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ABSTRACT

Plants respond to their environment by dynamically
modulating gene expression. A powerful approach
for understanding how these responses are regu-
lated is to integrate information about cis-regulatory
elements (CREs) into models called cis-regulatory
codes. Transcriptional response to combined stress
is typically not the sum of the responses to the in-
dividual stresses. However, cis-regulatory codes un-
derlying combined stress response have not been
established. Here we modeled transcriptional re-
sponse to single and combined heat and drought
stress in Arabidopsis thaliana. We grouped genes by
their pattern of response (independent, antagonistic
and synergistic) and trained machine learning mod-
els to predict their response using putative CREs
(pCREs) as features (median F-measure = 0.64). We
then developed a deep learning approach to inte-
grate additional omics information (sequence con-
servation, chromatin accessibility and histone modi-
fication) into our models, improving performance by
6.2%. While pCREs important for predicting inde-
pendent and antagonistic responses tended to re-
semble binding motifs of transcription factors as-
sociated with heat and/or drought stress, important
synergistic pCREs resembled binding motifs of tran-
scription factors not known to be associated with
stress. These findings demonstrate how in silico ap-
proaches can improve our understanding of the com-
plex codes regulating response to combined stress
and help us identify prime targets for future charac-
terization.

INTRODUCTION

In order to survive and thrive, plants dynamically respond
to changes in their environment. Given projected increases
in global temperatures (1) and the frequency and sever-
ity of droughts, heat waves and flooding (2,3), improving
our understanding of how plants regulate these dynamic
changes will be critical for future efforts to breed and en-
gineer more resilient crops (4) and for our ability to un-
derstand how a changing climate will impact diverse plant
species (5). Most efforts to study stress response in plants
have focused on how plants respond to a single stress in
otherwise controlled conditions. However, in nature mul-
tiple stressors are typically present (6) and the response to
combined stress may be different than the response to either
of the stresses individually (7–9). For example, at the tran-
scriptional level, ∼60% of Arabidopsis thaliana genes were
found to respond to combined stress conditions in ways that
are not predictable based on their responses to individual
stressors (10). While efforts have been made to identify tran-
scriptomic (7,11–12), metabolomic (13,14) or physiological
(9) changes in response to combined stress, the molecular
mechanisms underlying how these complex changes are reg-
ulated remain unknown.

One major component regulating transcriptional
changes to stress is the binding of one or more transcrip-
tion factors (TFs) nearby a gene, which can change when
and to what degree that gene is expressed. The importance
of TFs for regulating transcriptional response to stress has
made them targets for breeding and engineering plants
for improved response to stresses, including salt (15),
drought (16,17), drought and heat (18,19) stress. Further,
genes underlying the domestication of crop species include
TFs (20,21). One approach to find the TFs driving stress
induced changes in gene expression is to find the TFs
associated with the non-coding regions of DNA near the
transcriptional start site of a gene where TFs bind, or cis-
regulatory elements (CREs). For hundreds of TFs in model
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species like A. thaliana, the DNA sequences that a TF can
bind to (TF binding motifs; TFBMs) have been established
in vitro (22,23). In addition, putative CREs (pCREs) can
be found computationally based on enrichment of specific
k-mer sequences among co-expressed genes (24,25). Previ-
ous studies have demonstrated that both known TFBMs
and pCREs can be used to generate machine learning
models that are predictive of a gene’s response to different
environmental conditions (24,26–27). These predictive
models are referred to as cis-regulatory codes. Nonetheless,
current plant stress response cis-regulatory codes were
built without considering additional factors that can also
influence TF binding and transcriptional stress responses
(28), including chromatin accessibility (29–32) and histone
modifications (33,34). Therefore, methods to integrate these
additional types of omic information into the cis-regulatory
codes are needed. In addition, at the physiological level,
the effects of combined drought and heat are generally
additive (35). However, it is unclear to what degree these
responses are additive, synergistic, or antagonistic at the
level of transcriptional regulation. Thus, cis-regulatory
codes of these three different types of response patterns
will be highly informative for understanding how they are
regulated differently.

Here we explore the cis-regulatory codes of transcrip-
tional response to single and combined heat and drought
stress in A. thaliana. Heat and drought were selected be-
cause these stresses often co-occur in nature and elicit
both overlapping and conflicting physiological responses
in plants (36). Moreover, TFs and TF binding motifs are
known for these stresses individually (37,38). To better un-
derstand the regulatory logic underlying single and com-
bined stress, first, we grouped genes likely to be co-regulated
based on their shared pattern of transcriptional response
under single and combined heat and drought stress (14)
(Step 1, Figure 1). Then, we used known TFBMs and
enrichment based pCREs (Step 2, Figure 1) to generate
models of the cis-regulatory codes controlling these dif-
ferent patterns of responses to single and combined heat
and drought stress using machine learning. To improve our
models of the cis-regulatory codes and therefore our under-
standing of how response to single and combined stress is
regulated in A. thaliana, we modeled regulatory interactions
(Step 3A, Figure 1), used a deep learning approach to inte-
grate additional omics information (i.e. chromatin accessi-
bility, sequence conservation and histone marks) into our
models (Step 3B, Figure 1), and expanded the scope of our
models by including pCREs identified outside of the pro-
moter region (Step 3C, Figure 1). In addition to providing
a comprehensive overview of the cis-regulatory codes of re-
sponse to single and combined heat and drought stress in A.
thaliana, this study also exemplifies how a data-driven ap-
proach can be used to make novel discoveries in a complex
system like gene regulation (Step 4, Figure 1).

MATERIALS AND METHODS

Expression data processing, response group classification and
functional category enrichment analysis

Expression data for response to mild heat (32◦C day/28◦C
night for 3 days), mild drought (30% field capacity), and

combined heat and drought stress in A. thaliana were
downloaded from NCBI Gene Expression Omnibus (GEO)
(GSE46760) as normalized signal intensity values (14). The
expression data was generated using the Agilent platform
and probe data was converted into TAIR10 gene identi-
fiers using IDswop from agilp v3.8.0 in R v3.1 (39). If mul-
tiple probes were present for the same gene the mean of
the probe intensities was used, unless the intensities were
>20% different, in which case the gene was excluded. Dif-
ferential expression folds and associated false discovery rate
adjusted P-values (i.e. q-values) (40) between each stress
conditions and the control condition were calculated using
limma v3.38.3 (41) in R v3.1.

Genes were classified as significantly upregulated (U)
if their log2 fold-change ≥ 1.0 with q ≤ 0.05, downregu-
lated (D) if their log2 fold-change ≤ −1.0 with q ≤ 0.05,
or non-responsive (N) otherwise. Genes were clustered
into ‘response groups’ using a convention established
by (10). Briefly, each gene was defined by its pattern of
U, D or N under heat, drought and combined stress
conditions. For example, a gene that is U under heat, D
under drought and N under combined stress was classified
as in the UDN response group. Finally, non-responsive
response group (NNN) genes were defined as genes that
had a |log2 fold-change| ≤ 0.8 under drought, heat and
heat + drought conditions and under all stress condi-
tions at any time point in the AtGenExpress database
(https://www-arabidopsis-org.eu1.proxy.openathens.net/
portals/expression/microarray/ATGenExpress.jsp). Using
this stricter threshold removed genes with borderline stress
responsiveness that would confuse the model training.

Sequence data for the promoter, 5′ UTR, 3′ UTR, first
intron and downstream region for A. thaliana genes were
downloaded from TAIR10. Genes whose promoter regions
(1-kb upstream the transcriptional start site) overlapped
with neighboring genes were excluded from the analysis. We
tested if genes oriented in the same direction as their up-
stream neighboring gene were more likely to be correctly
predicted than genes with partially overlapping promoter
regions, but the results were not significant for most re-
sponse groups (Supplementary Table S1), so genes oriented
in any direction were kept. For the analysis of the regulatory
information in regions outside the proximal promoter, only
genes that had sequence data available for all regions were
included (Supplementary Table S2).

