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Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural
antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H

2
S) is now

recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the
biological systems. Among these functions, the role of H

2
S in oxidative stress has been one of themain focuses over years. However,

the underlyingmechanisms for the antioxidant effect of H
2
S are still poorly comprehended.This review presents an overview of the

current understanding of H
2
S specially focusing on the new understanding andmechanisms of the antioxidant effects of H

2
S based

on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H
2
S-induced S-sulfhydration

of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review.

1. Introduction

In 1777, a young Swedish apothecary, Carl Wilhelm Scheele,
treated ferrous sulfide with a mineral acid and noted a
colorless gas with a characteristic odor of rotten eggs. He
described it as “sulfuretted hydrogen.” The notoriety of
hydrogen sulfide (H

2
S) had been considered as a toxic gas for

several hundreds of years. The Permissible Exposure Limit
(PEL) of H

2
S is 10 ppm and sudden exposure to >400 ppm

can cause rapid death. The biological effects of H
2
S in

physiological condition began around the turn of the 20th
century. H

2
S is now recognized as the third “gasotransmitter”

along with nitric oxide (NO) and carbon monoxide (CO)
[1]. The desulfhydration of cysteine is considered as the
major source of H

2
S in mammals. This process is catalyzed

by cystathionine 𝛽-synthase (CBS) and cystathionine 𝛾-
lyase (CSE), two pyridoxal-5-phosphate- (PLP-) dependent
enzymes. CBS is primarily expressed in various regions of the
brain and is essential to the production of H

2
S in the central

nervous system [2–4], whereas CSE ismainly expressed in the
cardiovascular system [5, 6]. Recently, 3-mercaptopyruvate
sulfurtransferase (3-MST) was reported as the third enzyme
for H
2
S production, which is localized to mitochondria and

nerve endings [7, 8].We and others proved that H
2
S exerted a

wide range of biological functions including neuroprotection
[9, 10], cardioprotection [11, 12], antihypertension [13], and
osteoblastic protection [14]. The antioxidant effect of H

2
S

has been most extensively investigated and was thought as
the major mechanism underlying the effects of H

2
S. Here,

we summarize the existing knowledge about the antioxidant
effect of H

2
S, highlighting recent advances in our under-

standing of the ability of H
2
S to neutralize reactive oxygen

species (ROS) in vivo.

2. Free Radical, Oxidative Stress, and
Cellular Antioxidant Defenses

2.1. Free Radical and Oxidative Stress. A free radical is an
unstable chemical species that contains one ormore unpaired
electrons in its outer orbital. In organisms, the highly reactive
free radicals formed from metabolism might donate their
unpaired electron to another molecule or pull an electron
off a neighboring molecule. The term oxidative stress has
been proposed indicating a disturbance in the equilibrium
status of oxidant/antioxidant systems with a progressive
accumulation of ROS in intact cells. ROS are short-lived
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and highly chemically reactive. At low concentrations, ROS
serve as cellular signaling molecules [15]. However, at high
concentrations, ROS may cause both beneficial and unbene-
ficial effects. In the late case, ROS may not only kill invading
pathogens and microbes but also damage the components of
the cell, including proteins, lipids, carbohydrates, and DNA
[16]. Overwhelming evidence indicates that oxidative stress is
involved in the pathophysiology of the wide array of human
diseases, including cancer [17], cardiovascular disease [18],
AIDS [19], diabetes mellitus [20], and neurodegenerative
disorders such as aging, Parkinson’s disease, and Alzheimer’s
disease [21, 22].

In human body, more than 95% free radicals belong to
oxygen free radicals. Recent studies suggest that oxygen-
free radicals play an essential role in the control of cell
functions and signal transmission [23, 24]. The common
oxygen free radicals consist of superoxide anion (∙O

2

−),
hydroxyl radical (HO∙), perhydroxyl radical (HO

2

∙), alkoxyl
radical (RO∙), alkyl peroxide radical (ROO∙), and so on
(Table 1). Among them, ∙O

2

− is very unstable and able to
react spontaneously with itself producing hydrogen peroxide
(H
2
O
2
) and molecular oxygen (O

