
RESEARCH ARTICLE

Application of big-data for epidemiological

studies of refractive error

Michael MooreID
1*, James LoughmanID

1, John S. Butler1,2, Arne Ohlendorf3,4,

Siegfried Wahl3,4, Daniel I. Flitcroft1,5

1 Centre for Eye Research Ireland, School of Physics and Clinical and Optometric Sciences, Technological

University Dublin, Dublin, Ireland, 2 School of Mathematical Sciences, Technological University Dublin,

Dublin, Ireland, 3 Technology & Innovation, Carl Zeiss Vision International GmbH, Turnstrasse, Aalen,

Germany, 4 Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University of
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Abstract

Purpose

To examine whether data sourced from electronic medical records (EMR) and a large indus-

trial spectacle lens manufacturing database can estimate refractive error distribution within

large populations as an alternative to typical population surveys of refractive error.

Subjects

A total of 555,528 patient visits from 28 Irish primary care optometry practices between the

years 1980 and 2019 and 141,547,436 spectacle lens sales records from an international

European lens manufacturer between the years 1998 and 2016.

Methods

Anonymized EMR data included demographic, refractive and visual acuity values. Anon-

ymized spectacle lens data included refractive data. Spectacle lens data was separated into

lenses containing an addition (ADD) and those without an addition (SV). The proportions of

refractive errors from the EMR data and ADD lenses were compared to published results

from the European Eye Epidemiology (E3) Consortium and the Gutenberg Health Study

(GHS).

Results

Age and gender matched proportions of refractive error were comparable in the E3 data and

the EMR data, with no significant difference in the overall refractive error distribution (χ2 =

527, p = 0.29, DoF = 510). EMR data provided a closer match to the E3 refractive error distri-

bution by age than the ADD lens data. The ADD lens data, however, provided a closer

approximation to the E3 data for total myopia prevalence than the GHS data, up to age 64.
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Conclusions

The prevalence of refractive error within a population can be estimated using EMR data in

the absence of population surveys. Industry derived sales data can also provide insights on

the epidemiology of refractive errors in a population over certain age ranges. EMR and

industrial data may therefore provide a fast and cost-effective surrogate measure of refrac-

tive error distribution that can be used for future health service planning purposes.

Introduction

Refractive errors occur when the eye does not correctly focus light at the retina which results

in blurred vision. It arises as a result of the eye growing too long (myopia/short sightedness),

the eye not growing long enough (hyperopia/long sightedness), uneven focussing due to cor-

neal shape (astigmatism) or a failure to focus at close ranges due to aging (presbyopia). In

order to obtain clear vision, correction either through the use of optical aids such as spectacles

or contact lenses or refractive surgery is required.

Refractive errors are a leading cause of vision impairment and blindness globally, due to

limited access to optical correction in some regions [1], and the range of ocular diseases for

which refractive errors, in particular myopia, are an identified risk factor [2,3]. There is a

growing concern about myopia due to the rapid rise in global prevalence over the last few

decades [4]. Vitale et al [5] found an increase in myopia prevalence from 25% in 1971–1972 to

41.6% in 1999–2004 in the United States of America. Similar increases have been observed in

Europe, with higher levels of myopia observed in more recent birth cohorts [6]. The largest

increases in myopia prevalence have been observed in Asia [7], particularly east Asia, with

rates reaching 84% in older children [8]. The level of myopia prevalence is not as high in South

America [9,10] or Africa [11], however, it is expected to rise significantly in all parts of the

world in the coming years [4]. Holden et al [4] estimated that almost half of the world’s popu-

lation will be myopic by 2050, with almost 10% set to be highly myopic. The authors extrapo-

lated these myopia rates by using data from published population surveys of refractive error.

The primary limitation identified in this study was the significant lack of global epidemiologi-

cal refractive error data, with many countries having no data whatsoever or significant gaps in

data across different regions, age groups and ethnicities. The authors made specific reference

to the reduced certainty with regards to their high myopia predictions, with only 48 studies

contributing data to these projections.