The enrichment of GO terms (http://www.geneontology.
org/ontology/subsets/goslim plant.obo) and metabolic
pathways (http://www.plantcyc.org) in the response group
genes compared to NNN genes, were determined using
the Fisher’s Exact test with P-values adjusted for multiple
testing (42). As no AraCyc terms were enriched, only GO
terms were discussed.

Identification of known binding sites from in vitro TF binding
data

Two sets of in vitro TF binding motif (TFBM) data were
used to identify known binding sites. First, in vitro 200 bp
binding regions for 344 TFs were collected from the DAP-
seq database (23). These 200 bp regions were derived from
mapped sequencing peaks, and only peaks with a fraction of

http://www.weigelworld.org/resources/microarray/AtGenExpress/
http://www.geneontology.org/ontology/subsets/goslim_plant.obo
http://www.plantcyc.org
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Figure 1. A framework for generating multi-omics models of the cis-regulatory codes Step 1: Genes were grouped based on their pattern of differential
expression under heat (H), drought (D) and H+D stress compared to control conditions. Step 2: For each response group, known TFBMs and pCREs were
identified based on site enrichment among response group genes (Fisher’s Exact Test; P-value < 0.01). Step 3: Information was gathered about associations
between pCREs, their overlap with additional omics information, and pCREs located outside of the promoter regions. Step 4: All of this information was
combined into machine learning models of the cis-regulatory codes and the models were interpreted to identify the most important components driving
the predictions.

reads in peaks (FRiP) ≥ 5% were included. Second, position
frequency matrices (PFMs) were obtained from the CIS-
BP database for an additional 190 TFs without DAP-seq
data (22). CIS-BP PFMs were covered to Position Weight
Matrices (PWM) adjusted for A. thaliana’s AT (0.33) and
GC (0.17) background using TAMO v1.0 (43). These 190
PWMs were then mapped to the putative promoter region
(within 1-kb upstream of the transcription start site) of A.
thaliana genes using Motility with a threshold of P < 1e-06
(https://github.com/ctb/motility). A gene was considered to
be regulated by a TF if its putative promoter region over-
lapped with one or more known TFBM sites. We also iden-
tified a subset of known TFBMs that were enriched in the
promoter regions of genes in a response group compared to
non-responsive (NNN) genes using the Fisher’s Exact test
(P < 0.05), these TFBMs are referred to as the known en-
riched TFBMs (eTFBMs). To confirm that selecting eTF-
BMs was not resulting in overfitting, we repeated eTFBM
finding for the smallest (NUN) and largest (UNU) response
groups with 20% of the genes held out during the enrich-
ment test and during model training (see below). This was
repeated 100 times for each response group.

Computational identification of novel pCREs and comparison
with known TFBMs

To identify pCREs that were not covered by the available
in vitro TF binding data, an enrichment based computa-
tional approach was taken (referred to as the iterative k-

mer finding approach). With this approach, modified from
(27), all possible 6-mers tested for enrichment in the re-
sponse group gene promoters compared to NNN gene pro-
moters using the Fisher’s Exact test (P < 0.01). Multiple
test correction was not used to avoid eliminating pCREs
that may be important for a subset of genes in the re-
sponse group. For 6-mers that were enriched, their sequence
was lengthened to all eight possible 7-mers (e.g. ATATCG
→ AATATCG, TATATCG, GATATCG, CATATCG,
ATATCGA, ATATCGT, ATATCGG, ATATCGC), which
were then each tested for enrichment. The k-mer length-
ening process continued until the longer k-mers were no
longer significantly enriched. To confirm that the iterative
k-mer finding approach was not resulting in overfitting, we
repeated k-mer finding for the smallest (NUN) and largest
(UNU) response groups with 20% of the genes held out dur-
ing the enrichment test and during model training (see be-
low). This was repeated 100 times for each response group.
We also used the k-mer finding approach to find enriched
pCREs in the 5′ UTR, first intron, 3′ UTR and 500 bp
downstream region.

To assess the sequence similarity between (i) the pCREs
identified for different response groups, (ii) between the
pCREs identified in different regions and (iii) between
the pCREs and all known in vitro TFBMs, the Pearson’s
Correlation Coefficients (PCC) between pCREs/TFBMs
were calculated as in (26). PCCs between the top match-
ing pCREs or pCREs/TFBMs are reported. Because the
sequence similarity between top matching pCREs from (i)

https://github.com/ctb/motility
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or from (ii) would be greater by random chance if there were
more pCREs in the comparison, the PCCs for (i) and (ii)
were reported as a percentile of a background distribution
generated for each comparison based on a distribution of
PCCs between top matching 6-mers from groups of random
6-mers of the same size as the groups in the comparison, re-
peated 1000 times. With this approach, the 50th percentile
indicates the similarity between pCREs from two response
groups is no greater than random expectation, while a 99th
percentile would indicate the PCC is greater than 99% of
the PCCs between random 6-mers. To determine the degree
of sequence similarity in (iii), three PCC thresholds for each
TFBM were calculated that range from least to most strin-
gent. The lowest level of stringency is ‘better than random’,
where the pCRE-TFBM PCC is ≥ 95th percentile of PCCs
between the TFBM and 1000 random k-mers. The next level
of stringency is ‘between family’, where the pCRE-TFBM
PCC is ≥ 95th percentile of PCCs between the TFBM and
TFBMs from other TF families. Finally, the highest level of
stringency is ‘within family’, where the pCRE-TFBM PCC
is ≥ 95th percentile of PCCs between TFBMs from within
the same family.

Sequence conservation, chromatin accessibility and histone
mark data processing and analysis

Sequence conservation the between species conservation
criteria, A. thaliana genomic regions that overlapped with
∼90 000 conserved noncoding sequences (CNS) among
nine Brassicaceae species were used (44). DNase I Hyper-
Sensitivity (DHS) regions were downloaded from GEO
(GSE53322 and GSE53324) as peaks in bed format. These
regions were identified from multiple tissues and develop-
mental stages, including roots, root hair cells, leaf, seed
coat and dark grown A. thaliana Col-0 seedlings at 7-days
old (45). Regions associated with activation-associated
histone marks (H3K4me1: SRR2001269, H3K4me3:
SRR1964977, H3K9ac: SRR1964985 and H3K23ac:
SRR1005405) and with repression-associated histone
marks (H3K9me1: SRR1005422, H3K9me2: SRR493052,
H3K27me3: SRR3087685 and H3T3p: SRR2001289) were
as compiled previously (46) using data from (47).

The percentage of times the sites of a pCRE overlapped
with the 11 additional omics information (DAP-Seq, CNS,
DHS and eight histone marks) was calculated for each com-
bination of pCRE and additional omics information for
each response group. To determine how these overlaps were
significant or not, 1,000 random, unique 6-mers were gener-
ated and mapped to the promoter regions of response group
genes, then the percentage of overlap with each combination
of random 6-mer and additional omics information was cal-
culated for each response group. These overlap percentages
were used to generate background distributions for over-
lap with each additional omic region, allowing us to con-
vert the percent overlap scores for pCREs into percentiles
along this background distribution. The percentage overlap
with each additional omics information was also calculated
for all CIS-BP motifs. Analysis of Variance (ANOVA), im-
plemented in R v3.5.3, was used to determine if there were
difference in the overlap percentage for each of the 11 ad-
ditional omics information for each set of response group

genes all pCRE, the top 10 most important pCREs (details
below), the CIS-BP motifs and the 1000 random 6-mers.
The ANOVA P-values were adjusted for multiple testing
(42). Finally, post-hoc Tukey tests, implemented using the
HSD.test function from agricolae 1.3.1 in R v3.5.3, were
performed on comparisons with a significant ANOVA (q-
value < 0.05) to identify which groups (i.e. pCREs, top 10
pCREs, CIS-BP or random 6-mers) had significantly differ-
ent distributions in their percent of overlap with the addi-
tional omics information (P < 0.05).

