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Abstract 

Malignant tumor (cancer) remains as one of the deadliest diseases throughout the world, despite 
its overall mortality drops. Nanomaterials (NMs) have been widely studied as diagnostic and/or 
therapeutic agents for tumors. A feature of NMs, compared to small molecules, is that NMs can be 
concentrated passively in tumors through enhanced permeability and retention (EPR) effect. In the 
meantime, NMs can be engineered to target toward tumor specific markers in an active manner, 
e.g., receptor-mediated targeting. The relative contribution of the EPR effect and the 
receptor-mediated targeting to NM accumulation in tumor tissues has not been clearly defined yet. 
Here, we tackle this fundamental issue by reviewing previous studies. First, we summarize the 
current knowledge on these two tumor targeting strategies of NMs, and on how NMs arrive to 
tumors from blood circulation. We then demonstrate that contribution of the active and passive 
effects to total accumulation of NMs in tumors varies with time. Over time, the receptor-mediated 
targeting contributes more than the EPR effect with a ratio of 3 in the case of urokinase-type 
plasminogen activator receptor (uPAR)-mediated targeting and human serum albumin 
(HSA)-mediated EPR effect. Therefore, this review highlights the dynamics of active and passive 
targeting of NMs on their accumulation at tumor sites, and is valuable for future design of NMs in 
cancer diagnosis and treatment. 

Key words: nanomaterial; nanoparticle; enhanced permeability and retention effect; receptor-mediated tumor 
targeting; urokinase-type plasminogen activator receptor; amino-terminal fragment. 

Introduction 
The past decades have witnessed continuous 

advances in tumor diagnosis and therapies; however, 
malignant tumor (cancer) remains as one of the 
deadliest diseases throughout the world. More than 
1.6 million new cancer cases and over 0.6 million 
cancer deaths are estimated to occur in the United 
States alone in 2017, despite the overall mortality 
drops [1].  

Nanomaterials (NMs), including nanoparticles 
(NPs), micelles, dendrimers and liposomes, have 
emerged as a novel class of diagnostic probes and/or 
therapeutic drugs for tumors [2-4]. The nano-sized 
dimension renders NMs with unique physicochemical 

properties, such as optical properties and high ratio of 
surface area to volume. In addition, NMs can be 
engineered to be responsive to environmental 
conditions, such as pH value, redox potential or 
temperature, for controlled release of imaging agents 
or drugs. Additional properties can be further 
engineered to NMs, such as biocompatibility, 
bioavailability, and tumor selectivity [5-8].  

Doxil® and Abraxane® represent two successful 
clinical applications of NMs in cancer nanomedicine. 
Doxil® is a polyethylene glycol coated (pegylated) 
liposome-encapsulated doxorubicin (DOX), and was 
approved by the US Food and Drug Administration 
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(FDA) for treatment of AIDS-related Kaposi’s 
sarcoma, ovarian cancer and multiple myeloma [9]. 
DOX is a highly potent drug used in tumor 
chemotherapy, but has poor tumor specificity and is 
toxic to normal tissues, especially cardiomyocytes [10, 
11]. Compared to free DOX, Doxil® is concentrated 
preferentially in tumors and has a better therapeutic 
index [12, 13]. Abraxane® is albumin-bound paclitaxel 
NP and is approved by the FDA for the treatment of 
breast cancer [14], non-small-cell lung cancer [15] and 
other solid tumors [16, 17]. The formulation of 
paclitaxel with albumin into NPs renders water 
solubility of hydrophobic paclitaxel and avoids the 
use of the solubilizing agent Cremophor which often 
causes hypersensitivity reactions [18]. Abraxane® is 
specially accumulated at tumor sites, which reduces 
its cytotoxicity to normal tissues and thus increases its 
maximum tolerated dose. Some other NM 
formulations, including dendrimers [19, 20], quantum 
dots (QDs) [21-24], metal NPs (e.g., magnetic iron 
oxide [25] and gold [26]), are under study for cancer 
nanomedicine [27]. 