In order to assess the public health implications of refractive errors, it is essential to have

accurate population-based epidemiological data. In light of the observed differences between

countries and changing prevalence over time, such data needs to be both representative of a

given population and current. In Europe, epidemiological data has been collected over many

decades, often from historical cohorts. The largest such study [12], the European Eye Epidemi-

ology (E3) consortium of 33 groups from 12 European countries, collated data on 124,000

European participants from population cohort and cross-sectional studies on refractive error

conducted between 1990 and 2013. While this data does show a trend of increased myopia

prevalence for people born in more recent decades, the available data from recent years and on

younger population cohorts is relatively sparse.

Gathering comprehensive epidemiological data that can determine global prevalence trends

in refractive error over time using this traditional methodology is slow and open to question in

terms of cost effectiveness [13,14]. For this reason, the growing volume of data gathered in
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healthcare in recent years is of specific interest. Data such as electronic medical records (EMR)

and industrial manufacturing or sales records represent a potentially valuable source of sec-

ondary data, i.e. data used for a purpose that is different from that for which it was originally

collected. The scale of such data is often far larger than conventional research datasets and it is

now commonly referred to as Big Data. Big Data is now recognized as an important resource

for scientific research, allowing conclusions to be drawn that would otherwise be impossible

using traditional scientific techniques [15,16].

In the field of eyecare, several studies have demonstrated the usefulness of EMR data for

determining disease epidemiology [17,18] and treatment outcomes [19,20]. The application of

such approaches to myopia genetics research has shown strong correlation with the results

obtained using conventional epidemiological research methodologies [21,22]. National [23,24]

and private insurance claims records have also been used to determine the epidemiology of

several ocular diseases, as have hospital records [25]. Big Data sources of this type can be used

as an alternative form of epidemiological data, particularly in the absence of conventional epi-

demiological studies. Datasets such as national insurance claims records can be generalised to

an entire population while EMR and hospital record data are useful when considering specific

population cohorts.

The potential of Big Data as a tool to monitor population trends in refractive error has

received little attention. Optometric EMR data provides an obvious example of a rich source of

data on refractive error that has yet to be exploited for this purpose. Another novel, but less

obvious, source of data is the manufacturing and sales records of companies involved in the

supply of optical appliances such as spectacle and contact lenses. This data source is much

more limited in terms of the information available, but the ubiquity of these optical appliances

indicates such data may still elicit useful insights on refractive error epidemiology.

This study was designed, therefore to examine whether optometric EMR data or spectacle

lens data can provide estimates of refractive error distribution that are comparable to tradi-

tional population surveys.

Methods

Anonymized EMR data was gathered from 28 Irish optometry practices. The data was

extracted remotely through the EMR provider following provision of explicit consent from the

data (practice) owners during the period of May 2018 to June 2019 for all 28 practices. This

study was approved by the TU Dublin Research Ethics and Integrity Committee and adheres

to the tenets of the Declaration of Helsinki (REC-18-124). Patient level consent was not

required due to the nature of the anonymization of the data. The data extracted comprised all

practice records since first use up to the date of extraction for each practice. The EMR provider

removed any personally identifying data and anonymized the data prior to delivery so that the

anonymization could not be reversed by the researchers. The data was analysed using the R

programming language (R Core Team (2020). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.). At the time of extraction, a new unique identifying number was generated for

each subject within the EMR data allowing their data to be tracked across multiple visits. The

data available for each subject included demographic, refractive, visual acuity, binocular vision,

contact lens, ocular health and clinical management data. For this analysis only demographic,

refractive and visual acuity data were considered with most refractions having been performed

as non-cycloplegic subjective refractions.

