometric glucose
detection. It was suggested that the LIGE-based biosensor proposed herein was easy to prepare and
could be used for low-cost, rapid, and sensitive/selective glucose detection.

Keywords: biosensor; laser-induced graphene; polyimide; glucose; enzyme

1. Introduction

Numerous novel and cutting-edge technologies and materials are necessary to sat-
isfy the new trends and requisites of analytical systems as the needs for environmental,
biomedical, food and beverage analysis are progressing very quickly. The development
of biosensors has evolved as one of the most promising research directions to overcome
these challenges. Therefore, biosensor-based techniques have recently started being ap-
plied for the determination of different clinically, environmentally and biologically active
materials [1–3]. In this regard, the design of biosensors in nanoscience/nanotechnology,
environmental, medicine and food monitoring has been significantly increased during the
past decade for their extensive applications. These advanced technologies have assisted the
construction of highly sensitive, selective, customizable, and portable sensors for the deter-
mination of various clinically significant materials such as glucose, etc. [4]. The progress
of such glucose biosensors has an inordinate significance in diagnosing and controlling
diabetes mellitus, which is considered a worldwide public health problem. Diabetes melli-
tus would increase the risk of heart disease, kidney failure, blindness, postoperative and
wound infections [5,6].

Diabetes mellitus has increased worldwide over the past five decades. Diabetes is
a medical condition in which patients experience glucose concentration diverging from
the normal range of 80–120 mg/dL (4.4–6.6 mM) [7]. In 2019, the International Diabetes
Federation (IDF) assessments indicated that approximately 463 million adults have diabetes,
and it might rise to 700 million by 2045 [8]. Diabetic patients are required to perform
glucose testing several times a day to maintain normal glucose levels. Hence, the rapid
quantification of glucose concentration in bodily fluids is vital for diagnosing and treating
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diabetic patients. For this purpose, the design of an easy, rapid and low-cost technology
for the determination of glucose is essential in clinical diagnosis [9,10].

Glucose biosensors have significantly contributed to the detection of glucose levels in
diabetic patients [11,12]. Studies have indicated that among various biosensors, glucose
oxidase (GOx) enzyme-based electrochemical biosensors were considered to offer good
selectivity and sensitivity for glucose detection [13,14]. Amperometry is the widely used
electrochemical technique for glucose detection. Amperometric sensors could provide
several advantages, such as ease of use, short analysis time, high sensitivity, and higher
signal-to-noise ratio compared to other sensors [14–16]. The common idea applied for the
development of amperometric biosensors is the efficiency of charge transfer, which can be
better enhanced. Additionally, the biocompatibility issues of the sensors could be resolved
by modifying electrodes with polymers such as chitosan or hydrogels [17]. In addition,
various features of the electrodes could easily be altered by selecting the optimal chemical
and electrochemical parameters during the effective electrode modifications [18,19].

The amperometric glucose biosensor generally uses an enzyme glucose oxidase (GOx),
which catalyzes glucose oxidation at the electrode and provides high selectivity in glucose
detection. Most enzymatic amperometric biosensors are based on disposable screen-printed
enzyme electrode strips [20–22]. However, the wastage of materials might occur during
the screen-printing process, limiting the applications of screen-printed electrodes.

Graphene, a carbon-based nanomaterial, has gained substantial attention in many
areas. In terms of electrochemical properties, graphene could provide high conductivity
with a remarkable heterogeneous electron transfer rate [23,24]. In 2014, it was found that
polymers such as polyimide (PI) could be directly converted into porous graphene using a
CO2 laser machine with a 10.6 µm wavelength [25]. In addition to infrared CO2 (10.6 µm)
laser, visible laser [26–31] and ultraviolet laser [32] have also been successfully used to
synthesize laser-induced graphene (LIG). The laser-irradiation of the PI film caused the
photo-thermal generation of the graphene due to the local heating of the film. Upon
heating the film, the carbon atoms bonded with oxygen (C–O, C=O) and nitrogen (C–N)
atoms via sp3 and sp2 hybridization breakdown and rearranged to form several layers
of sp2 hybridized carbon atoms of graphene [25,33]. The laser induction of graphene has
been performed in ambient conditions without any material wastage. In addition, the
shape/pattern of LIG could also be easily customized by computer design, which holds
great promise toward developing glucose biosensors.