NMs can target to tumors either in a passive 
manner through the enhanced permeability and 
retention (EPR) effect or in an active manner by 
receptor-mediated targeting [28-31]. The relative 
contribution of the EPR effect and receptor-mediated 
targeting to NM accumulation in tumor is not fully 
defined. In this review, we first describe how NMs 
arrive at tumor sites from blood circulation in vivo. 
Next we briefly describe the EPR effect and 
receptor-mediated targeting. Finally, we try to 
estimate the relative contribution of the EPR effect 
and receptor-mediated targeting of NMs by 

summarizing the results reported in the literature.  

NMs from blood circulation to tumors 
For in vivo application, NMs are typically 

delivered or redistributed to tumors through blood 
circulation in vascular systems. In normal tissues, 
molecular exchange across vasculature takes place 
primarily in capillaries, which consist of a layer of 
endothelial cells and occasional connective tissue 
(Figure 1) [32, 33]. Molecules smaller than 3 nm, such 
as water, gases, salts, sugars and certain metabolites 
pass capillary endothelial cells freely, largely by 
diffusion through the space between adjacent 
capillary endothelium (intercellular cleft, Figure 1) or 
transcytosis [33, 34]. Molecules larger than 3 nm 
cannot pass through endothelium freely and only a 
small amount of macromolecules, such as albumin, 
immunoglobulins (Igs) and other plasma proteins, are 
found to extravasate from circulation into normal 
tissues [32, 34]. 

Under some circumstances like inflammation, 
large molecules can exit vasculature in quantity. This 
occurs primarily in post-capillary venules [35, 36]. The 
transcellular passage of large molecules may be 
through enlarged intercellular cleft induced by 
vascular permeabilizing factors [34]. Another 
potential mechanism of extravasation is through the 
vesiculo-vacuolar organelle (VVO). The venular 
endothelial cells are cuboidal and characterized by 
clusters of interconnected vesicles and vacuoles in 
their cytoplasm, distinctive from capillary endothelial 
cells. These intracellular vesicles and vacuoles 
together form VVOs [37-39]. The VVOs are linked to 
the plasma membrane by stomata that are normally 

closed by thin diaphragms [40]. When 
exposed to vascular permeabilizing 
factors, stromal diaphragms are 
pulled apart mechanically and VVOs 
are open, allowing transcellular 
passage of large molecules [41]. The 
vascular permeabilizing factors 
include vascular permeability factor 
(VPF)/vascular endothelial growth 
factor (VEGF) [42-46], histamine [35, 
36], serotonin [35] and platelet 
activating factor. A single exposure to 
any of these permeability factors 
results in a rapid (~20-30 min) 
hyperpermeability.  

Solid tumors stimulate the 
formation of new blood vessels 
(neovasculature) in order to absorb 
excessive nutrients and proliferate 
quickly [47]. Extensive angiogenesis 
and high vascular density are 

 
Figure 1. Schematic diagram of the blood circulatory system. There are three major types of 
blood vessels: arteries, veins and capillaries. Capillaries are consisted of a layer of endothelial cells, 
surrounded by basement membranes. 
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hallmarks of solid tumors [48]. The neovasculature is 
quite different from normal vasculature both in form 
and in architecture. The vascular basement 
membranes (VBMs) of neovasculature are easily 
degraded by various proteases (the matrix 
metalloproteases and the plasminogen activator) [49], 
allowing the detachment of pericytes from vascular 
endothelial cells. The endothelial cells, no longer 
restrained by VBMs or pericytes, become thin as their 
lumens expand in response to intravascular pressure 
[50]. In addition, the endothelial cells are poorly 
aligned with wide fenestrations; both smooth muscle 
layer and innervation are malformed or even absent, 
and functional receptors for some modulators, e.g., 
angiotensin II (AT-II), are missing [51]. These 
characteristics ultimately lead to a highly leaky 
vasculature. Large molecules thus can extravasate out 
of these blood vessels and into tumors as a result of 
transvascular osmotic pressure [39]. This increased 
vascular permeability is chronic and can be utilized to 
deliver NMs to solid tumors. In the meantime, it is 
worth to mention that this tumor related permeability 
is dynamic instead of static [52].  