Anonymized patient spectacle lens sales data was provided by a major European manufac-

turer. This comprised lenses that had been manufactured and dispatched after an order was
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received from a practitioner with the majority of lenses for delivery within Europe. The data

was collated into histogram data using the SQLite database engine (Hipp, Wyrick & Company,

Inc., Charlotte, North Carolina, USA) and analysed using the R statistical programming lan-

guage. The data provided included the spherical power, cylindrical power and axis of the spec-

tacle prescription. The lens design, diameter, laterality (prescribed for right or left eye) and

date of manufacture were also included. For lens designs with an addition, this was also speci-

fied. The presence of an addition allowed the lenses to be separated into two groups, the single

vision (SV) lens group and the addition (ADD) lens group. The data was validated for missing

and malformed data fields and any lenses with incomplete or invalid data were excluded. The

spherical equivalent power was calculated for each lens.

Data from the E3 study was extracted by digitizing the published results using Plot Digitiser

[26]. Data from the GHS study [27], a population based observational study, was also digitized

as an additional comparison. The GHS was chosen as an additional comparison as it took

place in Germany, had a similar age range (35–74) and was one of the component studies of

the E3 study. In addition, Germany was the largest contributor to the spectacle lens data.

Myopia was defined according to the International Myopia standards [28], with a spherical

equivalent (SE) refractive error of� -0.50 D being considered myopic, and� -6.00 D consid-

ered highly myopic. Hyperopia was defined as� +0.75 D and emmetropia defined as> -0.50

D and < +0.75 D. For comparison with the E3 study, analysis was also performed using the

myopia definition used in that study, i.e.� -0.75 D.

The E3 study, a meta-analysis on refractive error prevalence in Europe, was chosen as a

comparative study for several reasons. Firstly, the manufacturer database reflected almost

exclusively European lens sales. Secondly, as the spectacle lens data comprised a substantial

proportion of reading addition lenses typically used by older presbyopic adults [29] (age� 40–

45 typically) [30], the adult age profile of the E3 consortium (age 25–89 years) was deemed

suitable, and it was assumed that the datasets could be comparable. These age assumptions

were also validated using the EMR data. With this more detailed optometric data, both the age

and spectacle correction data were available, allowing determination of the age distribution of

patients with single vision and reading addition spectacles. The relationship between age and

reading addition was determined by fitting a logistic function to the age and right eye reading

addition found in the EMR data using the ‘drc’ extension package for R [31]. A logistic func-

tion was also created to determine the number of individuals requiring a reading addition at

each age from 1 to 100 years old within the EMR data. The base R predict function was then

used to generate 95% prediction intervals for both logistic models. Probability density func-

tions were generated for each reading addition value to determine the distribution of age asso-

ciated with that reading addition. The ADD lens group then had an estimated age assigned for

each spectacle lens based on the reading addition value for that lens using the probabilities

generated from the EMR data.

The EMR data was randomly sampled to provide an age and gender matched population

for comparison with the E3 population. The ADD lens data was also age matched with the E3

population using the estimated age for each lens. From the age matched EMR and ADD lens

data, the proportion of myopia, high myopia and hyperopia present was calculated in 5-year

age brackets to allow comparison with the E3 and GHS data.

Results

Spectacle lens dispensing and EMR refractive error distribution

The spectacle lens dataset comprised 141,547,436 lenses from the manufacturer sales records

ranging from the year 1998 to 2016. The EMR dataset included 555,528 patient visits ranging

PLOS ONE Application of big-data for epidemiological studies of refractive error

PLOS ONE | https://doi.org/10.1371/journal.pone.0250468 April 23, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0250468


from the year 1980 to 2019. Records with incomplete or missing data were excluded from both

datasets and only years with complete data were included in the analysis (Fig 1). In total

134,280,063 spectacle lenses were included, comprised of 84,561,994 SV lenses and 49,709,191

ADD lenses. The final EMR dataset was composed of 524,868 patient visits.