2
) [25]. ∙O

2

− is the starter
of chain reaction of oxygen free radicals. HO∙ is the most
reactive oxygen free radical and can react with any biological
molecule [26]. HO

2

∙ is the protonated form of superoxide
anion and exhibits higher reactivity than superoxide anion
[27]. In addition, other reactive oxygen metabolites such as
H
2
O
2
and the singlet oxygen (1O

2
) can also be regarded as

oxygen free radicals, although they are not true free radical
species. H

2
O
2
may cross the biological membranes and is one

of the origins of highly reactive HO∙ [28]. The singlet oxygen
(1O
2
) also has higher reactivity [29] and can be formed

directly by illumination (ℎV) from molecular oxygen.

2.2.The Sources of ROS. ROS are widespread in living organ-
isms. Actually, they are being continuously produced in vivo
and many of them are necessary to carry out certain cellular
and biological reactions [23]. When they were overproduced,
cellular damage may happen [30, 31]. The origin of oxygen-
free radicals may be generated exogenously or endogenously.

Exogenous sources are mainly generated by some stimu-
lating factors. These include smoking, alcohol, certain drugs,
air pollution, ionizing radiation, and hyperbaric oxygen
poisoning. Compared with exogenous sources, endogenous
sources play more important roles in the form of oxygen
free radicals. Endogenous activities are the main sources of
oxygen-free radicals in living organisms. The main endoge-
nous sources are listed below (Figure 1, solid line arrows).

(i) Mitochondrial Electron Transport. The oxygen-free radical
is the by-products of cellular metabolism. Under normal
physiological conditions, most oxygen in organisms will
acquire four electrons and four protons and reduce to form
water by the cytochrome c oxidase from electron transport
system of mitochondrial. In this procedure, no oxygen-free
radical will form at last. However, if the molecular oxygen
undergos sequential univalent reduction, highly reactive
∙O
2

−, HO∙, and H
2
O
2
would be formed [32]. Mitochondria

Table 1: The types of common oxygen-free radicals.

Radicals Chemical formulas Electron structures

Superoxide anion ∙O
2

−

∙∙ ∙∙

∙∙ ∙∙

∙∙ ∙∙∙O O

Hydroxyl radical HO∙
∙∙

∙∙

∙∙∙H O

Perhydroxyl radical HO
2

∙

∙∙

∙∙

∙

∙∙

∙∙

∙∙ ∙∙H O O

Alkoxyl radical RO∙
∙∙

∙∙

∙∙∙

∙∙

∙∙

∙∙R O

Alkyl peroxide radical ROO∙
∙∙

∙∙

∙∙∙

∙∙

∙∙

∙∙

∙∙

∙∙ ∙∙R O O

Hydrogen peroxide H
2
O
2

∙∙

∙∙

∙∙

∙∙

∙∙

∙∙ ∙∙H O O H

Singlet oxygen 1O
2

∙∙ ∙∙

∙∙ ∙∙

∙ ∙∙∙O O

are the major source of intracellular ROS. As the terminal
electron acceptor of respiration, more than 90% oxygen is
used to produce ATP in mitochondria and about 2% of the
oxygen is transformed into ROS as respiratory chain by-
products [33].

(ii) The Increase of Xanthine Oxidase (XO). There are about
10% of xanthine oxidases (XO) and 90% of xanthine dehydro-
genase (XD) in endothelial cells.The xanthine dehydrogenase
(XD) will be converted into xanthine oxidase (XO) during
ischaemia [34]. In this condition, the adenosine triphosphate
(ATP) could not release energy. Instead, it will be degraded
into adenosine diphosphate (ADP), adenosine monophos-
phate (AMP), and hypoxanthine gradually. Upon reperfusion
of the ischemic tissue, increased xanthine oxidase (XO) will
convert the increased hypoxanthine to xanthine and then
convert the formed xanthine to uric acid by using oxygen
as electron acceptor. Oxygen is reduced and produced ∙O

2

−,
HO∙, and H

2
O
2
finally [35] (Figure 2).

(iii) The Increase of Catecholamine. Sympathetic adrenom-
edullary system is an important stress regulation system in
our bodies. Catecholamine produced by this system under an
external stimulus has an important role in the adjustment of
metabolism. Catecholamine can also be converted to oxygen-
free radicals by autooxidation [36] (Figure 2). It is worth
noting that too much catecholamine and their oxidation
products, especially the superoxide anion radicals, will cause
damage to the body.

