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ABSTRACT
Background. The kinase of Aurora A has been regarded as a promising therapeutic
target due to its altered expression in various human cancers. However, given the high
similarity of the active binding site of Aurora A to other kinases, designing highly
selective inhibitors towards Aurora A remains a challenge. Recently, two potential
small-molecule inhibitors named AT9283 and Danusertib were reported to exhibit
significant selectivity to Aurora A, but not to Gleevec. It was argued that protein
dynamics is crucial for drug selectivity to Aurora A. However, little computational
research has been conducted to shed light on the underlying mechanisms.
Methods. In this study, MM/GBSA calculations based on conventional molecular
dynamics (cMD) simulations and enhanced sampling simulations including Gaussian
accelerated MD (GaMD) simulations and umbrella sampling were carried out to
illustrate the selectivity of inhibitors to Aurora A.
Results. The calculation results from cMD simulation showed that the binding
specificity is primarily controlled by conformational change of the kinase hinge. The
protein dynamics and energetic differences were further supported by the GaMD
simulations. Umbrella sampling further proved that AT9283 and Danusertib have
similar potential of mean force (PMF) profiles toward Aurora A in terms of PMF
depth. Compared with AT9283 and Danusertib, Gleevec has much lower PMF depth,
indicating that Gleevec is more easily dissociated from Aurora A than AT9283 and
Danusertib. These results not only show the selective determinants of Aurora A, but also
provide valuable clues for the further development of novel potent Aurora A selective
inhibitors.
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INTRODUCTION
Aurora A, a member of the serine/threonine kinase family, is a key mitotic regulator
that plays an essential role in the maintenance of chromosomal stability. It has been
proposed that Aurora A is dysregulated in numerous cancer cells, including breast cancer,
metastatic colorectal cancers, non-small-cell lung cancer (NSCLC), osteosarcoma, among
others (Damodaran et al., 2017; Yan et al., 2016). In addition, Aurora A helps to develop
resistance to standard chemotherapy by providing cells with stem-like properties. More
specifically, the transformation Aurora A cells from epithelial to mesenchymal type
will promote the progression of tumor metastasis, and increase resistance to standard
treatments (Cammareri et al., 2010; Zheng et al., 2014). These vital properties make Aurora
A a highly promising potential target for developing small-molecule inhibitors against
various cancers. Already, many of these inhibitors have entered early-phase clinical trials.

Despite the therapeutic value of Aurora A inhibitors, the development of specific kinase
inhibitors has proved to be challenging. This is largely due to the fact that they must
discriminate among a large number of other kinases, which have highly similar active sites
in human cells. Similar to other kinases, Aurora A consists of a short N-terminal domain
and a highly evolutionary conserved C-terminal catalytic domain (Fig. 1A). The N-terminal
domain consists of a five-stranded antiparallel β sheet, an important regulatory αC-helix,
and a glycine-rich loop (P-loop). The C-terminal domain is mostly α helical and contains
the activation loop (A-loop) involved in polypeptide substrate binding. These two domains
are connected by a flexible joint called kinase hinge, with the nucleotide binding pocket
located in between. Up to now, a large number of kinase inhibitors have been developed.
However, only a few of them can specifically target Aurora A. Thus, understanding the
selective mechanisms of the protein-ligand recognition at the molecular level may provide
valuable information for rational drug design of selective Aurora A inhibitors and help to
mitigate potential side effects.

Molecular dynamics (MD) simulation analysis has proved to be a powerful and valuable
tool for obtaining comprehensive information about various kinases, such as Anaplastic
lymphoma kinase (ALK), breakpoint cluster region and the Ableson (BCR-Abl), and
epidermal growth factor receptor (EGFR) (Bello, 2018; Kong et al., 2018; Zhang et al.,
2019). Although some dynamic behaviors between Aurora A and inhibitors have been
investigated by MD simulations, few studies have sought to elucidate the detailed selective
mechanisms (Cheng et al., 2011; Oliveira, Ahmad & Engh, 2011; Talele & McLaughlin,
2008; Yang et al., 2012). In this study, three ATP-competitive inhibitors named AT9283,
Danusertib, and Gleevec were used to study the drug selective mechanisms of Aurora A
(Figs. 1B–1D). AT9283 is a multi-targeted kinase inhibitor of Aurora kinases (Aurora
A and B) as well as other kinases, including BCR-Abl, Fms-like tyrosine kinase (FLT3),
and Janus Kinase 2 (JAK2) (Howard et al., 2009). AT9283 has also entered several clinical
trials and demonstrated significant Aurora kinase inhibition at tolerable doses with disease
stabilization in adults and children with solid tumors (Borisa & Bhatt, 2017). Danusertib
(formerly known as PHA-739358) is a pan-Aurora kinase (Aurora A, B and C) inhibitor,
and was one of the first Aurora kinase inhibitors to enter phase I and II clinical trials
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Figure 1 Overview of the structure of Aurora A and chemical structures of three small-molecules in
this work. (A) Overview of the Aurora A structure, the active binding pocket is colored light magenta. The
chemical structures of Gleevec (B), AT9283 (C) and Danusertib (D).