Over 97% of spectacle lenses were for delivery within Europe with Germany accounting for

the largest proportion (�48%) of all lenses delivered. The EMR data included 244,002 unique

patients representing 5.1% of the population of the Republic of Ireland [32]. The gender distri-

bution of EMR patient visits was 51.3% female, 34.9% male and not recorded in 13.8% of rec-

ords. The 28 optometric practices were located all across the Republic of Ireland representing

both rural and urban populations.

The distribution of refractive error within the EMR data and spectacle lens data are pre-

sented in Fig 2, including the complete datasets and also segregated according to lens type (SV

or ADD lens). Table 1 summarises the descriptive statistics for each distribution.

All distributions demonstrate the classic negatively skewed leptokurtotic curve found in

most studies of refractive error, with the majority of observations centred close to emmetropia.

The only exception to this pattern was the SV spectacle lenses which were found to have a

bimodal distribution with a significant notch apparent at zero spherical equivalent.

Estimating age using reading addition

Fig 3 shows the relationship between age and the presence of an addition by comparing the

EMR distribution of SE for single vision prescriptions with those aged under 45 and the SE dis-

tribution of prescriptions with an addition and those aged 45 and over. It can be seen that the

distribution of SE for those under age 45 (left panel, histogram bars) is very similar to the dis-

tribution of those prescribed a SV lens (left panel, dashed line), while the distribution of SE for

those over age 45 (right panel, histogram bars) is very similar to the distribution of those pre-

scribed an ADD lens (right panel, dashed line). The remarkable degree of similarity between

being under age 45 and being prescribed single vision (χ2 = 552, p = 0.2365, DoF = 529) and

being 45 years or older and being prescribed an addition (χ2 = 899, p = 0.2408, DoF = 870)

indicates that age and the prescribing of an addition are highly correlated. Table 2 shows the

relationship between age and the likelihood of prescribing a reading addition in the form of a

Fig 1. Number of spectacle lenses and EMR visits included in analysis.

https://doi.org/10.1371/journal.pone.0250468.g001
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contingency table. A summary of the distributions and their statistical relationship is given in

Table 3.

The relationship between age and the power of the addition given in glasses for the EMR

data is shown in Fig 4. This relationship could be accurately fitted to a logistic function with

nonlinear regression (estimate = 2.2 D, t = 818.94, p< 0.001). The residual standard error

found was 7.56 years.

Fig 4 also shows the 95% prediction limits for estimating age if only the spectacle add power

is known, as is the case with lens dispensing data. A logistic function was also fitted to the

Fig 2. Distribution of spherical equivalent in each dataset. Top Panel—EMR data from Irish optometry practices. Right spherical equivalent distribution for all visits

(n = 536,249), single vision prescriptions (n = 215,207) and addition prescriptions (n = 321,013). Bottom Panel—Spectacle Lens Distribution from manufacturer data

for all lenses (n = 134,280,063), single vision, (SV) lenses (n = 84,561,994) and addition, (ADD) lenses (n = 49,709,191).

https://doi.org/10.1371/journal.pone.0250468.g002

Table 1. Mean, range and distribution characteristics of spectacle lens and EMR data.

Dataset Mean SE (D) ± SD Skew Kurtosis

All Spectacle Lenses +0.02 ± 3.08 -0.80 1.73

SV Lenses -0.03 ± 3.22 -0.74 1.47

ADD Lenses +0.11 ± 2.84 -0.89 2.20

All EMR Visits -0.13 ± 2.50 -0.74 3.19

Visits with SV Rx -0.91 ± 2.74 -0.30 2.09

Visits with Add Rx +0.39 ± 2.17 -1.09 5.82

https://doi.org/10.1371/journal.pone.0250468.t001
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relationship between the probability of being prescribed a reading addition and age (esti-

mate = 42.29 years, t = 653.73, p< 0.001). The residual standard error was 1.73%. This allows

estimation of the proportion of individuals at each age likely to require a reading addition (Fig

5). These relationships were then used to infer ages for the ADD lens data. This allowed the gen-

eration of sub-populations of a given age for comparison with the EMR, E3 and GHS data.