To convert the additional omics information into features
that could be used as input to our machine learning mod-
els, a new feature was generated for each pCRE––additional
omics information pair (e.g. pCRE-DHS), where the value
of the feature was set to 1 if the pCRE was both present
in the promoter region of the gene and overlapped with
the additional omics information and set to 0 if either or
both of those criteria were not met. This resulted in a total
of 12 features associated with each pCRE (i.e. the original
presence/absence feature + the 11 additional features).

Classic machine learning-based models of the cis-regulatory
code

A classic machine learning algorithm called Random Forest
(RF) (48) was used to generate models of the cis-regulatory
code for each response group. These models were trained
using a supervised learning approach, meaning they learned
to predict the desired output (e.g. does the gene belong to
response group NNU or NNN?) using example instances
(i.e. genes) for which they have both the input features (e.g.
presence of absence of pCRE-X) and the true classification
(e.g. NNU or NNN). Different sets of input features were
used throughout the study, including known TFBMs, pro-
moter pCREs, combinatorial pCRE rules (see Supplemen-
tal Methods), overlap with additional omics information
and non-promoter pCREs (Supplementary Figure S1).

RF models were trained and tested using the ML-
Pipeline (https://github.com/ShiuLab/ML-Pipeline), a
pipeline for machine learning using Scikit-Learn v0.20.3
in Python v3.7.3 (49). For additional details and examples
of how to implement RF using the ML-Pipeline, see the
README and workshop materials available at the link
above. To avoid training models that classify all genes
as belonging to the more common response group, we
balanced our input data by randomly down-sampling
genes from the larger response group to match the number
of genes in the smaller response group. Because the genes
included in the input data can impact model training
and performance, this process was replicated 100 times.
To measure the performance of our models on a set of
genes not seen by the model during training we used a
10-fold cross-validation scheme, where the input data was
randomly divided into 10 bins, then a model was trained on
bins 1–9 (i.e. the training set) and that model’s performance
was measured based on how will it performed on the
instances in the tenth bin (i.e. the validation set). This was
repeated, until each bin was used as the validation set one
time. To select what values to use for two important RF
parameters––maximum depth [3, 5, 10, 50] and maximum
features [10, 25, 50, 75, 100%, square root (100%) and

https://github.com/ShiuLab/ML-Pipeline
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log2(100%)]––a cross-validated grid search implemented
using GridSearchCV from Scikit-Learn was performed on
the first 10 of the 100 balanced datasets (Supplementary
Table S3). The maximum depth parameter controls how
deep each decision tree can be trained, where trees that are
too shallow may not be able to capture complex patterns
and trees that are too deep may overfit, meaning they would
predict the training genes well, but would not generalize to
predict genes not included in training well (e.g. the valida-
tion set or new genes). The maximum features parameter
controls how many of the input features each decision tree
in the forest will be allowed to use, where too few will result
in poor performance from individual decision trees and
too many will result in most decision trees in the forest
identifying the same pattern. The grid search and final
model training took under 4 h for each model on a High
Performance Computing Cluster requesting five compute
nodes (∼140 cores).

Model performance was evaluated using the F-measure
(F1) (50), or the harmonic mean of precision (True
Positive/True Positives + False Positives) and recall (True
Positives/True Positives + False Negatives), where an F1
= 1 would indicate all gene were perfectly classified, and
an F1 = 0.5 would indicate the model did no better than
random guessing. Model performance was compared using
two-sided paired t-tests, with response groups paired (n =
7). For each model we also determined which genes were
correctly classified as belonging to a response group, R. Ev-
ery balanced run of the model could have predicted a dif-
ferent subset of genes as belonging to R. Thus, a final clas-
sification call that a gene, G, belongs to group R was de-
termined if the mean predicted probability of 100 balanced
runs ≥ the predicted score threshold (i.e. the threshold be-
tween 0 and 1 that maximized model performance averaged
over replicates). For each balanced run, we identified the
predicted score that maximized the F1. We took the aver-
age of the predicted score maximizing F1 for all 100 runs as
the predicted score threshold. Then, models with similar F1
scores could be compared to see if they predicted a differ-
ent subset of genes. Finally, the relative importance of each
feature in a RF model was determined using the importance
score function built into the Scikit-Learn implementation of
RF. This function calculates feature importance as the nor-
malized decrease in node impurity across the decision trees
when that feature is used to divide a node, known as the
Gini Importance (48). To confirm our eTFBM and pCRE
features were not overfit, we trained RF models using the
eTFBMs and pCREs identified with 20% of the genes held
out as features using the genes not held out as our training
instances. After the models were trained, they were applied
back to the held-out 20% of genes and the performance (F1)
was calculated on the held-out genes only.

Convolutional neural network-based models of the cis-
regulatory code

Convolutional neural networks (CNNs), a deep learning
algorithm (48), were tested to see if it could better inte-
grate additional omics information into our models of the
cis-regulatory code. CNNs were implemented in Python
3.6 using Tensorflow 2.0 (51). CNN models were made up

of four layers: input, convolutional, dense (i.e. fully con-
nected) and the output (i.e. the prediction). The input is
a three-dimensional array [rows x columns x layers] where
each layer contains data from a different gene, each column
(size = # of pCREs for that response group) contains differ-
ent pCREs and each row (size = 12) contains either pCRE
presence/absence or overlap with additional omics infor-
mation. The convolutional layer is composed of kernels (i.e.
pattern finders) with the dimensions [12 × 1], using a stride
length = 1, this resulted in each kernel passing over each
pCRE one time and resulting in an output with dimensions
[# kernels × # pCREs]. The starting kernel weights were
initialized randomly and were scaled relative to the size of
the input data using Xavier Initialization (52). The output
from the convolutional layer was flattened (i.e. changed the
output from a 2D array to a 1D array with shape [1 × (#
kernels × # pCREs)]) and then passed to the dense layer. A
non-linear activation function (rectified linear units; ReLU)
was applied to both the convolutional and dense layers, and
a sigmoid activation function was applied to the final out-
put layer to facilitate making a binary decision (e.g. NNU
versus NNN). Weights were optimized using the Stochastic
Gradient Descent with momentum (SGDm) (momentum =
0.9) as implemented in Tensorflow.

Three well established strategies were used to reduce the
likelihood of the CNN models overfitting, where models
train so specifically to the training data that they do not
generalize well to new data. First, L2 regularization (53)
was applied to the kernel weights in our convolutional
layer, forcing the weights to shrink toward zero. This has
the effect of reducing the variance of the model (avoiding
overfitting), without a large increase in the bias. Second,
dropout regularization (54) was applied to the dense layer,
meaning during each iteration of training a random sub-
set of the dense nodes were removed. This essentially adds
randomness to the model and encourages the network to
learn more general patterns in the data, rather than spe-
cific ones that may be overfit. Finally, CNNs can overfit
to the training data if they are allowed to train for too
many iterations. However, training for too few iterations
will result in a model that has not yet converged (i.e. un-
derfitting). To determine when to best stop training, we
used an early stopping approach (55) implemented in Keras
(https://keras.io/callbacks/#earlystopping), where the train-
ing data were further split into training (90%) and valida-
tion (10%) and training stopped when model performance
had not increased (min delta = 0) for 10 iterations (patience
= 10) on the validation data, with the maximum number of
training iterations limited to 1000.