Full-size DOI: 10.7717/peerj.7832/fig-1

for the treatment of Leukemia, Multiple Myeloma (Falchook, Bastida & Kurzrock, 2015).
Gleevec (known as imatinib) has a significant therapeutic effect in the early stages of
chronic myeloid leukemia (CML), targeting the BCR-Abl tyrosine kinase (TK) (Kantarjian
et al., 2012). Recently, using a combination of biophysical techniques, Pitsawong et al.
(2018) studied how three well-known anti-cancer drugs interact with Aurora A. Two
of them (AT9283 and Danusertib) specifically switched off Aurora A, but not Gleevec.
They proposed that AT9283 and Danusertib specifically target Aurora A, which works by
inducing fit effects rather than conformational selection. In contrast, no induced fit effect
was observed for Gleevec on Aurora A, which thus binds less tightly to Aurora A. However,
more research is needed to characterize the dynamic behavior and free-energy map (FEM)
to elucidate the detailed selective mechanisms of drugs for Aurora A (Pitsawong et al.,
2018).

Herein, conventional molecular dynamics (cMD) simulations along with structural
analysis and two-end-state free energy calculations were carried out to elucidate the
selective mechanisms underlying the conformational and energetic differences between
each drug. Then, Gaussian accelerated molecular dynamics (GaMD) simulations in
conjunction with structural analysis, principal component analysis (PCA) and 2D free
energy calculations were performed to sample more conformational space, because cMD
simulation remains a set of limited conformational ensembles. Furthermore, umbrella
sampling (US) simulations were performed to investigate the dissociation pathways of
drugs from the binding pockets of Aurora A. These comprehensive molecular modeling
results may provide valuable guidance for the selectivity optimization of candidate drugs.
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MATERIALS & METHODS
Preparation of the studied systems
The crystal structures of human Aurora A/AT9283 (PDB code: 6CPG) and Aurora
A/Danusertib (PDB code: 2J50) were obtained from The Protein Data Bank (PDB) web
server (Smith et al., 2015). The missing side-chains and loop structures in the crystal
structures of Aurora A were refined using the Loops/Refine Structure module in UCSF
Chimera program (Pettersen et al., 2004). The protonation states of the Aurora A residues
were estimated using PDB2PQR web Server (Dolinsky et al., 2004). The charge state of the
Gleevec, AT9283 and Danusertib were set as +1, 0, 0, respectively. The initial structure of
Aurora A/Gleevec was implemented usingmolecular docking in the AutoDock 4.2 program
(Morris et al., 2009). A cubic box of 25 Å × 25 Å × 25 Å was defined, with ATP-binding
sites as the center and a grid spacing of 0.3 Å. The AutoDockTools program was used to
distribute Gasteiger partial charges to the atoms of Gleevec (Morris et al., 2009). AutoGrid
software was applied to estimate the affinity maps of Aurora A. The docking parameters
were set as follows: trials of 300 dockings and clustered according to the RMSD tolerance
of 1.0 Å, maximum number of evaluations was set as 25,000,000, and other parameters
were set at default values. The highest ranking structure for Aurora A/Gleevec was selected
for further molecular dynamics (MD) simulation protocols.

Conventional MD simulation
Conventional MD (cMD) simulations were performed using Assisted Model Building with
Energy Refinement (Amber) 16 software. The restrained electrostatic potential (RESP)
method was utilized to calculate the partial atomic charges for AT9283, Danusertib and
Gleevec based on HF/6-13G* basis set. Then, the Amber ff14SB force field and the General
Amber Force Field (GAFF) in the LEaP modules were implemented to describe the Aurora
A and ligands in Amber 16 software, respectively (Maier et al., 2015; Wang et al., 2004).
Subsequently, these systems were solvated in a cubic box of TIP3P water molecules with
the distance between the complex surface and the box boundary set at 20 Å. To ensure the
overall charge neutrality, an appropriate number of counter ions were added.