Recently, Pereira et al. demonstrated the electrochemical response of GOx adsorbed
on a CO2 laser-scribed LIG [34]. The GOx enzyme adsorbed on LIG remained catalytically
active even after running the cyclic voltammetry up to +1.0 V for glucose detection. The
LIG electrodes facilitated the direct electron transfer between the GOx and the electrode
surface without mediators.

In this study, we fabricated a laser-induced graphene electrode (LIGE) by simple direct
laser engraving with the UV laser on polyimide tape. The LIGE surface was immobilized
with GOx/Chitosan composite for selective detection on glucose. Amperometric measure-
ment was used to quantify the glucose concentration with the developed LIGE enzymatic
biosensor. The novelty of the present work lies in the detection of glucose with enhanced
sensitivity using a simple, low-cost LIGE-based biosensor.

2. Materials and Methods
2.1. Chemicals and Instruments

Glucose, uric acid, ascorbic acid, chitosan, and glucose oxidase (GOx, from Aspergillus
niger, Type X-S, lyophilized powder, 118,000 units/g solid) were purchased from Sigma-
Aldrich Corp. (St. Louis, MO, USA). A single-sided Kapton® polyimide tape with a film
thickness of ~30.4µm and a width of 50 mm was obtained from STAREK Scientific Co.,
Ltd. (Taipei, Taiwan). Photo/printing paper (HYA300, A4—120 gm−2, 0.15 mm) was
purchased from a local book store. All the electrochemical measurements were conducted
using a portable potentiostat (PalmSens 4, PalmSens, Houten, The Netherlands). Raman
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spectroscopic study was conducted using a micro-Raman spectrometer (JASCO NRS-
4100; Laser 532 nm) with a spectral resolution of 2 cm−1. Data processing/plotting was
performed using Origin 9.1 software (OriginLab Inc., Northampton, MA, USA).

2.2. Fabrication of LIGE Sensor

A 3-electrode system was designed using AutoCAD software with a 3 mm diameter
of working electrode and laser-inscribed to graphene-based electrodes. Kapton® polyimide
tape was pasted onto a paper substrate and cleaned with isopropanol and deionized water.
Then, the designed pattern made in graphic software was inscribed on the surface of the
Kapton tape using a laser engraving machine (HANLIN 7WLS, 7 W, 450 nm) to form highly
conductive graphene electrodes, as shown in Figure 1. The resistance of the graphene-
based electrode was optimized by adjusting the laser power intensity (22% of the machine’s
maximum power), engraving depth (5%), the distance between the laser head and the
polyimide substrate (~13 cm). The duration for fabricating a complete LIGE sensor was
2.8 min.
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Figure 1. LIG 3-electrode system on polyimide tape fabricated by laser inscribing.

2.3. Immobilization of GOx/Chitosan Composite on the LIGE

The glucose biosensor was prepared by immobilizing the glucose oxidase and chitosan
hydrogel homogeneous biocomposite on the LIGE surface. The resulting biocomposite
could retain the enzyme bioactivity at considerably extreme conditions [35]. Five mil-
ligrams of GOx and three milligrams of chitosan were dissolved in 0.5 mL of deionized
water and stirred for 5 min [36]. Subsequently, 5 µL of the mixture was cast onto the surface
of the LIGE working electrode. Then, the LIGE sensor was kept in a refrigerator at 4 ◦C for
24 h.

2.4. Electrochemical Measurements

All the electrochemical measurements were carried out using PalmSens 4 potentiostat
(PalmSens, Houten, The Netherlands) at room temperature. The electrochemical redox
characteristics of the LIGE were measured by Cyclic voltammetry (CV) with different con-
centrations of potassium ferri (III)cyanide (K3[Fe(CN)6]) in 50 mM of phosphate-buffered
solution (PBS). CV measurements were performed at a scan rate of 50 mV/s with a potential
range from −0.8 to +0.8 V. Chronoamperometry (CA) experiments for glucose detection
with LIGE were performed in 50 mM PBS at the fixed applied voltage of 0.8 V for 60 s. The
detection principle of glucose is based on the electron transfer mechanism. GOx reacts
with glucose in the presence of O2 and produces gluconolactone and H2O2. A change in
electrical current occurs at the electrode surface during these reactions due to the electron
transfer. Additionally, the resulting current response is proportional to the number of
glucose molecules present in the sample.