As with the RF models described above, CNN models
were trained on balanced datasets. Because of the greater
computational power needed by CNNs, instead of the cross-
validation approach used for RF, the balanced data was di-
vided into a training set (90%) and testing set (10%) and
performance was measured on the testing set. This was re-
peated 100 times using different training and testing sets for
each replicate. Model parameters were selected using a ran-
dom search across the parameter space with 5-fold cross val-
idation with ∼4800 iterations (implemented using Random-
izedSearchCV in Scikit-Learn). Parameters in the search in-
cluded the learning rate, the number of kernels in the con-

https://keras.io/callbacks/#earlystopping
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volutional layer, the number of nodes in the dense layer, the
dropout rate and the L2 regularization rate (see Supplemen-
tary Table S3). For the largest response group, the param-
eter search required ∼20 GPU hours and training required
<1 GPU hours on NVIDIA K80 GPUs.

The importance of each pCRE and its associated ad-
ditional omics information was determined by measuring
the difference in model performance between the origi-
nal model and a new model when the values in all rows
for a pCRE column were set to zero (i.e. not present and
not overlapping with the additional omics information) for
all genes. Thus, larger positive differences indicate pCREs
were important. Negative scores indicate zeroing out the
pCREs in question actually improved model performance.
The change in performance measured using the area un-
der the receiver operator characteristic, rather than the F1
because it does not require the selection of a classification
threshold. The median importance scores across the 100
replicates were used to summarize the importance of each
pCRE and its associated additional omics information. To
determine what patterns the CNNs learned to identify, we
extracted the weights from each kernel in the convolutional
layer of our trained CNN models. Given that each of the
100 replicates involved training a CNN model with either
8 or 16 kernels (see Supplementary Table S3) we had had
between 800 and 1600 trained kernels for each model of
the cis-regulatory code. To summarize this information, we
used hierarchical clustering with dynamic branch cutting
(minimum cluster size = 250) to group kernels based on the
similarity of their weights and found the median weight at
each position for each cluster. Kernel importance was mea-
sured as described above, where the change in model perfor-
mance after a kernel’s weights were set to zero (i.e. identify-
ing no pattern) was calculated for each kernel. The median
kernel importance scores across all kernels in a cluster are
show.

Availability of data and materials

The datasets supporting the conclusions of this arti-
cle are available as described by the original authors
(14,22–23,44–45,47). All code needed to reproduce
the results from this study are available on GitHub
(https://github.com/ShiuLab/Manuscript Code/tree/
master/2019 CRC HeatDrought). This repository also
contains a detailed README.md file which describes
our analyses in more detail, provides the commands
used to generate the results in this study, lists additional
software needed, and includes links to the most recent
versions of the scripts used. Scripts are implemented in
Python or R. Processed datasets are available on Zenodo
(https://zenodo.org/record/3840714#.Xw5V7fgzZTY).

RESULTS

More than 50% of stress responsive genes have unpredictable
responses to combined heat and drought stress based on single
stress response

In order to study the regulation of transcriptional response
to single and combined stress, we first identified groups of
genes that were likely to be co-regulated based on their

shared pattern of transcriptional response to three stress
conditions: heat, drought and combined heat and drought
stress using transcriptome data from an earlier study (14).
Transcriptional response was indicated with one of three
abbreviations based on upregulation (U), downregulation
(D), or no response (N), and response categories were la-
beled with a three-letter designation, where the first, sec-
ond and third letter indicated response to heat, drought and
combined stress, respectively. For example, genes that were
upregulated under heat and combined stress, but not un-
der drought alone were placed in the UNU response group.
These response groups were further categorized based on
if the response to the combined stress was similar to (‘in-
dependent’: UNU, NUU, DND or NDD), less than (‘an-
tagonistic’: UNN, NUN, DNN or NDN), or greater than
(‘synergistic’: NNU or NND) the sum of the responses to
the single stress conditions (Figure 2A).

Among genes that were responsive to at least one stress
(n = 3,218), 43, 29 and 24% genes were in the independent,
antagonistic and synergistic response groups, respectively
(Figure 2B; and Supplementary Table S1). The remaining
4% of genes belonged to rare response groups (e.g. DUN
and UUD) and were not considered in our analysis. Most
of the genes in the independent and antagonistic response
categories were responsive (up- or downregulated) to heat,
rather than drought stress. The dominance of the heat re-
sponse could be due to: (i) the mild nature of the experimen-
tal drought stress (14), (ii) a possible overriding influence
of heat stress, e.g. heat response dominates over salt stress
(10), or (ii) the fact that the expression data is derived from
leaf where drought-induced osmotic stress has a lesser effect
compared to root (56). Gene Ontology enrichment analysis
(see ‘Materials and Methods’ section) confirmed that dif-
ferent response groups are enriched for genes with differ-
ent biological functions (Figure 2C and Supplementary Ta-
ble S4). Further, this analysis demonstrated that genes in
the synergistic response groups tended to overlap function-
ally with genes in independent response groups. For exam-
ple, both upregulation independent (UNU) and synergis-
tic (NNU) response groups were enriched for response to
heat and hydrogen peroxide. This reinforces the idea that
genes with similar biological functions are not necessarily
co-regulated.

In summary, we found that ∼55% of genes responsive to
at least one stress showed either antagonistic or synergis-
tic responses to combined heat and drought stress. Genes in
these non-additive response groups are especially interest-
ing because knowing how they respond to heat stress and
drought stress independently does not help us predict how
they will respond to combined stress. Because these non-
additive responses to combined stress were so prevalent, we
hypothesized that unique regulatory codes must exist that
are able to fine tune transcriptional response under com-
bined heat and drought stress.

Combinatorial stress response patterns can be predicted using
known and putative regulatory elements

Because TFs and associated binding sites regulating combi-
natorial stress response are unknown, we set out to identify
responsible TFs by taking advantage of available in vitro TF

https://github.com/ShiuLab/Manuscript_Code/tree/master/2019_CRC_HeatDrought
https://zenodo.org/record/3840714#.Xw5V7fgzZTY
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Figure 2. Gene expression response groups for single and combined heat
and drought stress. (A) Gene expression response groups included in the
study where the three-letter response codes signify upregulation (U), down-
regulation (D) and no significant change in expression (N) ordered based
on response to heat, drought and both stresses. The number below the re-
sponse group name is the number of genes in that response group that
have non-overlapping promoters (1-kb upstream of TSS) with neighboring
genes. Colored bars designate if genes in the response group are considered
to have antagonistic (yellow), independent (orange) or synergistic (purple)
responses to combined stress. (B) The log2 Fold Change in expression un-
der heat (H), drought (D) and H + D compared to control for each gene
(X-axis), sorted by response group. If the absolute value of the Log2(FC) ≤
1, colored white (N). (C) Select Gene Ontology (GO) categories that were
enriched for genes belonging to the different response group compared to
all other genes. GO categories with a large positive log2(q-value) (red) are
over-represented, while those with large negative log2(q-value) (blue) are
under-represented in that response group.

binding region and motif (known TFBMs) data for 344 TFs
from the DAP-seq (23) and CIS-BP (22) databases. First,
197 of the 344 known TFBMs were identified as enriched
in the promoter region of at least one set of response group
genes (P < 0.05; referred to as enriched TFBMs, eTFBMs,

see ‘Materials and Methods’ section). On average, response
groups were enriched for 35 known TFBMs (range: 0–87)
from 27 TF families (referred to as enriched families, Sup-
plementary Table S1). In parallel, to identify regulatory se-
quences not covered by known TFBMs, we searched for
pCREs by identifying k-mers enriched in the promoter re-
gions of genes in each response group compared to genes
not responsive to stress (see ‘Materials and Methods’ sec-
tion). Response groups were enriched for 68 pCREs on av-
erage (range: 7–158).