A three-step minimization protocol was implemented to optimize the systems prior to
the cMD simulations. Firstly, the 6,000-step steepest descent (SD) method was utilized to
minimize the water molecules. This was followed by the implementation of the 6,000-step
conjugate gradient (CG) method in order to keep the proteins in a position other than the
hydrogens. Then, the same minimization scheme was applied to optimize the protein side
chains. At last, the whole system was relaxed for the 10,000-step SDmethod followed by the
6,000-steps CG method without any restraints. Then, the optimized systems were progres-
sively heated from 0 K to 100 K and then to 310 K with the protein restrained over 300 ps
in the canonical (NVT) ensemble. To accommodate solvent density, the whole system was
equilibrated over 500 ps at a constant pressure and for 5 ns in the isothermal isobaric (NPT)
ensemble. Finally, the unrestrained 500 ns cMD simulations were carried out in the NPT
ensemble to produce trajectories with the temperature set at 310 K. During the simulation
process, temperature was regulated by Langevin dynamics and the pressure was controlled
using Berendsen barostat (Izaguirre et al., 2001; Larini, Mannella & Leporini, 2007).
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Particle-mesh Ewald (PME) was used to consider the long-range electrostatics with a
cutoff value of 10 Å for the non-bonding interactions, and the SHAKE method was
selected to maintain the rigidity of all bonds (Essmann et al., 1995; Krautler, Van Gunsteren
& Hunenberger, 2001). The time step was set to 2 fs, and the trajectory frames were saved
at an interval of 10 ps for further analysis.

Dynamic cross-correlation (DCC) analysis
To better understand the dynamic behavior of the simulated systems, DCC analysis was
conducted to evaluate the cross-correlation displacement of the protein backbone atoms
(Cα). The cross-correlation matrix (Cij) between residues i and j were calculated using
the Bio3D package in R (Skjaerven et al., 2014). The Cij was determined by the following
equation:

Cij =

〈
1ri·1rj

〉√〈
1r2i 1r2j

〉 (1)

where 1ri or 1rj represents the displacement from the mean position of the ith or jth
atom, and angle bracket denotes an average over the sampled period. In this study, only
Cα was applied for analysis by averaging motions of Cα atoms deviating from the mean
structure based on last 200 ns trajectories from cMD and GaMD simulations with a total
of 5,000 snapshots for each method.

Principal component analysis (PCA)
PCA was performed to study the overall motion of Aurora A protein in each simulated
system. It was performed through a commonly used protocol, which involved the
elimination of the translational and rotational motions of the protein Cα atoms by aligning
the structures from cMD/GaMD simulation trajectories. Then, the 3N ×3N covariance
matrix was created using Cartesian coordinates, followed by construction of eigenvectors by
diagonalization of the covariance matrix. Herein, PCA was calculated using the trajectories
from the 500 ns cMD simulation and 600 ns GaMD simulation trajectories.

Thermodynamic calculations
In accordance with a standard protocol reported in previous studies, the binding free
energies and per-residue contribution to ligands were calculated using the Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) method based on the single cMD
simulation trajectory (Piao et al., 2019; Sun et al., 2018; Zheng et al., 2018). The 1Gbinding

is given by:

Gbinding =GR+L− (GR+GL) (2)

〈G〉= 〈EMM〉+〈Gsol〉−T 〈SMM〉 (3)

EMM= Eint+EvdW+Eelec (4)

Gsol=GGB+GSA (5)

where1GR+L,1GR, and1GL represent the free energies of the receptor–ligand complex,
receptor, and ligand, respectively (Eq. 2). The free energy term is calculated as an average
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over the ensemble of time-equidistant snapshots (Eq. 3). The molecular mechanical energy
(EMM) can be divided into three terms (Eq. 4): intermolecular energy (Eint), van der Waals
energy (EvdW), and electrostatic energy (1Eelec). The solvation term (Gsolv) consists of polar
(GSA) and nonpolar contributions (GGB). In this study, the GGB was estimated using the
Generalized Born (GB) model reported by Onufriev, Bashford & Case (2004) (igb= 2); the
dielectric of solute and solvent were set to 1 and 80, respectively. TheGSA is estimated using
a fast linear combination of the pairwise overlap (LCPO) model with a probe radius of 1.4
Å. Conformational entropy (−T1S) was not considered due to the high computational
demand and low accuracy (Hou et al., 2011). A total of 2,000 snapshots provided by last
200 ns simulation trajectories were used for binding free energy and per-residue energy
contribution calculations.