(iv) NADPH Oxidase. Nicotinamide-adenine dinucleotide
phosphate (NADPH) oxidase (NOX) is another important
enzyme for intracellular ROS generation. It is mainly dis-
tributed in the plasma membrane surface of phagocyte and
catalyzes the one-electron reduction of oxygen to produce
superoxide-free radical by utilizing NADPH as an electron
donor (Figure 2). The NOX system is dormant in normal,
but it can be activated by some stimulating factors, such as
leukotriene, endotoxin, complement, and calcium ion [37,
38]. Thereby, more oxygen (O

2
) will be quickly reduced

to ∙O
2

− and H
2
O
2
. HO∙ will be also formed by further

metabolism [39].

(v) Catalysis of Transitional Metals. The transitional metals,
such as iron and copper, can change their valence by donating
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Figure 1: The main ROS generation and elimination pathways. (1) ROS (including ∙O
2

−, HO
2

∙, HO∙, 1O
2
, and H

2
O
2
) may be generated by

exogenous (like smoking, ℎ], air pollution, etc.) and endogenous (like mitochondria, catecholamine, NOX, etc.) stimulating factors. ∙O
2

− can
further react with H

2
O
2
to generate HO∙ through the Haber-Weiss reaction in the presence of ferric irons (shown as solid line arrows). (2)

Excessive ∙O
2

− is eliminated by SOD by catalyzing the dismutation of ∙O
2

− to H
2
O
2
and O

2
. H
2
O
2
can be further removed by the catalysis

of CAT or GPx. The catalysis of GPx needs GSH as its cosubstrate and GSH is oxidized to GSSG. GSSG can be reduced to GSH again by
GR utilizing NADPH. GSH can also react with oxygen free radical directly and form the thiyl radical (GS∙) and later GSSG. Vitamin E and
vitamin C may react with oxygen free radical and form less reactive radicals (shown as dotted line arrows). NADPH: nicotinamide-adenine
dinucleotide phosphate; NOX: NADPH oxidase; XO: xanthine oxidase; SOD: superoxide dismutase; GSH: glutathione; GSSG: glutathione
disulfide; GPx: glutathione peroxidase; GR: glutathione reductase.
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Figure 2: Endogenous superoxide anion (∙O
2

−) formation path-
ways. (1) NOX catalyzes the one-electron reduction of oxygen to
produce ∙O

2

− by utilizing NADPH as an electron donor. (2) ∙O
2

−

formation in the process of the XO-catalyzed conversion of hypox-
anthine into xanthine or xanthine into uric acid. (3) ∙O

2

− formation
within catecholamine autooxidation.

an electron and thus catalyze the Haber-Weiss reaction [28]
as shown in (1). In the presence of superoxide anions,
ferritin-bound ferric iron in cells usually can be liberated as

ferrous form, thereby increasing the amount of iron [40].The
generated iron can form HO∙ in the presence of hydrogen
peroxide. This is the main source of hydroxyl radicals.

∙O
2

−

+H
2
O
2

Fe3+
→ O

2
+HO− +HO∙ (1)

In addition, the metabolism of arachidonic acid by cy-
clooxygenase [41, 42] or lipoxygenases [43, 44], cytochromes
P450 of the microsomal electron transport system [45, 46],
may also produce oxygen-free radicals.

2.3. Cellular Defenses of ROS. In living organisms, ROS are
continuously produced because of the reduction ofmolecular
oxygen.Although free radicals play an important role in some
physiological reactions, such as cell signal transduction and
regulation of muscle tone [23, 40], excessive free radicals
would cause damage to the lipids, proteins, and DNA and
give rise to cellular and metabolic disturbance [30]. There
are enzymes and chemical scavengers that could be used to
remove excessive oxygen-free radicals formed in a living body
[47].