To determine the extent to which known eTFBMs and
co-expression-based pCREs can explain combined stress re-
sponse patterns, we used the presence or absence of eTFBM
and pCRE sites as features (i.e. independent variables) in
Random Forest (RF) models to classify genes as belonging
to a response group or as non-responsive under any stress
condition (i.e. the dependent variable). Because machine
learning models need to learn from sufficient training data,
only response groups with >20 genes were used. Model per-
formance was measured by calculating the F-measure (F1)
on a set of data held out from model training, where an F1 =
1 would be a perfect classification and an F1 = 0.5 would be
no better than random guessing (see ‘Materials and Meth-
ods’ section). Both the eTFBM and pCRE-based models
were able to predict single and combined stress response
groups better than random guessing (Figure 3A). However,
models built using pCREs (median F1pCRE = 0.64) sig-
nificantly outperformed those built using known eTFBMs
(median F1eTFBM = 0.58; paired t-test, P = 3.7 × 10−4).
One concern was that our models may be overfitted because
pCREs and eTFBMs finding was performed using all genes
in a response group (e.g. all NNU and NNN genes). To test
this, we repeated the pCRE and eTFBM finding and RF
model training/cross-validating on 80% of the genes and
then applied and measured the performance of the mod-
els on the remaining 20% of genes. This was repeated 100
times for both the largest (UNU) and smallest (NUN) re-
sponse groups and no significant difference in performance
was detected (paired t-test, P = 0.22–0.99; Supplementary
Table S5), indicating our models were not overfitted. Fur-
ther, when we used all known TFBMs (i.e. both enriched
and non-enriched), the model performance decreased fur-
ther (median F1TFBM = 0.54). These findings support the
notion that pCREs contain additional omics information
not captured by the TFBM data. This is not to say that
pCREs can completely replace TFBM data because mod-
els built using the enriched TFBMs and pCREs were able
to correctly classify different subsets of genes (Supplemen-
tary Figure S2). However, including both types of elements
as features did not improve model performance compared
to only using pCREs (median F1pCRE+eTFBM = 0.64; paired
t-test, P = 0.51). Thus, we choose to focus on pCRE based
models for the remainder of the study.

Next, we quantified the degree of sequence similarity be-
tween pCREs identified for different response groups to
assess how the cis-regulatory programs differs across re-
sponse groups. To account for different response groups
having different numbers of pCREs, the PCC between the
top matching pCREs from two response groups was re-
ported as the percentile of a background distribution gen-
erated from the PCC between top matching 6-mers from
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Figure 3. Known TFBM and pCRE models of the cis-regulatory codes (A)
Predictive performance (F1) of Random Forest machine learning mod-
els using known TFBMs (yellow), pCREs (teal) or both (rose) as fea-
tures to predict response group from non-responsive genes. (B) Average
sequence similarity (Pearson’s Correlation Coefficient; PCC) percentile be-
tween pCREs from the response group of interest (X-axis) and the top
matching pCRE from another response group (Y-axis). Percentiles were
calculated for each comparison based on the distribution of PCCs between
top matching 6-mers between random groups of the same size as the re-
sponse groups in the comparison, with a 50th percentile indicating the sim-
ilarity is equal to random expectation. (C) Example pCREs (first column)
and a motif logo of the most similar known TFBM (PCC in parenthe-
ses). The boxes indicate response groups for which the pCRE was enriched
(gray) or not (white).

groups of 6-mers of the same size as the number of pCREs
for each response group. Using this approach, the aver-
age pCRE percentile overlap ranged from 24th to 80th be-
tween response groups (mean = 57th percentile; Figure 3B),
with response groups that share the same direction of re-
sponse (yellow boxes) being more similar to each other than
response groups that respond in different directions (e.g.
UNU versus DNN) (ANOVA; P < 1 × 10−4). Interestingly,
of the pCREs found among the most response groups, the
top three, GCCACGT, ACGTGG and AAAATAT (stars,
Figure 3C) were significantly similar to TFBMs associated
with circadian clock TFs bZIP16, PIF7 and RVE8, respec-
tively (57,58). PIF7 has been shown to negatively regulate
DREB1 as a means to avoid hindering plant growth by the
accumulation of DREB1 when the plant is not under stress
(59). Our findings further support earlier studies that stress
response regulation has a significant circadian clock com-
ponent (60).

In summary, the k-mer finding approach identified
pCREs that, when used as predictive features, were better
able to classify genes by their response groups than known
enriched TFBMs. Further, while some pCREs were iden-
tified across multiple response groups, the fact that average
pCRE similarity between response groups was only the 57th
percentile, suggests there are substantial regulatory differ-
ences between the different responses to single and com-
bined heat and drought stress. Finally, while we were able
to classify genes by their response group well above random
expectation (median F1pCRE = 0.64), there was still ample
room for model improvement. Because TFs frequently work
in concert to regulate gene expression (61,62), we first incor-
porated interactions between TFs into our models by iden-
tifying interactions between pCREs. We identified interac-
tions between pCREs for each response group using two
statistical approaches: association Rule and iterative RF.
However, pCRE pairs identified did not improve model per-
formance when used as features alone or with pCREs (Sup-
plementary Figure S3 and Supplemental Data), unlike in
high salinity stress (26). Thus, we next explored improving
our models by integrating additional types of omics infor-
mation and including pCREs located outside the proximal
promoter.

Additional omics information can improve models of the cis-
regulatory codes

To account for additional levels of regulation involved in
response to single and combined heat and drought stress,
we next explored adding chromatin accessibility, histone
modification, sequence conservation and known TF bind-
ing sites data to our models of the cis-regulatory codes. We
included information about chromatin accessibility from
DNase I Hypersensitive Sites (DHS) (27,63) and eight his-
tone marks (ChIP-seq) (47,64–65) because both can impact
the TF binding. In addition, information about sequence
conservation across the Brassicaceae family (CNS) (44) was
included as true CREs may be under selection and there-
fore may be more likely to be conserved (66,67). Finally, in
vitro TF binding regions identified in A. thaliana (described
above) (23) were also included. These data are collectively
referred to as ‘additional omics information’.
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To determine if additional omics information would im-
prove our understanding of the cis-regulatory codes of com-
bined stress response patterns, we included these data as fea-
tures (see ‘Materials and Methods’ section) in our RF mod-
els and assessed whether their inclusion improved predictive
performance. While models utilizing this additional omics
information improved the average performance for a few re-
sponse groups (i.e. NNU, DNN), overall, they did not per-
form significantly better than pCRE-only models (median
F1pCRE+ARI = 0.66; median F1pCRE = 0.64; paired t-test,
P = 0.062) (olive; Figure 4A). One possible reason for this
lack of improvement could be that RF, while robust at deal-
ing with heterogeneous input data (e.g. multi-omics data),
struggled to learn predictive patterns in our data because it
treats each input feature as an independent piece of infor-
mation, even when they are not. For example, each decision
tree in a RF model only had access to a subset of the features
for training, and that subset was selected randomly, without
any consideration of associations between the features. Be-
cause our additional omics information features each pro-
vide more information about a particular pCRE, they are
not independent. Further, assessing the whole profile of ad-
ditional omics information associated with a pCRE could
uncover new predictive patterns.

To address the limitation of RF, we applied a deep learn-
ing approach: CNNs. CNNs are frequently used in image
classification because when given training data (e.g. many
photographs of cats) they are able to learn local patterns
called kernels (e.g. triangles that resemble cat ears) and asso-
ciate those kernels with what is being predicted (e.g. is there
a cat in the photograph). However, they have been applied
successfully to study genomic data (68,69). We hypothesized
we could train CNN models to look for patterns in the ad-
ditional omics information available for each pCRE and to
then associate those patterns with a response group (Fig-
ure 4B; see ‘Materials and Methods’ section). Using this
approach, our ability to predict response groups increased
(median F1CNN = 0.68) compared to the pCRE only mod-
els (median F1pCRE = 0.64; paired t-test, P = 0.002), a
6.2% improvement in the median F1, with the largest im-
provements for the UNU, DNN, DND and NNU response
groups (where F1 increased by ≥0.05) (rose; Figure 4A).