Gaussian accelerated MD (GaMD) simulations
The equilibrated snapshots extracted from cMD simulations served as the initial structures
for the GaMD simulations. In our study, dual-boost GaMD simulations were carried
out, which means that both the dihedral energy and total potential energy of the system
were added to the simulated systems. The threshold energy was set to the lower bound
(E =Vmax), and the average and standard deviation (Std) of the simulated system potential
energies were calculated every 200 ps. The upper limits of the boost potential Std of both
the dihedral and total potential energies were set as 6.0 kcal/mol. Herein, a 10 ns cMD
simulation was used to collect the maximum, minimum, average, and Std values of the
potential of simulated system for obtaining the acceleration parameters of GaMD. Finally,
600 ns GaMD simulations were carried out with random atomic velocity initializations.
During the simulation, temperature was regulated by Langevin dynamics and pressure
was controlled using Berendsen barostat (Izaguirre et al., 2001; Larini, Mannella & Leporini,
2007). Particle-mesh Ewald (PME) was used to consider the long-range electrostatics with
a cutoff of 10 Å for the non-bonded interactions, and the SHAKE method was adopted
to maintain all bonds rigid (Essmann et al., 1995; Krautler, Van Gunsteren & Hunenberger,
2001). The time step was set to 2 fs, and the trajectory frames were saved at an interval of
20 ps for further analysis. After the GaMD simulation, the principal component 1 (PC1)
and principal component 2 (PC2) calculated from PCA in conjunction with the potential
boost provided by GaMD simulations were performed to obtain the original free energy
map (FEM) by the cumulant expansion to the second order method (Miao et al., 2014; Roe
& Cheatham 3rd, 2013).

Umbrella sampling (US) simulations
The equilibrated structures extracted from the trajectories from MD simulations served as
the initial structures for the umbrella sampling simulations. The direction of the reaction
coordinates (RCs) along the largest binding pocket was determined using the CAVER
Analyst 1.0 software (Kozlikova et al., 2014). Subsequently, the distance between one atom
in Aurora A (Cα of His-187) and another carbon atom in ligand was selected as the RCs
(Fig. S1). In this study, the RCs of the studied systems were extended 20 Å from the initial
position unbound from ATP binding pocket. For each system, the RCs were separated into
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Figure 2 Time evolution of the RMSD values of backbone atoms of the Aurora A protein with
(Gleevec, AT9283 and Danusertib) or without (apo) ligand in the simulated systems from cMD
simulations. (A) Apo Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-2

41 windows, each with a length of 0.5 Å. The initial conformation for each window was
from the last snapshot of the previous window and each window was simulated with an 8 ns
umbrella sampling simulation to ensure system convergence. A constant force of 10 kcal
mol−1 Å−2 was added to each ligand to pull away from the binding pocket. The weighted
histogram analysis method (WHAM) was used to calculate the potential of mean force
(PMF), and the biased probability distribution was converted into a normal distribution
(Kumar et al., 1992).

RESULTS AND DISCUSSION
Structural equilibrium and flexibility of the studied systems
The binding mode from molecular docking prompted us to explore the dynamic behavior
of the simulated complexes. To analyze the stability and flexibility of the system, the
root-mean square deviations (RMSDs) of the Cα atoms relative to their original position
were monitored. As plotted in Fig. 2, the RMSD evolution from the cMD simulations of the
backbone atoms (Cα) of the Apo Aurora A, Aurora A/Gleevec, Aurora A/AT9283, Aurora
A/Danusertib protein tended to converge after ∼50–300 ns, indicating that the simulated
systems achieved sufficient stability through 500 ns of cMD simulations. Accordingly, the
RMSD evolution of the heavy atoms of the Gleevec, AT9283, Danusertib in each simulated
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Figure 3 Time evolution of the RMSD values of heavy atoms of Gleevec, AT9283 and Danusertib
bound with Aurora A in the simulated systems from cMD simulations. (A) Aurora A/Gleevec; (B)
Aurora A/AT9283; (C) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-3

systemmaintained relative stability (RMSD fluctuation <2 Å) during the 500 ns simulation
(Fig. 3). Interestingly, the average RMSD values of Aurora A bound with/without different
ligands from cMD simulations follow the order of Apo >Gleevec >Danusertib >AT9283.
Similarly, ligands that follow the order of Gleevec >AT9283 >Danusertib showed similar
values. These results were in direct agreement with the experimental data that selective
ligands of AT9283 and Danusertib were more stable in Aurora A than the non- selective
ligand of Gleevec.Moreover, the apo Aurora A exhibitedmore fluctuation during the whole
cMD simulation, suggesting that apo Aurora A or Aurora A bound with non-selective
ligand may undergo dramatic conformational fluctuations that cannot stabilize the protein
conformation. Therefore, the structural and energetic properties of simulated systems were
analyzed during the last 200 ns cMD simulation trajectories.