Once reaching tumor sites, NMs need to traverse 
into intracellular space (endocytosis or cellular 
trafficking) to take effect. This is a critical event 
affecting the efficacy and specificity of NMs, and has 
been widely studied or reviewed [53-56].  

The EPR effect of NMs 
A term of “enhanced permeability and retention 

(EPR) effect” was firstly proposed by Matsumura and 
Maeda in 1986 to describe the preferential 
accumulation of macromolecules in tumor, which has 
leaky capillaries, and at the same time, poor 
lymphatic drainage [57]. Size or molecular weight of 
the macromolecule is a key parameter determining 
the EPR effect in solid tumors (Figure 2). Typically, 
molecules with sizes ranging from 10 to 200 nm or 40 
to 800 kilodaltons (kDa) in mass exhibit a strong EPR 
effect [58-60]. Such macromolecules include plasma 
proteins and NMs [61, 62]. Small molecules tend to 
diffuse freely in and out of tumor blood vessels 
because of their small sizes, and thus do not 
accumulate in tumors as much as macromolecules do 
over time (Figure 2) [63]. Besides the size, other 
properties, such as shape and surface chemistry, also 
affect the EPR effect of NMs, which are discussed in 
recent reviews [31, 64] and will not be elaborated here.  

The EPR effect can be modulated by a number of 
in vivo factors. EPR augmenting factors include (1) 
vasoconstrictors to raise the systemic blood pressure 
[65], e.g., AT-II [66]; (2) free radicals that affect 
integrity of vascular endothelium, e.g., peroxynitrite 
[67]; (3) nitric oxide-releasing agents, e.g., 
nitroglycerin [68]; (4) vascular permeability 
promoters: bradykinin/kinin [69], prostaglandins, 
VEGF/VPF and other inflammatory cytokines [70]. 
These stimulators result in an enhanced vascular 
permeability and extravasation of macromolecules, 
and thus increase the EPR effect.  

 

 
Figure 2. Schematic illustration of the enhanced permeability and retention (EPR) effect in tumors. In tumor tissues (lower panels), endothelial cells 
are poorly aligned with wide fenestrations, and there is a lack of lymphatic clearance and a smooth muscle layer compared to normal tissues (top panels). Therefore, 
macromolecules (10 to 200 nm or 40 to 800 kDa) tend to accumulate in tumor tissues much more than in normal tissues. In contrast, small molecules diffuse freely 
in and out of blood vessels in both normal and tumor tissues due to their small sizes, leading to their low concentrations over time.  
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There are a number of studies on tumor-targeted 
NMs mediated by the EPR effect, which were 
summarized in other reviews [31, 71]. Therefore, only 
a few representative examples are included in this 
review. In early 1980s, Maeda and his colleagues 
prepared a polymer (poly(styrene-comaleic 
acid)/half-n-butyl ester, SMA) conjugated with a 
derivative of a DNA-damaging agent 
(neocarzinostatin, NCS) [72], designated as SMANCS 
[73]. SMANCS is small in mass (16 kDa) but binds to 
albumin (67 kDa) in blood circulation [74], leading to 
an apparent molecular mass of about 83 kDa. The 
conjugates achieved not only high contrast in tumor 
imaging when combined with an imaging agent 
(Lipiodol®), but also a strong anti-tumor therapeutic 
response [57]. The clinical use of SMANCS was 
approved in 1993 by the Japanese Government for 
hepatoma treatment [75]. Doxil® and Abraxane® with 
~100 nm in size [76, 77], also have their tumor 
targeting attributed to the EPR effect.  

A few drawbacks, however, exist for the EPR 
effect-mediated tumor targeting of NMs. The delivery 
of NMs to tumors through the EPR effect was 
reported to be inefficient and provides only 20-30% 
increases in delivery compared with normal organs 

[64]. This inefficiency is probably because of tumor 
heterogeneity. Solid tumors are highly dynamic and 
complex with heterogeneity on size, genomic 
makeup, vasculature, interstitial pressures and 
necrotic cores [78-81]. In addition, the EPR effect has 
modest specificity, because high vascular 
permeability also occurs under other pathological 
conditions, e.g., inflammation [28].  