Interpreting deep learning models provides insight into the
cis-regulatory code

To understand what combinations of additional omics in-
formation were important for the ability of our CNN mod-
els to classify genes by their response group, we interpreted
our CNN models by visualizing the trained kernels and
measuring their importance. During the process of model
training, each kernel learns a particular ‘pattern’, i.e., how
much value, or weight, should be given to each feature to
best predict if a gene belongs to a response group. In the ex-
ample shown in Figure 4B, kernel #1 (k1) trained to look for
pCREs that were present and that overlapped with a DAP
site and with histone marks for H1 and H7 (positive ker-
nel weights), but not H4 or H6 (negative kernel weights).
Then, each trained kernel scans across the input data and
generates an output value for each pCRE based on how well
it matches the pattern. For example, when k1 was used to
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Figure 4. Integration of additional omics information into models of the
cis-regulatory codes (A) Predictive performance (F1) of RF models using
pCREs (teal, as in Figure 3A) and pCREs + additional omics informa-
tion (olive) and of CNN models using both pCREs + additional omics
information (rose). The larger error around NUN models is due to the
small number of NUN genes available for model training. (B) An illus-
tration of the CNN model scheme that highlights how kernels train to
identify patterns that make useful summary features in downstream lay-
ers. (C) Results from interpreting the trained CNN models. Feature types
(e.g. presence/absence: P/A) were sorted by the average kernel weight
across all kernels, replicates, and response groups (first column), with av-
erage weights also shown for each response group separately (remaining
columns). For each response group, all trained kernels from all CNN repli-
cates were clustered using hierarchical clustering with dynamic cutting
(min cluster size = 250 kernels). The median kernel weights and kernel
importance scores are shown for the two clusters with the highest median
kernel importance for each response group. Large kernel weights (purple)
indicate a feature was predictive of a gene belonging to the response group.
Some of the most important kernel clusters had negative weights for pCRE
presence/absence. These kernels likely trained to learn patterns associated
with the non-responsive gene group (i.e. NNN).
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scan pCRE-A through pCRE-X, it led to a large (i.e. dark)
value for pCREs that match its pattern (e.g. pCRE-A) and
a small value (i.e. light) for pCREs that do not match its
pattern (e.g. pCRE-D). To assess which types of features
were most important (i.e. highest weighted) among kernels
from CNN models for each response group, we extracted
the trained kernels (i.e. a list of 12 weights) for each kernel in
each replicate, clustered them into groups with similar pat-
terns of weights, and calculated the median weight assigned
to pCRE presence/absence and each additional omics in-
formation for each cluster (Figure 4C, Supplementary Fig-
ure S4; see ‘Materials and Methods’ section).

To measure the overall importance of each kernel, we cal-
culated the change in model performance on the test data
(i.e. data not used for training) when each kernel was zeroed
out (i.e. all weights set to zero; see ‘Materials and Methods’
section). We then reported the median kernel importance
for each kernel cluster (Figure 4C and Supplementary Fig-
ure S4). For example, when a kernel in the first kernel cluster
for DNN was set to zero, model performance (measured us-
ing the area under the receiver operator characteristic; see
‘Materials and Methods’ section) dropped by >0.005. Note
that the performance decreases are all very small, indicat-
ing the models were robust to perturbation likely because
more than one kernel was trained to learn important pat-
terns. Overall, the presence or absence of the pCREs (P/A)
had the highest median weights (leftmost column; Figure
4C). Of the additional omics information, DAP, H3K9ac
and DHS had the next highest kernel weights, suggesting
known TF binding, the acetylation of lysine 9 on histone
H3 (a hallmark of active promoters (70)), and chromatin
accessibility were consistently useful features for predicting
response to single and combined stress. Other types of ad-
ditional omics information were weighted differently in im-
portant kernel clusters for different response groups (sec-
ond column and on; Figure 4C). This was especially true of
histone mark features. For example, H3K27me3 tended to
be negatively weighted in important kernel clusters for up-
regulation response groups (UNN, NUN, NNU) but neu-
tral or positively weighted in important kernel clusters for
downregulated response groups (DNN, DND). Together
with the fact that H3K27me3 is known to be associated
with gene silencing (71), this finding suggests that lysine 27
trimethylation may play a role regulating response to single
and combined heat and drought stress. However, we also
found that H3K4me3 had a large positive weight for the
most important DNN kernel cluster and negative weights
for some upregulation clusters (UNU, NNU). This was un-
expected given that H3K4me3 is associated with active pro-
moters (71).

In summary, we found that the integration of additional
omics information into our models of the cis-regulatory
codes using CNNs improved our ability to classify genes
by their pattern of response to single and combined stress.
While some information (e.g. TF binding, H3K9ac) was
important for all response groups, other information (e.g.
H3K4me3, H3K27me3) was only important for one or
a few response groups, indicating that different response
groups may be subject to distinct epigenetic regulatory sig-
nals. The usefulness of these data was especially surprising
given some of the limitations of the data. For example, most

of the data were generated either in vitro (e.g. DAP) or un-
der growth conditions that do not match the transcriptome
data used for this study (e.g. DHS, histone ChIP-seq).

pCREs identified outside the promoter region are predictive
of response patterns

The models discussed thus far were based on features lo-
cated in the proximal promoter regions typically housing
regulatory sequences in plants (72). However, plant regula-
tory sequences can also be located in the 5′ untranslated re-
gion (5′ UTR) (73), first intron (Int1) (74) and 3′ UTR (75).
We also cannot rule out that some regulatory sequences
can be present downstream of the transcriptional stop site
(DS500). To assess the extent to which pCREs outside of
the promoter regions were predictive of combined stress re-
sponse patterns, the iterative k-mer finding approach was re-
peated in the 5′ UTR, Int1, 3′ UTR, and DS500. Then, pre-
dictive models were built using either pCREs from each re-
gion individually or in combination as features. Because se-
quence information was not available for all five regions for
all genes (particularly 5′ and 3′ UTRs), we removed between
47 and 587 genes from each response group to make our
models comparable. Importantly, this means that the per-
formance results from our earlier machine learning models
would not be directly comparable. In order to establish a
direct comparison, we also re-ran the iterative k-mer find-
ing and modeling on the promoter region using the smaller
subsets of genes.

Models built using pCREs located in promoter or, sur-
prisingly, DS500 regions outperformed models built with
pCREs from other regions (Tukey test; Figure 5A). DS500
pCREs substantially outperformed promoter pCREs for
the NUN response group in terms of F1 (+0.06, Figure
5A), as it correctly classified two more genes and reduced
the false positives by 14 (Supplementary Figure S4). In-
terestingly, the most predictive DS500 pCRE, ACTTTG,
shares significant sequence similarity (PCC = 0.92) with
the known TFBM for WRKY46, which has known roles in
drought response. This pCRE was not enriched in the pro-
moter region, emphasizing the potential importance of the
DS500 region for cis regulation. Although the 5′UTR and
3′UTR pCREs did not perform as well as those in promot-
ers and DS500s, they were significantly better than random
expectation (t-test: P = 0.02, 0.006, respectively), however
Int1 pCREs were not significantly different than random
(P = 0.75). Because models built using pCREs from differ-
ent regions were able to correctly classify different subsets
of genes (Supplementary Figure S5), we used pCREs from
all regions as features and the resulting models (the ALL
column, Figure 5A) outperformed all single region-based
models, suggesting that pCREs located beyond the pro-
moter region are important for regulating combined stress
response.