To further investigate the effects of selective and non-selective inhibitors on the
structural movements of Aurora A, principal component analysis (PCA) and dynamic
cross-correlation (DCC) analysis were carried out. As plotted in Fig. 4, the correlation
ranges from −1 to 1, corresponding to the extent of correlation or inverse correlation as
indicated by the respective color intensities. Blue color represented positive correlation
values ranging from 0.25 to 1; magenta color represented inverse correlation values ranging
from −0.25 to −1; and light blue or magenta color represented weak or no-correlation
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Figure 4 Dynamical cross-correlation (DCC) analysis of fluctuations of residues from cMD simula-
tions. (A) Apo Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-4

for values ranging from −0.25 to +0.25. As shown in Figs. 4A–4B, the blue and magenta
regions for Apo Aurora A and Aurora A/Gleevec were quite similar. A similar pattern was
observed for Aurora A bound with AT9283 or Danusertib (Figs. 4C–4D). However, those
regions in the Apo Aurora A and Aurora A/Gleevec were larger and more intense than
those of Aurora A/AT9283 and Aurora A/Danusertib. These results present evidence that
the overall correlated motions of Apo Aurora A and Aurora A/Gleevec are more dramatic
than those of Aurora A/AT9283 and Aurora A/Danusertib, suggesting that the correlation
or inverse correlation motions were enhanced in the Apo Aurora A and Aurora A/Gleevec.
Besides, binding of Apo Aurora A or Aurora A with non-selective inhibitor may be more
pronounced than binding with selective inhibitor.

To highlight the differences of Aurora A’s collective motion in different systems, PCA
was performed to further characterize the conformational transformations over time. PCA
was commonly utilized to reduce the dimensionality of the MD simulation data and to
identify conformational transformations. In theory, the first two principal components
(PC1 and PC2) fromPCA capture themajority of the variance in the original distribution of
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Figure 5 PCA scatter plot along the first two principal components from cMD simulations. (A) Apo
Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-5

molecule conformational ensembles. Herein, the conformational ensembles of the systems
under study were analyzed by projecting the trajectories of PC1 and PC2 into a two-
dimensional space. When PC1 and PC2 are mapped onto each other, structures with a high
degree of similarity cluster together. Therefore, each cluster represents a different protein
conformational state. As illustrated in Fig. 5, the simulated conformations in each system
were dynamic and fluctuant during 500 ns cMD simulations, and eventually stabilizes
into a dominant state. The conformational changes of the Apo Aurora A and Aurora
A/Gleevec were greater than those of the Aurora A/AT9283 and Aurora A/Danusertib.
This demonstrated that the conformational distributions of Aurora A bound without/with
non-selective inhibitor (Apo Aurora A and Aurora A/Gleevec) were remarkably different
from those bound with selective inhibitors. Then, the frequencies of PCA scatter plots were
quantified and the highest-frequency structures were aligned to their initial structures for
the four simulated systems as plotted in the Figs. S2 and S3. Surprisingly, these representative
structures did not undergo large conformational changes (except the flexible loops, such
as A-loop, Fig. S3). These results indicated that Aurora A bound with selective inhibitors
had a different conformational fluctuation compared to that bound with non-selective.
Apo Aurora A or Aurora A bound with non-selective ligand may undergo dramatic
conformational fluctuation that cannot stabilize the protein conformation. In comparison,
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Table 1 Energy terms of Gleevec, AT9283 and Danusertib towards Aurora A (kcal/mol).

Name 1EvdW
a 1Eelec

b 1GGB
c 1GSA

d 1Gbinding
e

Aurora A/Gleevec −40.16± 3.44 −25.34± 4.72 50.33± 3.21 −6.22± 0.35 −21.39± 3.11
Aurora A/AT9283 −45.97± 3.22 −35.98± 5.86 46.76± 3.77 −5.47± 0.28 −40.47± 2.90
Aurora A/Danusertib −38.31± 2.99 −36.71± 4.61 41.94± 3.55 −5.91± 0.31 −38.99± 3.82

Notes.
aVan der Waals energy.
bElectrostatic energy.
cElectrostatic contribution to solvation.
dNon-polar contribution to solvation.
eBinding free energy.