Superoxide dismutase (SOD) is a common antioxidant
enzyme which contains copper, zinc, and manganese as
cofactors [48]. SOD can catalyze the dismutation of ∙O

2

− to
molecular oxygen (O

2
) and the lesser active species H

2
O
2
at

a higher rate than the spontaneous dismutation of ∙O
2

−. The
formed H

2
O
2
will be further decomposed to H

2
O and O

2
or



4 Oxidative Medicine and Cellular Longevity

be used to form HO∙ through the Haber-Weiss reaction, as
shown in (1), and reduced toH

2
Ofinally (Figure 1, dotted line

arrows).
Catalase (CAT) is another antioxidant enzyme that is

widely distributed in tissues [49]. It could catalyze the
degradation of H

2
O
2
directly to water and prevent the

secondary generation of other intermediate radicals. In
addition, selenium-containing glutathione peroxidase (GPx)
could also catalyze the reduction of H

2
O
2
[50]. This reaction

needs reduced glutathione (GSH) as cosubstrate and GSH
will be oxidized to oxidized glutathione (GSSG). GSSG could
also be reduced to GSH again by glutathione reductase (GR)
utilizing NADPH.

There are also some nonenzymatic chemical antioxidants
that play an important role in antioxidant, included glu-
tathione (GSH), 𝛼-tocopherol (vitamin E), and ascorbic acid
(vitamin C) [51]. As mentioned before, GSH can act as a
cosubstrate in the reduction of H

2
O
2
by GPx. GSH could

also react with oxygen-free radical directly and form the
thiyl radical and later GSSG [52]. Like GSH, vitamins E and
C could also reduce oxygen-free radicals [53]. They would
trap hydroxyl radicals and other reactive radicals and thus
break radical chain reactions and form new less reactive
radicals. These new formed radicals themselves could not
be removed or make further conversion. Only with the help
of GPx and other biological molecules, these new radicals
can be transformed to nonreactive substances. So, excess
supplement of vitamins and other chemical antioxidants is
not necessary. Excess levels of vitamins cannot replace the
position of enzymes in organisms [54]. On the contrary,
excess chemical antioxidants may produce excess less reac-
tive radicals by reacting with oxygen radicals. These excess
radicals may cause damage to the body. Actually, chemical
antioxidants usually go into effect with the cooperation of
antioxidant enzymes [55].

3. Mechanisms for the Regulatory Effect of
H
2
S on ROS In Vivo

3.1. Quenching Free Radicals as a Chemical Reductant. At
37∘C and pH 7.4, more than 80% of H

2
S molecules dissolve

in surface waters and dissociate into H+, HS−, and S2− ions.
HS− is powerful one-electron chemical reluctant and presents
a remarkable capacity to scavenge ROS. In addition, H

2
S

itself has also been recognized to be a poor reducing agent,
which can react directly with and quenches the superoxide
anion (O

2

−) [56, 57] and NO-free radicals like peroxynitrite
[58] as well as other ROS in vitro. However, it should be
noted that the physiological concentration of H

2
S in vivo is

believed to be at the submicromolar range [59, 60] and such
low concentration ofH

2
S is not paralleledwith its antioxidant

effect. Moreover, in our previous work, NaHS pretreatment
significantly inhibitedH

2
O
2
-induced (50𝜇M, 2 h)mitochon-

drial ROS generation and protected human neuroblastoma
SH-SY5Y cells against H

2
O
2
-induced injury even when it

had been washed out before H
2
O
2
administration. Similar

effects were also found in MC3T3-E1 osteoblastic cells, and
this antioxidant effect of H

2
S lasted for at least 18 h [14].These

results indicated that other mechanisms besides chemical
reductant exist in the antioxidant effect of H

2
S. We speculate

that H
2
S might act as a trigger which will be retired after

starting the process of antioxidant action.

3.2. Scavenging Free Radicals In Vivo via Nonenzymatic
Antioxidants. As we mentioned before, ROS is counter-
balanced in the body by a net of antioxidants, including
enzymatic and nonenzymatic antioxidants. GSH and thiore-
doxin (Trx-1) are two biologically important nonenzymatic
antioxidants in animal cells and attracted increasing attention
as cellular protectants against oxidative stress in vivo.