To determine if the pCREs identified from different ge-
netic regions were unique to that region or found across re-
gions, we calculated the similarity percentile between the
best matching pCREs between regions within a response
group as we did above with promoter pCREs from dif-
ferent response groups (see Figure 3B). Overall, pCREs
from different regions were more similar to each other than
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would be expected by random chance (>50th percentile,
red; Figure 5B). This was especially true for downregula-
tion response groups, suggesting that regulatory elements
involved in down regulating genes are either less region spe-
cific or are more likely to be located in multiple regions
around the gene. Interestingly, the only response group
where this was not the case was NNU, where the average
pCRE similarity between regions was frequently near or be-
low the 50th percentile. Given the promoter pCREs were
the most predictive of NNU, this suggests the regulatory
circuitry for synergistic upregulation is specific to the pro-
moter region. Finally, we observed that while non-promoter
pCREs tend to be similar to promoter pCREs (top hori-
zontal box), the promoter pCREs were less similar to non-
promoter pCREs (lower horizontal box). This indicated
that promoter-specific pCREs are common, while pCREs
identified in regions outside the promoter tend to be found
more universally around the genes in a response group.

In summary, incorporating pCREs identified outside of
the proximal promoter region improved our ability to pre-
dict response to single and combined heat and drought
stress. Of the five regions assessed, the DS500 pCREs per-
formed marginally better than promoter pCREs for two of
the seven response groups. Taken together, this suggests that
while most of the pertinent regulatory information is in the
promoter regions, CREs important for response to single
and combined heat and drought stress may be located out-
side the promoter region.

Characterizing the most important pCREs identifies key fea-
tures of the combined heat and drought stress cis-regulatory
codes

We have demonstrated that adding multi-omics data and ex-
panding our search for putative regulatory elements beyond
the promoter region has improved our models of the cis-
regulatory codes. While these models are still not perfect,
they perform well above random expectation and therefore
can be used to illuminate the cis-regulatory codes of re-
sponse to single and combined heat and drought stress in
A. thaliana. To this end, here we further characterize a sub-
set of the most important promoter (from CNN models)
and non-promoter (from Random Forest models) pCREs
identified for each of the seven response groups. The most
important promoter pCREs from the CNN models were
those that when all values were set to absent (i.e. zero)
caused the largest decrease in model performance (see ‘Ma-
terials and Methods’ section). The most important pCREs
from the Random Forest models are those that when used
at a node in a decision tree, were able to best separate
genes by their response group (see ‘Materials and Meth-
ods’ section). The importance scores of all pCREs based
on these two approaches are in Supplementary Tables S6
and 7.

We first characterized the multi-omics signatures of the
most important promoter pCREs using the additional types
of omics information described above, by determining how
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much more frequently the sites of each promoter pCREs
overlapped with each of the additional omics information
in response group genes than randomly expected using a
set of 1000 random 6-mers (Supplementary Table S7). Fo-
cusing on the top five most important pCREs from each
response group, we found that these pCREs could be clus-
tered into three groups based on their degrees of overlap
between their sites and the additional omics information
(Figure 6A). Group 1 pCREs were unique in that, in ad-
dition to overlapping with known TF binding (DAP-seq)
and chromatin accessible (DHS) regions, they were also
much more likely to overlap with CNS than random 6-
mers (dashed boxes; Figure 6A), suggesting these pCREs
are more highly conserved across the Brassicaceae. Group 2
pCREs also frequently overlapped with DAP-seq and DHS
regions, although to a lesser extent, and were also less likely
to overlap histone marks associated with active transcrip-
tion (e.g. H3K23ac, H3K4me1), which was notable given
how many important pCREs identified for the downregu-
lation response groups (i.e. DNN, DND, NND) clustered
into Group 2. Finally, Group 3 pCREs were less likely to
overlap with DAP-Seq regions than random 6-mers, sug-
gesting these pCREs may be bound by TFs not yet included
in in vitro binding databases.

We next characterized promoter and non-promoter
pCREs by determining which were similar to known TF-
BMs and which represented putatively novel CREs (see
‘Materials and Methods’ section). Across all pCREs we
identified, 40.5% of promoter pCREs and 37.6% of pCREs
from other regions were significantly similar to a specific
known TFBM (i.e. sequence similarity (PCC) was >95th
percentile of PCCs between TFs in the same family) (Sup-
plementary Tables S6 and 7). Focusing on the two most im-
portant promoter and non-promoter pCREs for each re-
sponse group (Figure 6B) we found many different TFs and
TF families represented. The promoter and non-promoter
located pCRE for the DND models, AAATAT, is identical
to the TFBM of a MYB related TF, REVEILLE8 (RVE8)
(Figure 6B), which has been proposed to be involved in
a negative feedback loop regulating the circadian clock’s
response to temperature (58). The most important non-
promoter pCRE for the NUN model, ACTTTG, is similar
to TFBMs in the WRKY TF family (PCC to WRKY46 =
0.92), which are known to be involved in osmotic and salt
stress response (76). The most important promoter pCRE
for the NND models, TGTCGA, is similar to TFBMs in the
AP2 TF family (PCC to DDF2 = 0.88), which are known
to be involved in heat, cold, and drought tolerance in A.
thaliana (77). Taken together, these three examples give us
confidence that our approach to modeling and interpreting
the cis-regulatory codes is useful because it allowed us to
find pCREs similar to known TFBMs for TFs known to be
involved in heat, drought and combined heat and drought
stress.

In contrast, the most important pCREs for the NNU re-
sponse group are not similar to TFBMs for TFs known to
be involved in either heat or drought stress. For example,
the most important promoter pCRE, GAAAAC is identi-
cal to the TFBM for the G2-like γ MYB2 TF, which has no
known association with stress response. The second most
important promoter pCRE, CACGTG is identical to the

TFBM for bHLH104, which while known to be involved in
regulating iron homeostasis in A. thaliana (78), is not as-
sociated with other stresses. Similarly, the most important
non-promoter pCRE for NNU, AGATTC, is identical to
the TFBM for AT1G49560, a G2-like family TF possibly
involved in regulating flowering time. This highlights the
need for further study on plant response to combined heat
and drought stress and provides prime putative regulatory
elements and associated TFs for further characterization.

In summary, we found that important promoter pCREs
belong to three groups that differed in how frequently the
pCREs were associated with additional omics informa-
tion. We also found that while some of the most impor-
tant pCREs found by our models of the cis-regulatory codes
were similar to known TFBMs bound by TFs involved in
heat and/or drought stress response, others (i.e. those en-
riched in NNU genes) were similar to TFs with no estab-
lished association to either stress condition. Taken together,
these findings highlight the complexity of the cis-regulatory
codes of response to single and combined heat and drought
stress in A. thaliana and the need for further study.

DISCUSSION

Understanding how plants regulate their response to com-
bined heat and drought stress is of great importance because
of the frequency with which these stresses co-occur and
severity of their impact on our agricultural sector (36). Here
we identify candidate pCREs and develop models of the
cis-regulatory codes regulating response to single and com-
bined heat and drought stress in A. thaliana. We found that
presence/absence of candidate pCREs could predict heat
and drought stress transcriptional responses and that incor-
porating additional omics information (i.e. chromatin ac-
cessibility, sequence conservation, known TF binding, and
histone markers) and pCREs outside of the proximal pro-
moter region and improved model performance. We also
explored the use of a deep learning approach, CNN, to
integrate multi-omic input data and demonstrated that it
performed better than Random Forest, a classical machine
learning algorithm. Further, by interpreting our models of
the cis-regulatory codes, we were able to provide novel bi-
ological insights, including identifying which pCREs and
additional omics information were most important for pre-
dicting response to single and combined heat and drought
stress. These important pCREs are prime targets for follow
up characterization.