2.5. Optimization of Applied Potential and pH

CA measurements were used to determine the optimal applied potential and pH for
glucose detection. The CA potential was optimized by varying the potential from 0.3 V
to 1.3 V (5 mM Glucose, pH 7), and the resulting CA current was sampled at 60 s. CA
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measurements were performed with a LIGE biosensor at 5 mM glucose solution with the
applied potential of 0.8 V by varying the pH of the phosphate-buffered solution from a pH
of 5 to 9, and the optimal pH was found.

2.6. Interference Study

The response of the LIGE biosensor for glucose detection was evaluated in the presence
of potential interferences such as 0.1 mM ascorbic acid, 0.1 mM uric acid, and 3 mM urea
(pH 7; 5 mM glucose; 0.8 V).

3. Results and Discussion
3.1. Characterization of LIGE
3.1.1. Raman Spectra

In this study, a graphene three-electrode system for electrochemical sensing appli-
cations was developed by direct laser inscribing on polymer substrate (Polyimide). The
prepared LIGE was characterized with Raman spectra, as shown in Figure 2. The Raman
spectrum consists of G band at ca. 1592 cm−1 related to the E2g phonon of the sp2 carbon
atoms, and D band at ca. 1340 cm−1 corresponds to the disordered grain boundaries [37,38].
Two other bands were observed at 2697 and 2900 cm−1. The band at ca. 2700 cm−1 is
known as the 2D band, an indicator of the number of graphene layers. A sharp peak
will appear at ca. 2700 cm−1 for monolayer graphene. Here, the broadened band was
observed, which would be attributed to the prepared graphene containing many layers
with some defects. The band that appeared at 2900 cm−1 is called an S3 band, which is a
second-order peak derived from the D–G peak combination. The band intensity ratio of
S3–2D is proportional to the reduction in defects [38]. This Raman spectra result indicated
that the obtained black material on polyimide substrate was carbon-based graphene.
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Figure 2. Raman spectra of LIGE.

3.1.2. Electrochemical Characterization

Before developing the glucose biosensor with LIGE, validating the LIGE sensor to-
wards electrochemical sensing was necessary. The ferri/ferrocyanide (Fe(CN)6

3−/4−) redox
couple is one of the most widely used electron mediators for electrochemical reactions [39].
The performance of an electrochemical sensor towards an electron mediator was consid-
ered most relevant to general biochemical sensing applications. Thus, the electrochemical
efficacy of the LIGE sensor was evaluated using cyclic voltammetry responses in differ-
ent concentrations of ferricyanide redox mediator (K3[Fe(CN)6]), as shown in Figure 3a.
As seen from Figure 3a, the oxidation peaks’ current increased from 35.495 to 65.043 µA
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when the ferricyanide concentration ranged from 0.5 to 2.5 mM. The oxidation peak current
showed an excellent linear relationship with different ferricyanide concentrations, as shown
in Figure 3b. The linear regression equation was y = 14.54x + 28.69

(
R2 = 0.998

)
, where y

and x are the height of oxidation peak current (µA) and (K3[Fe(CN)6]) concentration (mM),
respectively. The fabricated LIGE provided a favorable response for varying ferricyanide
concentrations, indicating excellent electrocatalytic properties. Moreover, the reproducibil-
ity of all CV responses was within 5% RSD (relative standard deviation) (n = 4). These
results demonstrated the remarkable electrocatalytic response of the fabricated LIGE sensor.
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3.2. Characterization of GOx/Chitosan Immobilized LIGE

Cyclic voltammetry measurement was performed to confirm the LIGE immobiliza-
tion with GOx/Chitosan. Figure 4 shows the cyclic voltammograms of potassium ferri-
cyanide at bare LIGE and GOx/chitosan composite-modified LIGE. It can be seen that
after the immobilization of GOx/chitosan composite onto the LIGE surface, the peak cur-
rent decreased to 24.325 from 58.336 µA of the bare LIGE. The electron transfer kinetics
of [Fe(CN)6]4−/[Fe(CN)6]3− is significantly hindered after the LIGE surface was modi-
fied with GOx/chitosan. This result confirmed that the GOx/chitosan was successfully
immobilized on the LIGE surface.
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3.3. Amperometric Detection of Glucose by the Proposed LIGE