3.2.1. H2S Increases Intracellular Reduced Glutathione (GSH).
GSH, a tripeptide consisting of cysteine, glutamate, and
glycine, is a major antioxidant in the cellular defense against
oxidative stress and a decreased GSH/GSSG ratio is usually
taken as indicating oxidative stress. In cells, GSH is syn-
thesized from cysteine. There are 2 cysteine forms, oxidized
form cystine and reductive form cysteine. Because of its
redox instability, extracellular cysteine is mostly present in
cystine, which can be transported into cells through cys-
tine/glutamate antiport system Xc

−, then reduced to cysteine,
and used for GSH synthesis [61]. Glutamate is the key
inhibitor of the system Xc

−. Our previous study showed
that NaHS at 100 𝜇M promoted [3H]glutamate uptake in
astrocytes via enhancing the trafficking of glial glutamate
transporter GLT-1 (also named the excitatory amino acid
transporters-2, EAAT2), enhanced cystine transport, and
increased intracellular GSH synthesis finally [62] (Figure 3).

Studies from other laboratories have also proven that H
2
S

preserves the cellular GSH status and provides protection
against oxidative damage in brain [63, 64], spinal cord
[65], heart [66, 67], lung [68], kidney [69, 70], liver [71],
gastrointestinal tract [72, 73], and so forth. Recently, Kimura
et al. showed a different mechanism for H

2
S on intracellular

GSH production. They reported that H
2
S produced in cells

may be released into extracellular space and reduces cystine
into cysteine, which thereby would be efficiently imported
into cells through a cysteine transporter distinct from system
Xc
− and used for GSH synthesis [74] (Figure 3). Meanwhile,

Jain et al. also demonstrated that H
2
S increased intracellular

GSH production by upregulating the glutamate-cysteine
ligase catalytic subunit (GCLC) and glutamate-cysteine ligase
modifier subunit (GCLM) [75] (Figure 3).

3.2.2. H2S Increases Intracellular Trx-1. Classic thioredoxin
(Trx-1) is a small (12 kDa) ubiquitous molecule containing
a characteristic Cys-Gly-Pro-Cys motif and the oxidation-
reduction of Trx-1 occurs at its two cysteine residues. It
was reported that Trx-1 exerts extracellular and intracellular
multifunctions in cell proliferation [76], apoptosis [77], and
gene expressions [78]. Moreover, Trx-1 was also shown to
scavenge ROS and protect cells against oxidative stress. Trx-
1 reduces hydrogen peroxide via peroxiredoxin (Prx) and
oxidized Trx-1 is reduced by thioredoxin reductase [79].
Antioxidant effects of Trx-1 can also be mediated indirectly
(for more details, see [79]).
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Figure 3: H
2
S increases intracellular GSH synthesis. Cellular GSH is mainly synthesized from cysteine. (1) H

2
S increases EAAT2-mediated

glutamate uptake, which thereby increases cystine transportation through cystine/glutamate antiport system (Xc
−). (2) Intracellular H

2
S is

released into extracellular space and reduces cystine into cysteine, whichwould be efficiently imported into cells through a cysteine transporter
distinct from system Xc

−. These two pathways provide more substrate to produce GSH. (3) H
2
S increases glutamate cysteine ligase (GCL)

expression and promotes GSH synthesis.

In 2008, Jha et al. reported that H
2
S protected murine

liver against ischemia-reperfusion (I/R) injury through
upregulation of intracellular Trx-1 along with an increase in
hepatic tissue GSH/GSSG ratio [71]. Trx-1 was also proved
to mediate the cardioprotective effects of H

2
S in the setting

of ischemic-induced heart failure by Nicholson et al. [80].
They demonstrated thatNa

2
S treatment not only significantly

increased the gene and protein expression of Trx-1 but
also efficiently improved cardiac dilatation, dysfunction, and
hypertrophy in the ischemic heart failure mice. Moreover,
they generated transgenic mice with a cardiac-specific over-
expression of a dominant negative mutant of Trx-1 and found
the cardioprotective effects of Na