Aurora A bound with selective ligand could stabilize its conformation, which is congruent
with the DCC analysis results.

Binding free energies calculations to determine the key residues
The binding free energy of Gleevec, AT9283 and Danusertib associated with Aurora A
was calculated using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA),
which has been proved to be an important complement to the evaluation of protein-ligand
interactions (Chen et al., 2018; Sun et al., 2014a; Sun et al., 2014b; Weng et al., 2019; Xu et
al., 2013). In this study, although prediction of binding free energies based on multiple
independent trajectories is more rigorous theoretically, the intramolecular energies (angle
energy, bond energy etc.) cannot be well canceled by the multiple independent trajectories
strategy. This might result in great uncertainty or noise of the calculated binding free
energies (1Gbinding). Therefore, a single trajectory was performed following the procedure
in previous studies (Sun et al., 2014b; Xue et al., 2014). As summarized in Table 1, the
predicted1Gbinding for Gleevec, AT9283 and Danusertib bound with Aurora A were -21.39
± 3.11, −40.47 ± 2.90, and −38.99 ± 3.82 kcal/mol. These results were consistent with
both of the reported experimental conclusions. Then, a detailed description of the binding
of free energy to each residue in the receptor ligand recognition pattern was analyzed.
Per-residue energetic differences between Aurora A bound with Gleevec and bound with
AT9283 or Danusertib are plotted in Fig. 6. Positive values suggested that the interaction
with Aurora A residue bound with Gleevec was stronger than the Aurora A residue bound
with AT9283 or Danusertib. Conversely, negative values suggested that the interaction
with Aurora A residue bound with Gleevec was weaker than the Aurora A residue bound
with AT9283 or Danusertib. As shown in Fig. 6A, the residues of Glu-211, Tyr-212 and
Arg-220 interacted more significantly with AT9283 in Aurora A than in Gleevec. Similarly,
the differences between Aurora A/Gleevec and Aurora A/Danusertib were quite similar.
When bound to Aurora A, the residues of Glu-211, Tyr-212 and Leu-263 interacted more
significantly with AT9283 than with Gleevec (Fig. 6B). Notably, the residues of Glu-211
and Tyr-212 were located in the conserved structural elements of hinge region required
for ligand binding (Figs. 6C–6E). Structural analysis of Aurora A/Gleevec revealed that
at a distance of 3.4 Å, the nitrogen group of Gleevec formed a hydrogen bond with the
backbone carbonyl of Ala-213. In contrast, binding of AT9283 or Danusertib with Aurora
A revealed a different picture (Fig. 6C). The nitrogen groups of AT9283 and Danusertib
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Figure 6 Energetic and structural analysis the differences between Gleevec and AT9283 or Danusertib.
Differences of each residue contribution between Gleevec and AT9283 (A), Danusertib (B); Schematic
view of the key residues of Gleevec (C), AT9283 (D), and Danusertib (E); The distance for the hydrogen
bonds between Aurora A and Gleevec (nitrogen group of Gleevec to Glu-211, (F)), AT9283 (nitrogen
groups of AT9283 to Glu-211 and Ala-213, (G)), and Danusertib (nitrogen groups of Danusertib to Glu-
211 and Ala-213, (H)) as a function of time.

Full-size DOI: 10.7717/peerj.7832/fig-6

formed important hydrogen bonds with the residues of Glu-211 and Ala-213. In particular,
the Glu-211 was not formed for Gleevec (Figs. 6D–6E). To further analyze the stability of
these hydrogen bonds, the distance evaluations of hydrogen bonds were monitored during
the whole cMD simulation process and plotted (Figs. 6F–6H). As shown in Figs. 6F–6H,
the distance of hydrogen bond for Gleevec to Ala-213 were relative stable within 3.5 Å
during the 500 ns cMD simulations. Similarly, these for AT9283 and Danusertib were also
quite stable during the simulations. However, the distances of hydrogen bond between
Gleevec and Glu-213 were more than 4 Å during the whole cMD simulations. That is to
say, Gleevec cannot form stable hydrogen bond with Glu-213 during the cMD simulation
and cannot stabilize the hinge region. As a comparison, the distance of hydrogen bond for
AT9283 and Danusertib to Glu-211 were quite stable within 3.5 Å during the whole cMD
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Figure 7 Time evolution of the RMSD values of backbone atoms of the Aurora A protein with
(Gleevec, AT9283 and Danusertib) or without (apo) ligand in the simulated systems fromGaMD
simulations. (A) Apo Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-7

simulations. These observations suggested that the hydrogen-bond networks for AT9283
and Danusertib bound to Aurora A were more stable than the networks bound to Gleevec,
which were congruent with the DCC analysis results that the hinge region were more
dramatic (Fig. 3).