The chronoamperometry technique was employed to detect glucose using GOx/
Chitosan coated LIGE sensor at a constant oxidation potential of +0.8 V. Figure 5a depicts
the chronoamperometric responses of the LIGE biosensor with glucose concentrations
ranging from 0 to 10 mM. The current response increased with increasing glucose concen-
trations. The steady-state current response at 60 s was chosen for the detection of glucose
concentration. The amperometric current response of the LIGE biosensor exhibited a linear
relationship with the glucose concentrations ranging from 0 to 8 mM, and the current began
to level off at a glucose concentration higher than 8 mM as shown in Figure 5b. The linear
regression equation was y = 3.05x + 8.54, with a coefficient of determination R2 = 0.97 and
a sensitivity of 43.15 µA mM−1 cm−2. The limit of detection was calculated according to
the 3sa/b criterion, where b was the slope of the calibration curve, and sa was the estimated
standard deviation of the y-intercepts of the regression line [3]. The detection limit calcu-
lated was 0.431 mM. As seen from Figure 5b, the linear part of the calibration curve includes
the normal glucose levels (4.4 to 6.6 mM) in the human blood. Thus, this study could offer
a simple approach for the clinical glucose measurement with a disposable LIGE-based
biosensor. The performance of the proposed biosensor was compared with other reported
glucose biosensors, as shown in Table 1. The developed LIGE-based enzymatic glucose
biosensor exhibited good analytical characteristics towards glucose detection such as good
linearity and high sensitivity. Moreover, the fabrication and detection procedures of the
proposed LIGE-based biosensor were also simple, rapid, and cost-effective.
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Table 1. Comparison of the analytical performance of glucose biosensors.

Glucose Biosensor a Sensitivity (µA mM−1 cm−2) Linear Range (mM) LOD (µM) Reference

GOx/Chitosan-modified LIGE 43.15 0–8 431 This work
GC/MWCNT/Fe3O4/PDA–GOx 5.04 2–20 2.25 [40]

LSG/PBSE/PtNPs/GOx 12.64 0.005–3.2 2.57 [41]
MoS2/Chitosan/GOx-Gelatin/PGE 0.8 (µA mM−1) 0.01–0.8 3.18 [42]

CPE/GOx-SiO2/Lig 0.78 0.5–9 145 [19]
Au–Cys–GA–Gox 2.65 1.5–7 940 [43]
PPy/GOD/SPCE 0.21 0–5 - [44]

a GC—glassy carbon electrode; MWCNT—multi-walled carbon nanotubes; Fe3O4/PDA—magnetite/polydopamine; LSG—laser-scribed
graphene; PBSE—pyrenebutanoic acid–succinimide ester; PtNPs—platinum nanoparticles; MoS2—molybdenum disulfide; PGE—pencil
graphite electrode; CPE—carbon paste electrode; SiO2/Lig—silica/lignin; Cys—cysteine; GA—glutaraldehyde; PPy—polypyrrole; SPCE—
screen-printed carbon electrodes; GOD/GOx—Glucose oxidase.
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3.4. Michaelis–Menten Kinetics

The maximum response current (Imax) and the apparent Michaelis–Menten constant
(Kapp

m ) were used to analyze the relationship between chronoamperometric signals and
enzymatic reaction. As shown in Figure 5b, when glucose concentration exceeds 6 mM, a
response plateau was observed with the characteristic of Michaelis–Menten kinetic mecha-
nism. From the calibration plot (Figure 5b dotted line), the current response showed hyper-
bolic dependence on glucose concentration and was in good agreement with Michaelis–
Menten kinetics [45]. The kinetic parameters, the maximum current generated during the
enzymatic reaction (Imax) and the apparent Michaelis constant (Kapp

m ) are the corresponding
a and b parameters of hyperbolic function y = ax/(b + x) [46]. The apparent Michaelis–
Menten constant (Kapp

m ) is an indication of enzymatic mimics–substrate kinetics. From
the hyperbolic calibration plot (Figure 5b dotted line), the Imax and Michaelis constant
Kapp

m were 40.34 µA and 3.75 mM, respectively. The value of Kapp
m is consistent with the

reported value (Kapp
m = 3.84 mM) for other GOx immobilized on the chitosan complex over

triangular silver nanoprisms/platinum biosensor [47].