2
S were Trx-1 dependent.

3.2.3. Potential Mechanisms of H2S on Nonenzymatic Antiox-
idants Production. Despite the potential role of H

2
S in the

cellular antioxidant defense, studies on its antioxidant mech-
anism have been exceptionally limited. Recently, increasing
evidence revealed that Nrf2 participated in the antioxidant
effect of H

2
S by promoting cellular antioxidant gene expres-

sion.
Nuclear factor (erythroid-derived 2)-like 2, also known

as nuclear factor-erythroid 2 (NF-E2) related factor 2 (Nrf2),
is a transcription factor that regulates a wide variety gene
expression. Nrf2 is found mostly in the cytoplasm as an
inactive complex with Kelch-like ECH-associated protein
1 (Keap1) [81]. Under oxidative stressed conditions, Keap1
undergoes ubiquitination and promotesNrf2 translocation to
the nucleus, in which Nrf2 binds to promoters containing the
antioxidant response element (ARE) sequence and inducing
ARE-dependent gene expression [82]. ARE is a cis-acting
regulatory element, which is found in promoter region of
certain genes, such as Trx-1 [83], glutathione reductase
[84], and thioredoxin-interacting protein (Txnip) [85]. Nrf2
can suppress the basal expression of Txnip, which binds

redox-active cysteine residues of Trx-1 and inhibit its antiox-
idant function [85]. Nrf2 can also increase both expression
and activity of glutathione reductase, which, as wementioned
above, promotes oxidized GSH recycle back to reduced GSH
and increases GSH/GSSG ratio [86]. On the other hand, it
was reported that H

2
S can S-sulfhydrated Keap1 at cysteine-

151, which causes a conformational change in Keap1 and
thereby leads to Nrf2 dissociation from Keap1. The activated
Nrf2 nuclear finally translocates to nuclear and promotes
antioxidant gene transcription, such as GCLM, GCLC, and
glutathione reductase (GR) [87]. In addition, Calvert et al.
also demonstrated that H

2
S increased the expression of Trx-1

and mediated cardioprotection through Nrf2 signaling [83].
Taken together, these results demonstrate that Nrf2 is the
potential endogenous cardioprotective signal in the process
of cellular nonenzymatic antioxidant generation induced by
H
2
S (Figure 4).

3.3. Scavenging Free Radicals In Vivo via Enzymatic Antioxi-
dants. Another major mechanism for cells to maintain redox
equilibrium is based on the clearance ability processed by
cellular antioxidant enzymes. Superoxide dismutase (SOD),
CAT, and GPx are three main antioxidant enzymes that
defend against oxidative damage in vivo. There are three
isoforms of mammalian SOD: the cytosolic copper/zinc-
containing SOD (Cu/ZnSOD, SOD-1), the mitochondrial
manganese-containing SOD (MnSOD, SOD-2), and the
extracellular SOD (ecSOD, SOD-3). SOD catalyzes the dis-
mutation of ∙O

2

− into H
2
O
2
, while CAT reacts with H

2
O
2
to

form water and molecular oxygen, and GPx detoxifies H
2
O
2

in the presence of GSH, producing H
2
O and GSSG which

is recycled to GSH by glutathione reductase in an NADPH-
consuming process [88] (Figure 1, dotted line arrows). In
1995, Searcy et al. reported that H

2
S is a genuine substrate

of SOD and can bind at the catalytic Cu center of SOD [89].
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Figure 4: Effect of H
2
S on intracellular enzymatic and nonenzymatic antioxidant production. (1) H

2
S activates Nrf2, which translocates to

nuclear, binds to ARE, and upregulates enzymatic and nonenzymatic antioxidant production. (2) H
2
S stimulates NF-𝜅B signaling, which

further upregulates the expression of numerous genes including SOD, CAT, and GPx.

The binding of HS− to SOD is very quick and the rate
constant for binding is >107M−1 S−1. When sulfide combined
with SOD, there was a synergistic increase in the rate of
superoxide anion scavenging. The 𝐾

𝑚
measured by the

pyrogallol technique is ∼80 𝜇MHS− [89]. Recent studies also
demonstrated that H

2
S could ameliorate cellular oxidative

stress by improving activities of CAT [66, 90–92] and GPx
[92–95].