Receptor-mediated targeting of NMs 
Tumor cells express a profile of surface receptors 

different from normal cells (Figure 3) [48]. 
Receptor-mediated targeting of NMs to tumors takes 
advantage of these specific receptors, which 
potentially has high safety margin by reducing 
damage to normal tissues [28, 82-86]. Commonly used 
tumor surface receptors include epidermal growth 
factor receptor (EGFR) [87], human epidermal growth 
factor receptor 2 (HER2) [87], transferrin receptor [88, 
89], folate receptor [90, 91], integrins [92] and 
urokinase-type plasminogen activator (uPA) receptor 
(uPAR) [93-96]. A complete list of targeted receptors 
can be found in recent reviews [97, 98]. 

 

 
Figure 3. Schematic illustration of receptor-mediated targeting in tumors. Tumor cells express a profile of surface receptors different from normal cells.  
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For example, EGFR, a member of the ErbB family 
of receptor tyrosine kinases, is a widely targeted 
receptor for clinical applications [99-102]. Aberrant 
EGFR over-expression was reported in tumors, 
including lung cancer [103, 104], pancreatic cancer 
[105], and glioblastoma [106]. Monoclonal anti-EGFR 
antibodies (mAbs) cetuximab [107-110] and 
panitumumab [111, 112] are both approved by the 
FDA, originally for metastatic colorectal cancer. A list 
of other mAbs (zalutumumab, nimotuzumab and 
matuzumab) is in clinical development [113, 114]. 
HER2, another member of the ErbB family, is also 
successfully explored for tumor targeting [115]. 
Trastuzumab is effective toward breast cancers where 
HER2 is over-expressed [116]. Pertuzumab was 
approved by the FDA for use in combination with 
trastuzumab in 2012 [117].  

uPAR is expressed in a low level on the surfaces 
of quiescent cells, but is greatly over-expressed on the 
surfaces of a wide range of invasive tumor cells, and is 
believed to play a critical role in tumor cell migration, 
adhesion and tissue remodeling [118-121]. In fact, 
uPAR has been studied as a promising candidate 
receptor in tumor targeting therapy [122-127] and/or 
imaging [128-133]. A peptidyl antagonist of uPAR 
was successfully used for nuclear imaging of primary 
tumors and lymph node metastases in 10 patients, 
and its uptakes were found to correlate with 
high uPAR expression in excised tumor tissues [134].  

Receptor-mediated NMs have been widely 
demonstrated for their tumor targeting efficacies in 
vitro. The representative examples are listed in Table 
1. The gold NPs with the average size of 35 nm 
conjugated with an anti-EGFR antibody were shown 
to specifically bind to cancer cells with 6-fold greater 
affinity than to the noncancerous cells [135]. The 

cytotoxicity of a drug formulated in NPs decorated 
with trastuzumab targeting at HER2 (around 300 nm) 
was found to be 12.7-fold higher than that of the bare 
ones without the mAb [136]. The cytotoxic paclitaxel 
embedded in transferrin-conjugated NPs (about 220 
nm) targeting at transferrin receptor was shown a 
3-fold higher uptake by human prostate cancer cells 
than the unconjugated ones [137]. An NM construct 
was prepared by conjugating magnetic iron oxide NPs 
with the amino-terminal fragment (ATF) of uPA, 
which is a highly potent (~0.2 nM dissociation 
constant) peptide targeting to uPAR [138]. As a result, 
these conjugated NPs (66 nm) exhibited 7-fold higher 
accumulation in pancreatic cancer cells than 
unconjugated ones [139]. 

Two parameters are critical for the success of 
receptor-mediated targeting strategy. One is the 
abundance of tumor surface receptors compared to 
that in normal tissues. Such abundance typically 
undergoes active regulation at transcriptional/ 
translational levels or through receptor endocytosis. 
Genetic mutations may alter receptor structures 
and/or functions, and thus lower or disrupt the 
efficacies of specific diagnostic agents or therapeutic 
drugs, leading to drug resistance [84, 140-142]. The 
other parameter is the targeting agents for the 
receptors. The potency, specificity, molecular display, 
pharmacodynamics, pharmacokinetics and safety 
profiles should be taken into account for the choice of 
targeting agents. The common targeting agents 
include small molecules, aptamers, peptides, proteins, 
and antibodies, which can be roughly classified into 
two categories based on size/molecular weight with 
small organic molecules and mAbs as representative 
member (Table 2). The molecular mass of small 
organic molecules tends to be below 500 Daltons as 

Table 1. Selected examples of receptor-mediated targeting for NMs. 