Using these two functions to determine age ranges and by generating probability density func-

tions for each value of reading addition in the EMR data, the level of myopia, hyperopia and

astigmatism was calculated for age groups from�45 years to� 80 years for the ADD lens data.

Comparison with E3

The distributions of spherical equivalent refraction in the E3 study and the age matched EMR

data were closely matched (χ2 = 527, p = 0.29, DoF = 510) with both being negatively skewed

leptokurtotic distributions (Fig 6).

Fig 3. Age and the prescribing of an addition are highly correlated in EMR patients. Distribution of spherical equivalent for those under age 45 (left panel bars) and

those age 45 and over (right panel bars). The dotted line represents the distribution of spherical equivalent for those given a single vision prescription (left panel) and

those given a prescription containing an addition (right panel).

https://doi.org/10.1371/journal.pone.0250468.g003

Table 2. Contingency table comparing the frequency of addition prescribing for EMR patients under age 45 and

those age 45 and over.

No Addition Prescribed Addition Prescribed

Under 45 204,027 24,512

Age 45 or Over 13,515 298,807

https://doi.org/10.1371/journal.pone.0250468.t002
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Age-matched comparison of the level of myopia, hyperopia and astigmatism for EMR rela-

tive to E3 data revealed broadly similar distributions across the refractive error types, albeit

that the distribution of myopia was lower and hyperopia higher in the EMR data relative to the

E3 data (Table 4). The ADD lens data distributions of myopia, hyperopia and astigmatism

were all higher but also similar to the age matched E3 data (Table 5).

The E3 reported levels of myopia, hyperopia and high myopia across various age groups

were compared to the EMR, ADD lenses and GHS data across the same age groups (Figs 7–9).

These figures show the EMR data is the closest match to the E3 data. Confidence intervals for

the EMR data were found to be overlapping with the confidence intervals for E3 data at 7 age

points for myopic refractions (Fig 7), 6 age points for hyperopic refractions (Fig 8) and 12 age

points for highly myopic refractions (Fig 9). The ADD lens data, however, provides a closer

Table 3. Descriptive statistics comparing single vision EMR prescriptions to younger EMR patients and addition EMR prescriptions to older EMR patients.

Dataset Mean SE (D) Skew Kurtosis Chi-Square Test

Single Vision -0.91 ± 2.74 -0.30 2.09 χ2 = 552, p = 0.2365, DoF = 529

Under Age 45 -0.80 ± 2.66 -0.30 2.26

Addition +0.39 ± 2.17 -1.09 5.82 χ2 = 899, p = 0.2408, DoF = 870

Over Age 45 +0.36 ± 2.25 -1.16 5.58

https://doi.org/10.1371/journal.pone.0250468.t003

Fig 4. Predicted age based on the prescribed reading addition for EMR patients with 95% prediction intervals.

https://doi.org/10.1371/journal.pone.0250468.g004

PLOS ONE Application of big-data for epidemiological studies of refractive error

PLOS ONE | https://doi.org/10.1371/journal.pone.0250468 April 23, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0250468.t003
https://doi.org/10.1371/journal.pone.0250468.g004
https://doi.org/10.1371/journal.pone.0250468


approximation to the E3 data for total myopia compared to the GHS data, particularly up to

age 64 (Fig 7).

Discussion

Our results indicate that EMR data provides a close approximation to refractive error preva-

lence values found as part of the E3 study. Age related variation in the proportions of myopes

and hyperopes are similar across the EMR and E3 data. Both the EMR and E3 datasets demon-

strated high levels of myopia in younger age groups (Fig 7) which supports the findings of

other studies demonstrating an increase in myopia prevalence in more recent generations

[5,6]. Although the EMR data falls outside the E3 confidence intervals at some points for both

the myopia and hyperopia comparisons, this is also true of the GHS data which was a compo-

nent study of the E3 dataset, with the EMR data providing a closer match to the E3 than the

GHS data. As the confidence intervals indicate the likely position of the mean of the study pop-

ulation some fluctuation is expected when comparing different study populations.