GaMD simulations supported the results from cMD simualtions
To better understand the free energy map (FEM) associated with the conformational
changes of Aurora A coupled with different ligands, the conformation ensemble was
sampled in more detail and the possible hidden energy barriers in the cMD simulation
were detected. Subsequent to the GaMD simulations, the RMSDs of the protein backbone
and the heavy atoms of the ligand were calculated. As shown in Fig. 7, the RMSDs of
protein backbones in all the simulated systems reached equilibrium after ∼50–100 ns of
GaMD simulations. The RMSDs of the heavy atoms of ligands in each simulated system
remained dynamic (Fig. 8). Similar to the results from cMD simulations, the average
RMSD values of protein backbone of Aurora A from GcMD simulations follow the order
of Apo >Gleevec >Danusertib >AT9283, and the heavy atoms of ligands follow the order
of Gleevec >AT9283 >Danusertib. In addition, DCC analysis indicated that the correlated
and anti-correlated motions were stronger in the Apo Aurora A and Aurora A/Gleevec
than those in Aurora A bound with AT9283 and Danusertib, which is consistent with
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Figure 8 Time evolution of the RMSD values of heavy atoms of Gleevec, AT9283 and Danusertib
bound with Aurora A in the simulated systems fromGaMD simulations. (A) Aurora A/Gleevec; (B)
Aurora A/AT9283; (C) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-8

the results from cMD simulations (Fig. 9). The above results indicated that Aurora A,
when bound with non-selective inhibitors, induces a larger conformational fluctuation
and greater variability between protein subunits. In contrast, when bound with selective
inhibitors, Aurora A stabilizes the conformational ensembles.

PCA was then performed to visualize the conformational changes. As shown in Fig. 10,
the conformational distributions of Apo Aurora A and Aurora A/Gleevec were significantly
different from Aurora A bound with AT9283 or Danusertib. Compared to the Apo Aurora
A and Aurora A/Gleevec, the systems of Aurora A/AT9283 and Aurora A/Danusertib
showed fewer structural clusters, suggesting that the selective inhibitors could stabilize
the protein conformation. Thereafter, the FEM was performed to assess the relationship
between the conformational changes and energy changes (Fig. 11). Theoretically, more
energy wells (dark blue regions) indicated that the protein underwent larger conformational
changes during MD simulations. As shown in Figs. 11A–11B, three and two major deep
energy wells were observed for the Apo Aurora A and Aurora A/Gleevec. However, Aurora
A bound with AT9283 or Danusertib were confined to a single deep energy well with
high similarity, demonstrating the unstable nature of Aurora A bound with non-selective
inhibitors during GaMD simulations (Figs. 11C–11D). These results are also supported by
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Figure 9 DCC analysis of fluctuations of residues fromGaMD simulations. (A) Apo Aurora A; (B) Au-
rora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-9

previous findings from cMD simulations, which showed that hinge region may directly
regulate the conformational ensemble to ligand specifically binding.

Dissociation pathways of Gleevec, AT9283 and Danusertib from
Aurora A
A growing body of research has suggested that dissociation process of a ligand from its
target can reveal the dynamicmechanisms of interactions, which is vital to the development
of a novel selective ligand. Even though recent advances in computing power have allowed
for the use of long-time-scale cMD simulations, simulation of the dissociation pathway of
a ligand from its target remains difficult. Among the various enhanced sampling methods,
the umbrella sampling simulation may be the most classic and commonly used method to
explore the dissociation pathway of a specific ligand from the binding pocket from its target.
In this study, the dissociation process of Gleevec, AT9283 and Danusertib from Aurora A
was characterized by the umbrella sampling method. In order to guarantee the sampling
convergence of the umbrella sampling simulations, each simulated window was submitted
to 8 ns umbrella sampling simulations, and the convergence of potential of mean force
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Figure 10 PCA scatter plot along the first two principal components fromGaMD simulations. (A) Apo
Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-10