 
HaCaT: nonmalignant epithelial cell line; HOC 313 clone 8/HSC 3: malignant oral epithelial cell lines; PLGA/MMT NPs: poly(D,L-lactide-co-glycolide)/montmorillo- nite 
nanoparticles; SK-BR-3: breast cancer cell line; PC3: prostate cancer cell line; IONPs: magnetic iron oxide nanoparticles; MIA PaCa-2: pancreatic cancer cell line.  
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summarized by Lipinski's rule of five [143, 144]. 
Though generally used in clinical practice, small 
molecular agents bear one inherent concern on their 
target specificity. mAbs have high molecular mass, 
e.g., ~160 kDa for IgG, and belong to NMs in term of 
their sizes (a hydrodynamic radius of 7-12 nm for an 
IgG molecule). They tend to have strong potencies 
and high specificities to their targets, but have 
potential antigenicity and poor oral bioavailability. 
The conventional administration route for mAbs is 
through intravenous or subcutaneous delivery [145]. 
The importance of these two parameters for a 
successful target has been clarified in a recent review 
[146].  

Estimation of the relative contribution 
between the EPR effect and receptor- 
mediated targeting of NMs 

As both tumor-targeting strategies have their 
pros and cons (Table 3), a combination of these two 
strategies may add value. Supplementing the EPR 
effect of NMs with receptor-mediated targeting may 
reduce the effect of tumor heterogeneity as well as 
enhance selectivity and efficacy of NMs against solid 
tumors. Despite the prevalent development of such 
tumor-targeting NMs, a question remains: what are 
the relative contribution between the EPR effect and 
receptor-mediated effects to tumor targeting in vivo?  

In an attempt to resolve this issue, our group 
constructed a novel tumor targeting NM: a 
recombinant protein of human serum albumin (HSA, 
67 kDa, 6.5 nm) fused with a tumor targeting agent 
(ATF, 14 kDa) at the N-terminus of HSA (labeled as 
ATF-HSA, 84 kDa, 7.5 nm, Figure 4) [147]. HSA is 
previously demonstrated to accumulate in tumor 
tissues mainly through the EPR effect [57, 148, 149]. 
Although it was proposed that HSA might be 
internalized into cells through a protein named 
SPARC (secreted protein, acidic and rich in cysteine) 
[150], the in vivo significance of SPARC is not 
demonstrated in a convincible way, considering that 
the large quantity of endogenous HSA in blood 
circulation may saturate most of HSA binding 
proteins. HSA is also recognized as nano-sized drug 
carrier capable of embedding small molecule drugs 
[151-153]. ATF-HSA thus exhibits dual targeting 
modes: its ATF peptide targets potently at uPAR on 
tumor surface and its large molecular size targets at 
tumor through the EPR effect. For comparison, we 
used HSA as a control and assumed HSA has the EPR 
effect comparable to ATF-HSA due to their similar 
molecular sizes (~7 nm).  

To visualize and quantify the accumulation of 
the targeting NM in tumors, we loaded a 
near-infrared fluorescent imaging probe 
(mono-substituted β-carboxyl phthalocyanine zinc, 
abbreviated as CPZ [154]) into either HSA or 

ATF-HSA to form nano-sized 
complexes (Figure 4). CPZ 
has a maximal absorption 
coefficient at 680 nm, which 
is optimal for deep tissue 
penetration (up to 10 mm), 
and for three-dimensional 
non-invasive and 
quantitative optical imaging 
using fluorescent molecular 
tomography method. It 
should be emphasized that 
the loading of the CPZ is not 
through covalent linkage, 
and the embedding of the 
CPZ inside HSA or 
ATF-HSA does not change 
the tumor targeting 
properties or sizes of 
macromolecules [147]. The 
CPZ was bound quite tightly 
inside the proteins and was 
stable in saline and plasma 
without the bleaching of its 
blue color or the degradation 
of protein [147].  