It was possible to estimate the likely recipient age for every spectacle lens prescription con-

taining a reading addition by using the EMR data. This was achieved based on the observation

that a significant majority of EMR patient visits below the age of 40 years were not prescribed

an addition while the majority of patients visits above the age of 50 years were prescribed an

addition. Along with the presence of an addition, the power of the reading addition was also

Fig 5. Likelihood of needing a reading addition for EMR patients at different ages with 95% prediction intervals.

https://doi.org/10.1371/journal.pone.0250468.g005
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found to provide a means of estimating a patient’s age. These inferences allowed an estimated

age to be associated with each spectacle lens containing an addition within the spectacle lens

sales dataset. The combination of disparate data sources to provide greater insight is a hallmark

of Big Data analysis [33], and in this case allowed a deeper understanding of the usefulness of

the spectacle lens sales data as a source of epidemiological data of refractive error.

Having accurate and current information on the prevalence of refractive error is vital to

allow health services to plan for the increasing need for optical correction and the increased

burden due to the ocular comorbidities [3,34–37] associated with increasing refractive error.

Myopia is of particular concern as it is estimated that up to 49.8% of the global population will

be myopic by 2050 and 9.8% of those will be highly myopic [4]. The combination of high myo-

pia and increasing age have been found to be a risk factor for vision impairment and blindness

Fig 6. Comparison of spherical equivalent distribution between E3 and EMR. E3 distribution of refractive error spherical equivalent (dotted line) compared to the

gender and age matched EMR distribution of right eye refractive error spherical equivalent (bars).

https://doi.org/10.1371/journal.pone.0250468.g006

Table 4. Age matched comparison of refractive error rates between the E3 consortium and EMR data (mean age = 60.16 ± 12.23 years).

Data Set All Myopia

� -0.75

Low Myopia�

-0.75 to > -3.00

Moderate Myopia

� -3.00 to > -6.00

High Myopia

� -6.00

All Hyperopia

� +1.00

High Hyperopia

� +3.00

Emmetropia >

-0.75 to < +1.00

Astigmatism� 1.00

E3

(n = 62,393)

30.60% 19.50% 8.08% 2.71% 25.23% 5.37% 44.17% 23.86%

EMR

(n = 200,076

21.52% 13.56% 5.70% 2.26% 37.89% 7.38% 40.59% 28.38%

https://doi.org/10.1371/journal.pone.0250468.t004
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[38]. A recent meta-analysis found a significantly increased risk of myopic macular degenera-

tion and retinal detachment in high myopes with reduced visual acuity and worse treatment

outcomes in eyes with these conditions [39]. Assessing any change to the prevalence of high

myopia within a population is the area of most concern when considering the ocular comor-

bidities associated with refractive error. EMR data contains refractive error information and

patient demographics including age, which can help to determine the population risk of vision

impairment. The EMR data provides a good match to the E3 study for high myopia (Fig 9) and

as such may be an invaluable method to determine the ongoing risk of vision impairment.

While conventional epidemiological studies remain the gold standard, they have some dis-

advantages. The most reliable studies have large sample sizes allowing their results to be

Table 5. Age matched comparison of refractive error rates between the E3 consortium and ADD lens data (mean age = 62.55 ± 8.59 years).