The signal transduction pathways for H
2
S to promote

endogenous enzymatic antioxidant defense are much less
understood. NF-𝜅B is a family of transcription factors and
plays a pivotal role in inflammation. H

2
S was reported to

attenuate inflammation via inhibition of NF-𝜅B activation,
which is associated with an array of diseases, such as hypoxia-
induced neurotoxicity [96], cerebral ischemia [97], kidney
injury [98], pulmonary fibrosis [99], and acute pancreatitis
[100]. However, as a redox-sensitive transcription factor, NF-
𝜅B has also been considered as the most important factor on
regulation of cellular antioxidant enzymes and was reported
to be upregulated byH

2
S via substance P [101, 102]. Analyzing

the gene sequences of mouse GPx and CAT, Zhou et al. [103]
revealed the existence of binding sites for NF-𝜅B at position
-283 in the GPx gene and at the -227 and -242 in the CAT
gene. Additionally, SOD was also proved to have binding site
for NF-𝜅B in its 5-flanking region and the DNA binding
activity of NF-𝜅B was induced in response to oxidative stress
[104]. Taken together, these observations suggest that NF-𝜅B
mediated signaling pathway is most likely attributable to the
augmentation of endogenous antioxidant capacity of H

2
S in

response to oxidative stress (Figure 4).

In addition to the activation of NF-𝜅B, Nrf2 signaling
cascade maybe another rational that accounts for the antiox-
idant effect of H

2
S. Dreger et al. [105] identified that an

ARE element existed in the SOD1 and CAT promoter, which
is not only essential but also sufficient for transcriptional
regulation. In their study, antioxidative enzymes in cardiac
myocytes were induced via Nrf2-dependent transcriptional
activation of ARE sites. On the other hand, diallyl sulfide
(DAS), a kind of sulfur-containing compound, was demon-
strated to cause a significant increase in the activities of SOD,
CAT,GPx,GR, glutathione-S-transferase (GST), and quinone
reductase (QR) in rat kidney through the activation of Nrf2
to protect the cell against oxidative stress [106].This indicates
a possible role of H

2
S in ROS-interacting enzymes synthesis.

However, there is no direct report to link the effect of H
2
S on

Nrf2 signal pathway to Nrf2-induced antioxidative enzymes
synthesis at present and further investigations are needed in
future.

3.4. Inhibitory Effect on Mitochondrial Free Radicals Produc-
tion. Besides the capacity of cellular antioxidant defense,
sequential overproduction of ROS is another vital factor in
response to oxidative stress.Mitochondria is themajor source
of intracellular ROS and leak from the electron transfer chain
is thought to be the main route [107]. Mounting evidence
shows that p66Shc plays predominant roles in mitochondrial
redox signaling and its phosphorylation at serine-36 acts as a
switch on mitochondrial ROS production [108, 109].

p66Shc is a 66 kD Src homologous-collagen homologue
(Shc) adaptor protein, which is encoded by the shc1 gene
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Figure 5: Proposed model for the effect of H
2
S on p66Shc mediated mitochondrial ROS generation. (a) Showing the effect of H

2
S. p66Shc is

activated by PKC
𝛽II-dependent phosphorylation at serine-36 in the N-terminal CH2 domain.The phosphorylated p66Shc can be isomerized

by Pin1 and dephosphorylated by PP2A.This, in turn, induces mitochondrial translocation of p66Shc and ROS production. H
2
S sulfhydrates

p66Shc at cysteine-59, which locates in the sameCH2 domain besides serine-36, disrupts the association between PKC
𝛽II and p66Shc, inhibits

PKC
𝛽II-mediated p66Shc phosphorylation, and decreases mitochondria ROS generation finally. (b) Showing the structure of p66Shc and the

conserved serine (Ser-36) and cysteine (Cys-59) residues in the CH2 domain.

and belongs to the ShcA family. There are two other Shc
familymembers, p46Shc and p52Shc, and all these 3 isoforms
share three common functionally identical domains: the C-
terminal Src homology 2 domain (SH2), the central collagen
homology domain (CH1), and the N-terminal phosphor-
tyrosine-binding domain (PTB) [110]. Different from the
other two isoforms, p66Shc has an additional N-terminal
CH2 domain which contains a critical serine residue at the
position 36 (Ser-36) and shows different functions from
p46Shc and p52Shc. It was proved that p66Shc has a negative
influence on the Ras-mediated signaling pathway [111] but
is involved in mitochondrial redox signaling. In response to
oxidative stress (UV exposure or H