Table 2. Examples of targeting agents for tumor receptor-mediated NMs. 

 
The corresponding receptor targets are listed in the parentheses. 

Table 3. The pros and cons of the EPR effect (passive targeting) and receptor-mediated targeting 
(active targeting) for NM accumulation in tumors. 
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Figure 4. Schematic illustration of the estimation of the relative contribution between the EPR effect and receptor-mediated targeting for 
NMs. A novel tumor targeting NM was constructed of a recombinant protein of human serum albumin (HSA) fused with a tumor receptor targeting agent (ATF) at 
the N-terminus of HSA (labeled as ATF-HSA). ATF-HSA exhibits dual targeting modes: Its ATF peptide targets at uPAR over-expressed on tumor surfaces and HSA 
targets at tumor through the EPR effect. HSA was used as a control, which has only the EPR effect but no receptor targeting effect. 

 
We then measured the fluorescent signals of 

HSA or ATF-HSA on Hepatoma-22 (H22)-bearing 
Kunming mice, which express a high level of murine 
uPAR (Figure 5A) [155]. As seen in Figure 5B, at 6 h 
and 12 h post-injection of 0.05 mg CPZ/kg of mouse 
body weight via caudal vein, both HSA and ATF-HSA 
accumulated at the tumor sites with ~3-fold higher 
concentrations compared to the non-tumor sites. At 
these two time points, both ATF-HSA and HSA had 
almost the same amount at tumor sites. Such tumor 
accumulation is most likely due to the EPR effect. At 
24 h post-injection, ATF-HSA showed a higher 
amount of tumor accumulation than HSA (~2 folds), 
with HSA accumulation in tumors remained at about 
3-fold comparing to non-tumor accumulation. This 
difference is likely due to uPAR-mediated targeting, 
which takes effect following the EPR effect in vivo. At 
96 h post-injection, this tumor retention difference 
was further enlarged and ATF-HSA showed almost 3 
times more tumor accumulation compared to HSA, 
which demonstrated the tumor targeting contribution 
of the receptor-mediated effect and the EPR effect 
were 75% and 25%, respectively. 

The main conclusions we extracted from these 
results (Figure 5) are: 1) for once infusion, the tumor 

accumulation of NMs through the passive targeting 
(the EPR effect) reaches a plateau (at least 3-fold 
compared to non-tumor accumulation) at around 24 
h, but gradually reduces after 48 h; 2) the tumor 
accumulation due to the active targeting becomes 
prominent at 24 h post-injection, and increases 
continuously up to 96 h; 3) the relative ratio of the 
active to passive targeting effect depends on time after 
the NM injection, which is about 1 at 24 h and 3 at 96 
h. 

To further validate these results, we used murine 
ATF (mATF) as targeting agent which binds more 
tightly to surface uPAR of xenografted murine tumors 
[156]. The imaging probe loaded mATF-HSA and 
ATF-HSA have nearly identical shapes, charges and 
molecular masses (82 kDa and 84 kDa, respectively), 
and are therefore likely to have the identical EPR 
effect. We observed that the CPZ average 
concentration of mATF-HSA group in tumor sites was 
significantly higher (at least 2 times) than that of the 
ATF-HSA group 6 h post-injection (especially at 12 h 
and 24 h), demonstrating a higher contribution of 
receptor-mediated targeting compared to the EPR 
effect (6-fold, figure not shown) [156].  
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Figure 5. The relative contribution of the EPR effect and receptor-mediated targeting effect to tumor accumulation of NMs. (A) Specific 
accumulation of both HSA (top panels) and ATF-HSA (bottom panels) in tumors are shown in the front view of the representative mice and three-dimensional view 
of tumors 48 h post-injection to H22 tumor-bearing Kunming mice. (B) Dynamics of tumor targeting of HSA (blank bars) and ATF-HSA (shaded bars) on H22 
tumor-bearing mice. Average concentrations of fluorescent probe (CPZ) were quantitated by non-invasive fluorescent molecular tomography at the tumor and 
non-tumor sites at indicated time points after injection to the tumor-bearing mice. Both HSA and ATF-HSA accumulated rapidly at the tumors sites, as seen from the 
data at 6 h and 12 h, with signals of 3 folds compared to the non-tumor sites. After 24 h injection, ATF-HSA showed higher tumor retention than HSA (about 2 times). 
At 96 h post-injection, ATF-HSA showed almost 4 times tumor accumulation compared to HSA. The data were averaged from 3 mice in each group at each time 
point; bars represent standard error of the mean (SEM). *Significantly higher CPZ tumor accumulation for ATF-HSA compared to that of HSA, p < 0.05. 