3.5. Optimization of Applied Potential and Buffer pH

Chronoamperometry measurements were used to determine the optimal applied
potential and pH for glucose detection with the developed enzymatic LIGE biosensor.
Figure 6a shows the chronoamperometric response of the LIGE biosensor at 60 s with
different applied potential values ranging from 0.3 to 1.3 V. The results showed that
the current increased with increasing applied potential from 0.3 to 0.8 V and currents
tended to level off when the potential increased beyond 0.8 V. Thus, 0.8 V was selected
as the optimized potential for amperometric glucose detection. Figure 6b illustrates the
chronoamperometry current response of the biosensor as a function of the pH of PBS
containing 2 mM glucose. The current responses at pH 5, pH 6, and pH 7 were almost
similar. Considering the pH of a physiological buffer, pH 7 was chosen for the glucose
detection experiments.
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3.6. Interference Study

The developed LIGE-based enzymatic biosensor was evaluated with possible inter-
ferences by comparing the chronoamperometric responses before and after adding some
interferents such as ascorbic acid (0.1 mM), uric acid (0.1 mM), and urea (3 mM) in 5 mM
glucose. As shown in Figure 7, the chronoamperometric current responses for glucose with-
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out and with interferents showed practically no interference. The LIGE was modified with
GOx, which is the standard enzyme for biosensors and it has relatively higher selectivity
for glucose [48]. Hence, the LIGE biosensor was suggested to possess good selectivity due
to the specificity of the GOx enzyme.
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4. Conclusions 
We developed a simple laser-induced graphene-based enzymatic biosensor for glu-

cose detection. The proposed detection strategy could offer an easy and low-cost route to 
mass-produce sensitive biosensing electrodes. The chronoamperometric measurements 
successfully detected the glucose over a linear range from 0 to 8 mM with a detection limit 
of 0.431 mM. The biosensor response was not affected by interfering compounds (ascorbic 
acid, uric acid and urea) and demonstrated the high specificity and selectivity of this LIGE 
biosensor in glucose detection. The proposed LIGE biosensor holds excellent promise in 
point-of-care diagnosis. Our future study aims to validate the biosensor response in hu-
man blood samples for real-life applications. 
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3.7. Stability and Reproducibility of Biosensor

The stability of the developed GOx/chitosan-modified LIGE biosensor was evaluated
by measuring the amperometric current response in the presence of 5 mM glucose over
25 days stored at 4 ◦C in a refrigerator. The biosensor exhibited ~90% stability for 10 days,
and the response remained approximately 72–85% after 10 days. The reproducibility of
the developed biosensor was assessed from the current response of different biosensors
prepared independently. In this work, all the measurements were taken from at least three
independent sensors (n ≥ 3), and the reproducible signals were obtained with the RSD less
than 6%.

4. Conclusions

We developed a simple laser-induced graphene-based enzymatic biosensor for glucose
detection. The proposed detection strategy could offer an easy and low-cost route to
mass-produce sensitive biosensing electrodes. The chronoamperometric measurements
successfully detected the glucose over a linear range from 0 to 8 mM with a detection limit
of 0.431 mM. The biosensor response was not affected by interfering compounds (ascorbic
acid, uric acid and urea) and demonstrated the high specificity and selectivity of this LIGE
biosensor in glucose detection. The proposed LIGE biosensor holds excellent promise in
point-of-care diagnosis. Our future study aims to validate the biosensor response in human
blood samples for real-life applications.
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19. Jędrzak, A.; Rębiś, T.; Klapiszewski, Ł.; Zdarta, J.; Milczarek, G.; Jesionowski, T. Carbon paste electrode based on functional
GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sens. Actuators B Chem. 2018, 256, 176–185. [CrossRef]

20. Crouch, E.; Cowell, D.C.; Hoskins, S.; Pittson, R.W.; Hart, J.P. Amperometric, screen-printed, glucose biosensor for analysis of
human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase. Anal. Biochem. 2005, 347,
17–23. [CrossRef]

21. Gao, Q.; Guo, Y.; Zhang, W.; Qi, H.; Zhang, C. An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT
conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sens. Actuators B Chem. 2011, 153, 219–225. [CrossRef]

22. Guan, W.-J.; Li, Y.; Chen, Y.-Q.; Zhang, X.-B.; Hu, G.-Q. Glucose biosensor based on multi-wall carbon nanotubes and screen
printed carbon electrodes. Biosens. Bioelectron. 2005, 21, 508–512. [CrossRef]

23. Altuntas, D.B.; Tepeli, Y.; Anik, U. Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor
transducers. 2D Mater. 2016, 3, 034001. [CrossRef]

24. Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [CrossRef]
25. Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous

graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [CrossRef]
26. Zhang, Z.; Song, M.; Hao, J.; Wu, K.; Li, C.; Hu, C. Visible light laser-induced graphene from phenolic resin: A new approach for

directly writing graphene-based electrochemical devices on various substrates. Carbon 2018, 127, 287–296. [CrossRef]

http://doi.org/10.3390/nano11020371
http://www.ncbi.nlm.nih.gov/pubmed/33540587
http://doi.org/10.3390/polym13010049
http://doi.org/10.1038/s41598-018-32127-5
http://www.ncbi.nlm.nih.gov/pubmed/30213995
http://doi.org/10.3390/polym13132173
http://doi.org/10.3390/bios9010046
http://doi.org/10.1021/acs.chemrev.6b00220
http://www.ncbi.nlm.nih.gov/pubmed/27428515
http://doi.org/10.2337/diacare.14.11.989
https://diabetesatlas.org/en/resources/
https://diabetesatlas.org/en/resources/
http://doi.org/10.3390/polym12123026
http://doi.org/10.3390/polym11020377
http://doi.org/10.1016/j.bios.2016.07.017
http://doi.org/10.3390/s20030808
http://doi.org/10.1016/S0956-5663(03)00172-6
http://doi.org/10.1021/ac00223a016
http://doi.org/10.1016/0003-2670(91)87006-S
http://doi.org/10.1016/0250-6874(89)87015-5
http://doi.org/10.1021/acs.iecr.0c04952
http://doi.org/10.3390/s21072442
http://doi.org/10.1016/j.snb.2017.10.079
http://doi.org/10.1016/j.ab.2005.08.011
http://doi.org/10.1016/j.snb.2010.10.034
http://doi.org/10.1016/j.bios.2004.10.030
http://doi.org/10.1088/2053-1583/3/3/034001
http://doi.org/10.1016/S1369-7021(11)70160-2
http://doi.org/10.1038/ncomms6714
http://doi.org/10.1016/j.carbon.2017.11.014


Polymers 2021, 13, 2795 10 of 10

27. Romero, F.J.; Salinas-Castillo, A.; Rivadeneyra, A.; Albrecht, A.; Godoy, A.; Morales, D.P.; Rodriguez, N. In-Depth Study of Laser
Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nanomaterials 2018, 8, 517. [CrossRef]

28. Stanford, M.G.; Zhang, C.; Fowlkes, J.D.; Hoffman, A.; Ivanov, I.N.; Rack, P.D.; Tour, J.M. High-Resolution Laser-Induced
Graphene. Flexible Electronics beyond the Visible Limit. ACS Appl. Mater. Interfaces 2020, 12, 10902–10907. [CrossRef]

29. Tao, L.-Q.; Tian, H.; Liu, Y.; Ju, Z.-Y.; Pang, Y.; Chen, Y.-Q.; Wang, D.-Y.; Tian, X.-G.; Yan, J.-C.; Deng, N.-Q.; et al. An intelligent
artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017, 8, 14579. [CrossRef]

30. Bobinger, M.R.; Romero, F.J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodríguez, N.; Rivadeneyra, A. Flexible
and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 2019, 144, 116–126.
[CrossRef]

31. Cai, J.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon mi-cro-supercapacitors
by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679. [CrossRef]

32. Carvalho, A.F.; Fernandes, A.J.S.; Leitao, C.; Deuermeier, J.; Marques, A.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-Induced
Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Adv. Funct. Mater. 2018, 28, 1805271. [CrossRef]

33. Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of
glucose. Sci. Rep. 2016, 6, 1–10. [CrossRef] [PubMed]

34. Pereira, S.; Santos, N.; Carvalho, A.; Fernandes, A.; Costa, F. Electrochemical Response of Glucose Oxidase Adsorbed on
Laser-Induced Graphene. Nanomaterials 2021, 11, 1893. [CrossRef]

35. Luo, X.-L.; Xu, J.-J.; Du, Y.; Chen, H.-Y. A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles bio-composite
formed by one-step electrodeposition. Anal. Biochem. 2004, 334, 284–289. [CrossRef] [PubMed]

36. Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-
induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators
B Chem. 2020, 311, 127866. [CrossRef]

37. Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [CrossRef]
38. Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20,

2883–2887. [CrossRef]
39. Sriprachuabwong, C.; Karuwan, C.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkham, P.; Tuantranont, A. Inkjet-printed

graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 2012, 22, 5478–5485.
[CrossRef]
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