2
O
2
treatment), p66Shc

is phosphorylated by protein kinase C-𝛽II (PKC
𝛽II) at Ser-

36. The activated p66Shc is then isomerized by the prolyl
isomerase Pin1 and dephosphorylated by phosphatase A2
(PP2A) and finally translocates to mitochondria, where
it binds to cytochrome c and transfers electrons from
cytochrome c to molecular oxygen to product ROS [112,
113] (Figure 5). Migliaccio et al. reported that p66Shc−/−
mice have a 30% increase in the life span [114]. Consistent
with this report, Tomilov et al. also demonstrated that
macrophages from p66Shc−/− mice appeared to have defect

in the activation of the NADPH oxidase and therefore less
superoxide production was observed [115].

Recently, our group demonstrated for the first time
that H

2
S may inhibit mitochondrial ROS production

via a p66Shc-dependent signal transduction. Protein S-
sulfhydration had been proposed to emerge as a major
functional alteration of proteins, such as the potassium
channels (like KATP, IKca, and SKca) [116], PTP1B [117], NF-
𝜅B [118], and Keap1 [87]. We proved that H

2
S sulfhydrated

p66Shc at cysteine-59, which resides in the proximity to the
phosphorylation sites serine-36. S-sulfhydration of p66Shc
further impaired the association of PKC

𝛽II and p66Shc,
attenuated H

2
O
2
-induced p66Shc phosphorylation, and

reduced mitochondrial ROS generation [119]. This new
finding provides new insights and clues to better understand
the important role of theH

2
S in oxidative stress and oxidative

stress related disease (Figure 5).

4. Challenges and Conclusions

The antioxidant activity of H
2
S discussed in this review

illuminated the biochemical mechanisms of H
2
S on cellular

redox homeostasis. However, the effects of H
2
S on redox
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status are highly divergent. H
2
S was also reported as a power-

ful prooxidant, which kills cancer cells in a ROS-dependent
manner [57]. It was believed that the Janus-faced molecule
serves as an antioxidant or a prooxidant depending on its
local concentrations. At lower concentrations, H

2
S exerts

beneficial effects like protective effects in the cardiovascular
system as we mentioned before, while at higher concentra-
tions, H

2
S exhibits a variety of deleterious/cytotoxic effects

(for more details, see [120]).
It should also be noted that the concentration- and time-

dependent effects of H
2
S are very complicated. H

2
S was

reported to display opposite effects at different concentra-
tions/periods. GYY4137, a slow-releasing H

2
S donor, yielded

very low concentrations of H
2
S and was proved to kill cancer

cells. NaHS, which releases higher concentrations of H
2
S

in short period, however, only exhibited weaker anticanner
effect [121]. This may imply that both H

2
S releasing speed

and amount are important for its therapeutic effects. There-
fore, the biological functions of H

2
S should be studied in

different pathological situations with varied concentrations
and treatment periods. Endogenous H

2
S generating enzyme

activities should also be taken into consideration, as theymay
be activated/inhibited upon cellular oxidative stress.

In summary, we discussed the current understanding
of the antioxidant effect of H

2
S in this paper. Obviously,

H
2
S does not produce antioxidant effect via a single/simple

mechanism. Multiple targets and signaling pathways are
involved. H

2
S can stimulate cellular enzymatic or nonen-

zymatic antioxidants to scavenge free radicals. This may be
secondary to a direct effect on antioxidants or an indirect
action through activation of various signaling proteins. H

2
S

may also inhibit mitochondria ROS production through
sulfhydration of p66Shc or membrane/cytosol ROS genera-
tion via inhibition of NADPH. To a weak extent, H

2
S also

quenches free radicals directly due to its chemical reducing
property. Future studies to explore more action sites of H

2
S

in different signaling proteins and mechanisms underlying
concentration- and time-dependent effects of H

2
S are still

warranted.
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