 
Our estimation of this relative contribution 

certainly has some limitations. We used a 
transplanted murine tumor model and the results 
need to be validated in other tumor models, e.g., in 
situ nascent tumors. It will be useful to include more 
time points in active/passive targeting measurements 
to validate our estimation. Moreover, NMs with 
different compositions or radii, and additional 
readout methods, e.g., positron emission tomography 
or magnetic resonance imaging, need to be explored. 
The tumor targeting NMs used in our current studies 
are proteins, which are soft, and this estimation may 
be different from that for rigid NMs. 

To our knowledge, there are various 
controversial in vivo data on estimation of this relative 
contribution in literature. In one study, NPs of 
super-paramagnetic iron oxide (SPIO) were 
functionalized with tripeptide arginine-glycine- 
aspartic acid (RGD) targeting to integrin αvβ3 with a 
size of about 240 nm [157]. Their bio-distributions 
were detected in mice inoculated subcutaneously 
with CT26 colon carcinoma cells using electron spin 
resonance spectroscopy. The mice injected with 
RGD-functionalized SPIO NPs showed a 2.5-fold 
higher signal in tumor tissues compared to the mice 
treated with bare NPs 1 h and 4 h post-injection [157]. 

This study thus demonstrated the receptor-mediated 
tumor targeting contributed 2.5-fold more than the 
EPR effect, which is consistent with our results. In 
another study, active accumulation of 
transferrin-coated gold nanoparticles (60 nm) was 
found to be 5 times faster and approximately 2-fold 
higher relative to their passive poly(ethylene 
glycol)-coated counterparts in MDAMB-435 
orthotopic tumor xenografts [158]. However, in one 
study using cyclic RGD-conjugated gold nanorods 
(about 80 nm), the total tumor accumulation of these 
so-called targeting NMs was found to be only 
marginally improved compared to non-targeting ones 
[159]. Another study using folate as targeting agent 
showed that the targeting liposomes (in the range of 
70 to 90 nm) did not enhance the overall liposome 
deposition in tumors [160]. A comprehensive analysis 
of NP delivery to tumors based on studies published 
between 2005 and 2015 showed that the NMs using 
active targeting had a slight higher efficiency than 
those relied on the passive targeting (0.9% versus 
0.6%) [161]. Taken together, further studies are 
definitely needed to address this important issue of 
active vs. passive targeting, and to gain further 
mechanism insights. 
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Perspectives  
NMs are widely studied as diagnostic and/or 

therapeutic agents targeting tumors in a passive 
manner through the EPR effect, in an active strategy 
by receptor-mediated targeting, or with a strategy 
combining these two. However, cancer nanomedicine 
is under debate recently [162]. It appears that tumor 
targeting NMs need to be re-examined [163, 164]. 

Here, our studies showed the relative 
contribution of active and passive targeting varied 
with time, and active targeting appeared contributing 
more than passive targeting over time. The nature of 
targeting agents and tumor receptors is of course a 
critical variable determining the ratio between these 
two targeting effects [159]. The observed dynamics of 
active and passive targeting also directly affects the 
efficacies of NMs, which is an important factor to be 
considered in the design of NMs. As a consequence, 
further studies on the dynamics, and the underlying 
mechanisms, including the factors affecting the 
dynamics, are highly advocated [165]. 
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