Data Set All Myopia

� -0.75

Low Myopia�

-0.75 to > -3.00

Moderate Myopia

� -3.00 to > -6.00

High

Myopia�

-6.00

All Hyperopia

� +1.00

High

Hyperopia�

+3.00

Emmetropia >

-0.75 to < +1.00

Astigmatism� 1.00

E3 (n = 50,010) 22.44% 14.08% 6.24% 1.93% 37.23% 7.98% 40.33% 26.96%

ADD Lenses

(n = 35,720,655

28.60% 15.12% 9.52% 3.95% 43.02% 9.98% 28.38% 31.45%

https://doi.org/10.1371/journal.pone.0250468.t005

Fig 7. Total myopia proportion for all data sets as a function of age group. Total myopia proportion for EMR (inverted triangle), ADD Lenses (triangle), GHS

(circle) and E3 (square) data as a function of age group. The E3 data confidence intervals (dark shaded area) are plotted to illustrate comparison with the other data

sets. The EMR data confidence intervals (light shaded area) are plotted to show the overlap with the E3 data.

https://doi.org/10.1371/journal.pone.0250468.g007
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generalized to the entire population. Such sample sizes require significant investment and time

to conduct the study, which perhaps explains the relative lack of epidemiological studies of

refractive error and significant lack of longitudinal studies of refractive error. This paucity of

data also contributes to uncertainty with regards to future projections of myopia prevalence

[4]. Where such data is not available, EMR or industrial data may have a useful role as these

are increasingly being collected as a matter of routine and can be collected with greater ease

and at more regular intervals.

It is important to acknowledge that all epidemiological studies suffer from various forms of

bias. For example, it is well established that most cross sectional studies suffer from volunteer

bias, with volunteers usually from higher socio-economic backgrounds with a higher level of

education [40]. Longitudinal studies frequently suffer from loss to follow up which may induce

a bias in the profile of the remaining study population. It is important, therefore, when design-

ing an epidemiological survey of refractive error to attempt to minimise these biases. Big data

studies on refractive error will not suffer with the same biases as the data was not collected for

the purpose of determining the population burden of refractive error. This type of epidemio-

logical study will however, have a different set of biases which need to be considered. A fre-

quent criticism of the secondary use of EMR data concerns the lack of access to healthcare of

some population cohorts [41] due to a lack of health insurance. As this EMR data has come

Fig 8. Total hyperopia proportion for all data sets as a function of age group. Total hyperopia proportion for EMR (inverted triangle), ADD Lenses (triangle), GHS

(circle) and E3 (square) data as a function of age group. The E3 data confidence intervals (dark shaded area) are plotted to illustrate comparison with the other data

sets. The EMR data confidence intervals (light shaded area) are plotted to show the overlap with the E3 data.

https://doi.org/10.1371/journal.pone.0250468.g008
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from a jurisdiction with free access to eyecare which is widely availed of, this should not create

a significant bias in our data [42,43]. Less frequent replacement of spectacle lenses from those

of lower socio-economic backgrounds may present a more significant issue with regards to the

spectacle lens dispensing data. Measurement error can exist as a bias in any epidemiological

study but may be well controlled in small studies through standardization of equipment and

procedures. In a Big Data study of this nature, this is not possible. Nevertheless, error rates of

subjective refraction in adults are typically low at between 1% and 2%, indicating the vast

majority of refractions should be accurate to within ± 0.50 D of the correct refraction [44,45].

There are several limitations to this study that must be considered. In relation to spectacle

lens data, demographic information of the individuals purchasing the spectacle lenses is not

typically available in industrial datasets. Geographic information is likely to be available, how-

ever, which can provide some useful information. Using the EMR data to infer the age of a

cohort of the spectacle lens users enhances the usefulness of this data, but the overall lack of

demographic information means that further conclusions on subpopulations cannot be

drawn. In this study, the spectacle lens data was supplied by one manufacturer. Economic fac-

tors and market penetration may have an effect on the background of the consumer choosing

lenses from this manufacturer. Industrial data could be biased, for example, to particular

socio-economic, ethnic or other demographic subgroups for reasons such as product cost,