(PMF) was checked every nanosecond. As illustrated in Fig. 12, eight curves were plotted for
each simulated system, and the PMFs achieved satisfactory coincidence after 7 ns umbrella
sampling simulations for each window (difference of PMFs, 0.5 kcal/mol). Thereafter,
the binding affinities (PMF depth, 1WPMF) were obtained by averaging the last 5 ns US
simulations (21–25 ns). The 1WPMF of Aurora A/Gleevec, Aurora A/AT9283 and Aurora
A/Danusertib were predicted by umbrella sampling simulations were, −12.73 ± 0.51,
−17.83 ± 0.62, and −17.50 ± 0.60 kcal/mol, respectively. The 1WPMF can be congruent
with the reported experimental data and correctly ranked. Thus, the PMF curves were
utilized to clarify the different dissociation processes from the binding pocket of Gleevec,
AT9283 and Danusertib toward Aurora A. The processes of the Gleevec dissociation from
Aurora A were illustrated in Fig. 13 (yellow line). These results suggested that the PMF
curves of AT9283 and Danusertib in Aurora A were obviously different from those of
Gleevec, while the PMF values of AT9283 and Danusertib toward Aurora A were not
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Figure 11 Free energy map along the first two principal components fromGaMD simulations. (A)
Apo Aurora A; (B) Aurora A/Gleevec; (C) Aurora A/AT9283; (D) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-11

significantly different. Initially, all the inhibitors were located at the binding sites of Aurora
A (RC was 0 Å). When the inhibitors were dissociated from the binding site, the PMF
values increased rapidly (RC was 0–10 Å). Thereafter, the PMFs along with the RC was
on a steady increase toward equivalence (RC was 10–20 Å). During the rapid increase
of the PMF values, the PMF curves of AT9283 and Danusertib showed an obvious peak
and a valley. This phenomenon highlights the fact that the dissociations of AT9283 and
Danusertib from Aurora A have an obvious energy barrier that needs to be overcome, and
that no obvious energy barrier was observed for Gleevec. These observations indicated that
the dissociation of AT9283 and Danusertib from Aurora A needs to overcome a higher
free energy barrier than the Gleevec. Therefore, the AT9283 and Danusertib combined

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.7832 17/23

https://peerj.com
https://doi.org/10.7717/peerj.7832/fig-11
http://dx.doi.org/10.7717/peerj.7832


Figure 12 Convergence of the PMFs calculated by umbrella sampling simulations. (A) Aurora A/-
Gleevec; (B) Aurora A/AT9283; (C) Aurora A/Danusertib.

Full-size DOI: 10.7717/peerj.7832/fig-12

with Aurora A have a longer residence time. Further structural analysis showed that no
hydrogen bond between Aurora A and Gleevec was observed when the RC were nearly 4
Å (Fig. 13B). In comparison, some important hydrogen bonds were observed for AT9283
and Danusertib at the peaks of the RCs. In addition, most of these hydrogen bonds were
triggered by Glu-211, and Ala-213. These results are in agreement with previous findings
based on the per-residue free energy decomposition and structural analysis, where the
hydrogen-bond networks for Gleevec bound to Aurora A were not as stable as those for
AT9283 and Danusertib, which means that AT9283 and Danusertib, but not Gleevec, could
selectively bound to Aurora A.

CONCLUSIONS
This study combined cMD simulations, GaMD simulations, umbrella sampling simulations
and various analytical methods to illustrate the molecular principles of the binding
selectivity of three inhibitors towards Aurora A, namely, Gleevec, AT9283 and Danusertib.
The results from the cMD simulations provide compelling evidence that preferential
binding of AT9283 and Danusertib to Aurora A was regulated by the conformational
changes of kinase hinge region, which decreased the hydrogen bond interactions to key
residue Glu-211. The GaMD simulations further supported these findings, indicating that
Gleevec bound to Aurora A decreased the stability of Aurora A. In addition, the umbrella
sampling simulations further confirmed the predictions of selectivity, as shown by the

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.7832 18/23

https://peerj.com
https://doi.org/10.7717/peerj.7832/fig-12
http://dx.doi.org/10.7717/peerj.7832


Figure 13 Comparison of the converged PMFs based on different complexes using the umbrella sam-
pling simulations. (A) Comparison of the converged PMFs; Snapshots of Aurora A/Gleevec (B), Aurora
A/AT9283 (C), and Aurora A/Danusertib (D).

Full-size DOI: 10.7717/peerj.7832/fig-13

structurally and energy analysis from the cMD and GaMD simulations. Taken together, the
results in this study offer theoretical insights into the selective mechanisms of inhibitors
bound to Aurora A, which may prove conducive to the development of novel selective
inhibitors targeting Aurora A.
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