Because our models are not able to perfectly predict a
gene’s response group, there is still more to learn about
the complexities of the regulation of response to single and
combined heat and drought stress. One factor that is lim-
iting our ability to model the cis-regulatory codes is that
genes in a response group are not all regulated by the same
mechanisms. This issue is compounded by the fact that sam-
ples were gathered only at a single time point a few days
after the stress conditions were applied. From this snapshot
we cannot determine whether the stress responsive genes be-
gan to respond immediately after stress initiation or later af-
ter the plants began to acclimate, limiting our ability to sep-
arate genes with different dynamic responses to combined
stress (79). A second limiting factor is that we are missing
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critical information about the rate of mRNA degradation.
Because our picture of differential gene expression comes
from measuring and comparing the steady state mRNA lev-
els, we cannot determine if the change in gene expression is
due to, for example, increase in production or a decrease in
degradation. Finally, while incorporating TF binding, chro-
matin accessibility and epigenetic mark data into our mod-
els of the cis-regulatory codes improved their performance,
these data were not ideally suited for this study because
they were generated from plants at different developmen-
tal stages and under different conditions than those used
to generate the transcriptomic data (14). This is an impor-
tant consideration as TF binding, chromatin accessibility
and epigenetic marks change over the course of develop-
ment and in response to environmental conditions (45,80–
81).

The regulatory codes underlying how plants respond to
stressful environments involve many molecular players act-
ing in interconnected ways. Stress responses are also de-
pendent on countless other factors such as the duration
(82), severity (83) and frequency (84) of the environmen-
tal stress and the cell/tissue type (85), developmental stage
(86) and genetic background (86–88) of the plant. Thus, to

more fully decipher these codes, it will be optimal to have
multi-omics data with as many of the molecular players
in place as possible, across multiple time points, in a myr-
iad of environmental conditions, at different developmen-
tal stages and from different tissue and cell types. However,
access to such a dataset alone will not improve our under-
standing of plant stress response. Rather, computational ap-
proaches that can integrate and find patterns in such het-
erogeneous data are crucial. Further, the models generated
need to be interpretable so that we can derive new biologi-
cal insights from them. Our study represents one such inter-
pretable modeling approach. Although there is a substantial
room for improvement, our general approaches can be used
to better understand the regulation of other developmental
and stress induced responses in plants and other organisms.
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Direct regulation of abiotic responses by the Arabidopsis circadian
clock component PRR7. Plant J., 76, 101–114.

61. Farnham,P.J. (2009) Insights from genomic profiling of transcription
factors. Nat. Rev. Genet., 10, 605–616.

62. Harbison,C.T., Gordon,D.B., Lee,T.I., Rinaldi,N.J., Macisaac,K.D.,
Danford,T.W., Hannett,N.M., Tagne,J.-B., Reynolds,D.B., Yoo,J.
et al. (2004) Transcriptional regulatory code of a eukaryotic genome.
Nature, 431, 99–104.

63. Sullivan,A.M., Bubb,K.L., Sandstrom,R., Stamatoyannopoulos,J.A.
and Queitsch,C. (2015) DNase I hypersensitivity mapping, genomic
footprinting, and transcription factor networks in plants. Biochem.
Pharmacol., 3–4, 40–47.

64. Dong,X. and Weng,Z. (2013) The correlation between histone
modifications and gene expression. Epigenomics, 5, 113–116.

65. Pfluger,J. and Wagner,D. (2007) Histone modifications and dynamic
regulation of genome accessibility in plants. Curr. Opin. Plant Biol.,
10, 645–652.

66. Haberer,G., Hindemitt,T., Meyers,B.C. and Mayer,K.F.X. (2004)
Transcriptional similarities, dissimilarities, and conservation of
cis-elements in duplicated genes of Arabidopsis. Plant Physiol., 136,
3009–3022.

67. Guo,H. and Moose,S.P. (2003) Conserved noncoding sequences
among cultivated cereal genomes identify candidate regulatory
sequence elements and patterns of promoter evolution. Plant Cell, 15,
1143–1158.

68. Ma,W., Qiu,Z., Song,J., Li,J., Cheng,Q., Zhai,J. and Ma,C. (2018) A
deep convolutional neural network approach for predicting
phenotypes from genotypes. Planta, 248, 1307–1318.

69. Zou,J., Huss,M., Abid,A., Mohammadi,P., Torkamani,A. and
Telenti,A. (2019) A primer on deep learning in genomics. Nat. Genet.,
51, 12–18.

70. Karmodiya,K., Krebs,A.R., Oulad-Abdelghani,M., Kimura,H. and
Tora,L. (2012) H3K9 and H3K14 acetylation co-occur at many gene
regulatory elements, while H3K14ac marks a subset of inactive
inducible promoters in mouse embryonic stem cells. BMC Genomics,
13, 424.

71. Luo,C. and Lam,E. (2010) ANCORP: a high-resolution approach
that generates distinct chromatin state models from multiple
genome-wide datasets. Plant J., 63, 339–351.

72. Yu,C.-P., Lin,J.-J. and Li,W.-H. (2016) Positional distribution of
transcription factor binding sites in Arabidopsis thaliana. Sci. Rep.,
6, 25164.

73. Tompa,M. (2001) Identifying functional elements by comparative
DNA sequence analysis. Genome Res., 11, 1143–1144.

74. Zhang,G. and Duff,G.W. (1994) Intron 1 regulation of interleukin 1
beta (IL-1�) gene transcription: an alternative promoter? Cytokine, 6,
564–565.

75. Wasserman,W.W., Palumbo,M., Thompson,W., Fickett,J.W. and
Lawrence,C.E. (2000) Human-mouse genome comparisons to locate
regulatory sites. Nat. Genet., 26, 225–228.

76. Ding,Z.J., Yan,J.Y., Li,C.X., Li,G.X., Wu,Y.R. and Zheng,S.J. (2015)
Transcription factor WRKY46 modulates the development of
Arabidopsis lateral roots in osmotic/salt stress conditions via

http://www.bioconductor.org/packages/release/bioc/html/agilp.html
https://www.arxiv.org/abs/1603.04467


16 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3

regulation of ABA signaling and auxin homeostasis. Plant J., 84,
56–69.

77. Kang,H.-G., Kim,J., Kim,B., Jeong,H., Choi,S.H., Kim,E.K.,
Lee,H.-Y. and Lim,P.O. (2011) Overexpression of FTL1/DDF1, an
AP2 transcription factor, enhances tolerance to cold, drought, and
heat stresses in Arabidopsis thaliana. Plant Sci., 180, 634–641.

78. Li,X., Zhang,H., Ai,Q., Liang,G. and Yu,D. (2016) Two bHLH
transcription factors, bHLH34 and bHLH104, regulate iron
homeostasis in Arabidopsis thaliana. Plant Physiol., 170, 2478–2493.

79. Li,Y., Varala,K. and Coruzzi,G.M. (2015) From milliseconds to
lifetimes: Tracking the dynamic behavior of transcription factors in
gene networks. Trends Genet., 31, 509–515.

80. Song,L., Huang,S. -s. C., Wise,A., Castanon,R., Nery,J.R., Chen,H.,
Watanabe,M., Thomas,J., Bar-Joseph,Z. and Ecker,J.R. (2016) A
transcription factor hierarchy defines an environmental stress
response network. Science, 354, aag1550.

81. King,G.J. (2015) Crop epigenetics and the molecular hardware of
genotype × environment interactions. Front. Plant Sci., 6, 968.

82. Chen,Y.-E., Liu,W.-J., Su,Y.-Q., Cui,J.-M., Zhang,Z.-W., Yuan,M.,
Zhang,H.-Y. and Yuan,S. (2016) Different response of photosystem
II to short and long-term drought stress in Arabidopsis thaliana.
Physiol. Plant, 158, 225–235.

83. Pazouki,L., Kanagendran,A., Li,S., Kännaste,A., Rajabi Memari,H.,
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