Fig 9. Total high myopia proportion for all data sets as a function of age group. Total high myopia proportion for EMR (inverted triangle), ADD Lenses (triangle)

and E3 (square) data as a function of age group. The E3 data confidence intervals (dark shaded area) are plotted to illustrate comparison with the other data sets. The

EMR data confidence intervals (light shaded area) are plotted to show the overlap with the E3 data. GHS not present as high myopia data was unavailable.

https://doi.org/10.1371/journal.pone.0250468.g009
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geographic location and other factors specific to individual manufacturers. Higher educational

attainment is associated with both socio-economic status and myopia [6], for example, so the

possibility that the oversampling of individuals from particular backgrounds within individual

datasets might influence population estimates of refractive error needs to be considered.

Under sampling of emmetropic patients is a more significant issue for the spectacle lens data

as these represent spectacle lens sales. This will tend to produce an apparent increased propor-

tion of hyperopic and myopic refractive errors, especially for younger subjects, as observed in

this study. It is unlikely that emmetropic patients are purchasing spectacle lenses in significant

numbers. This is particularly evident when considering the SV lenses in Fig 3. The notch appar-

ent at zero dioptric power represents the reduction in purchasing of spectacle lenses by this

group. It might be expected that the number of zero power lenses would be smaller than was

observed, but there are plausible reasons to explain this. In cases of anisometropia one eye may

have a zero-power lens when the fellow eye needs correction. In addition, the computation of

spherical equivalent may result in zero spherical equivalent power for lenses prescribed to

patients with mixed astigmatism. The lack of emmetropes represented within the spectacle lens

sales data presents a problem and may explain the poorer match to the E3 study relative to EMR

data. This implies that such data may be more representative of the distribution of refractive

error within a population above a certain threshold of refractive error. The greatest risks of visual

impairment are associated with high levels of myopia [39], and also high levels of hyperopia [3],

both categories likely to seek optical correction. Further analysis and modelling may remove the

limitation associated with the under sampling of emmetropes and allow the determination of the

risk of vision impairment in those using spectacle lenses to correct higher refractive errors.

There are less limitations applicable to the EMR data due to the increased demographic

detail captured in this data. Under sampling of emmetropic patients is likely to be less prob-

lematic for the EMR data which includes refraction data found as part of a patient’s eye exami-

nation. Emmetropic patients are still likely to attend routine eye examinations for the purposes

of screening for common ocular pathologies such as glaucoma and cataract [46] although

some under sampling of young emmetropic patients may have still occurred. Importantly,

EMR data is likely to be highly representative of the older population given the almost univer-

sal need for optical correction as presbyopia begins to manifest as a problem, even for emme-

tropes and low hyperopes who did not previously need correction. This is particularly the case

in most countries in Europe where subsidised eye examinations are accessible to the majority

of the population [47]. The close match of the EMR and E3 data observed herein suggests that

the EMR is representative of the population at large.

In this EMR dataset, it was not possible to tell what type of refraction had been performed

to reach the refractive error prescribed. Cycloplegic refraction is performed to avoid the errors

in refraction that can be induced by accommodation in children and the use of cycloplegia is

considered the most appropriate method to assess refractive error for research purposes [48].

Although it is unknown how many of these refractions have been performed with the aid of

cycloplegia, a significant number of epidemiological surveys on refractive error have been car-

ried out without the use of cycloplegia [7]. It has been found that accommodation mostly

affects the determination of refractive error in children and has little impact on adults [49,50],

particularly older adults [51]. The technique of refraction used, therefore, should have little

impact on the primarily adult dataset used herein.

Conclusion

The prevalence of refractive error within a population can be estimated using EMR data in the

absence of population surveys. Results from EMR data also allow age to be inferred from the
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addition in a spectacle lens. Industry derived sales can then be used to provide insights on the

epidemiology of refractive errors in a population over certain age ranges. EMR and industrial

data may therefore provide a fast and cost-effective surrogate measure of refractive error distri-

bution that can be used for future health service planning purposes.
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