
RESEARCH ARTICLE

CarbMetSim: A discrete-event simulator for

carbohydrate metabolism in humans

Mukul GoyalID
1*, Buket Aydas2, Husam Ghazaleh1, Sanjay Rajasekharan3

1 Computer Science Department, University of Wisconsin Milwaukee, Milwaukee, WI, United States of

America, 2 Meridian Health Plans, Detroit, MI, United States of America, 3 The Harker School, San Jose, CA,

United States of America

* mukul@uwm.edu

Abstract

This paper describes CarbMetSim, a discrete-event simulator that tracks the blood glucose

level of a person in response to a timed sequence of diet and exercise activities. CarbMet-

Sim implements broader aspects of carbohydrate metabolism in human beings with the

objective of capturing the average impact of various diet/exercise activities on the blood glu-

cose level. Key organs (stomach, intestine, portal vein, liver, kidney, muscles, adipose tis-

sue, brain and heart) are implemented to the extent necessary to capture their impact on

the production and consumption of glucose. Key metabolic pathways (glucose oxidation,

glycolysis and gluconeogenesis) are accounted for in the operation of different organs. The

impact of insulin and insulin resistance on the operation of various organs and pathways is

captured in accordance with published research. CarbMetSim provides broad flexibility to

configure the insulin production ability, the average flux along various metabolic pathways

and the impact of insulin resistance on different aspects of carbohydrate metabolism. The

simulator does not yet have a detailed implementation of protein and lipid metabolism. This

paper contains a preliminary validation of the simulator’s behavior. Significant additional

validation is required before the simulator can be considered ready for use by people with

Diabetes.

1 Introduction

More than 400 million people world wide suffer from diabetes [1]. People with Type 2 Diabetes
(around 90% of total diabetic population [1]) usually have at least some ability to produce insu-

lin, however their bodies develop insulin resistance and hence are not able to react strongly

enough to the presence of insulin in blood to keep the blood glucose level (BGL) under control.

On the other hand, people with Type 1 Diabetes cannot produce insulin endogenously at all

and hence must receive external insulin regularly. Keeping BGL under control is a constant

struggle for people with diabetes. One wrong meal choice may result in very high BGL and an

accompanying feeling of sickness for several hours. Persistently high BGL would ultimately

cause a number of severe complications such as heart/kidney failure, blindness and limb
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amputations. Those using external insulin may suffer life threatening hypoglycemic incidents

if too much insulin is injected. Physical exercise allows the muscles to use glucose in the blood

even in the absence of insulin but exercise activities need to be carefully coordinated with food

and medication intake so as to avoid hypoglycemia. For people with Type 1 Diabetes, physical

exercise may even worsen the state of hyperglycemia. In general, people with diabetes need

help deciding how they should plan their food and exercise activities so as to keep their BGL

under control. There is a real need for tools that help diabetic people understand the impact a

particular sequence of food and exercise activities would have on their BGL. Continuous BGL

monitoring solutions, now offered by a number of vendors, can significantly help but are

either not easily available to a vast majority of diabetic people world-wide or are simply too

expensive. Clearly, one solution is to build simulation tools that use our vast knowledge of

energy metabolism in human beings to give reasonably accurate prediction of the impact of a

diet/exercise sequence on some one’s BGL. A few such simulators already exist [2, 3] but are

geared towards predicting the impact of individual meals and are not available in a format that

can be freely used by individuals. This paper describes CarbMetSim (the Carbohydrate Metab-

olism Simulator), an open-source and freely available [4] simulation software that predicts

minute by minute BGL in response to an arbitrary length sequence of food and exercise activi-

ties. While the existing simulation tools are based on continuous time models that use differen-

tial and algebraic equations to describe physiological details, CarbMetSim is based on a discrete
event model where the time increments in units (called ticks) one minute long. At the begin-

ning of each tick, CarbMetSim fires the food/exercise events that need to be fired at this time

and directs various simulated body organs to do the work they are supposed to do during this

tick.

CarbMetSim implements broader aspects of carbohydrate metabolism in human beings

with the objective of capturing the average impact of various diet/exercise activities on the

BGL of people with different levels of diabetes. The simulator implements key organs (stom-

ach, intestine, portal vein, liver, kidney, muscles, adipose tissue, brain and heart) to the extent

necessary to capture their impact on the production and consumption of glucose. Key meta-

bolic pathways (glucose oxidation, glycolysis and gluconeogenesis) are accounted for in the oper-

ation of different organs. The impact of insulin and insulin resistance on the operation of

various organs/pathways is captured in accordance with published research. CarbMetSim pro-

vides broad flexibility to configure the insulin production ability, the average flux along various

metabolic pathways and the impact of insulin resistance on different aspects of carbohydrate

metabolism. Thus, it is possible to customize the simulator for a particular user by setting

appropriate values to various configurable parameters.

CarbMetSim is not yet a finished product. The protein and lipid metabolism are imple-

mented in a very simplified manner. The simulator does not yet consider monosaccharides

other than glucose and assumes that all dietary carbohydrate gets converted to glucose

after digestion. The impact of insulin is captured in a simplified manner and other impor-

tant hormones (e.g. glucagon) are not yet directly modeled. Impact of externally injected

short term insulin is not modeled yet. Only aerobic exercise activities can be simulated at

present. The simulator is not yet capable of translating a user’s diet/exercise/BGL data into

the values of simulation parameters governing the behavior of different organs. This paper

provides a preliminary validation of CarbMetSim’s behavior. Significant additional valida-

tion against continuous blood glucose data of individuals representing different demo-

graphic groups, different types & levels of Diabetes and different lifestyles is needed before

the simulator may be considered ready for use in diabetes self-management applications or

for research.
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2 Modeling carbohydrate metabolism in humans—A literature

review

Existing approaches to model carbohydrate metabolism in human beings can be classified as

either data-driven or knowledge-driven [5]. The data-driven (or empirical) models relate a

user’s recent BGL values along with other relevant information (e.g. diet, exercise, medication

and stress) to the user’s future BGL values using approaches such as neural networks [6–11]

and gaussian models [12]. A number of different neural network models exist including those

based on multilayer perceptrons [7, 8], radial basis function [9], wavelets [10], time series con-

volution [6] and recurrent neural networks [6, 11]. Such models consider the human body to

be a black-box and do not take in account the physiological aspects of carbohydrate metabo-

lism [13].

Unlike the data-driven models, the knowledge-driven models are based on human physiol-

ogy. In such models, different factors are treated as different compartments that influence each

other and are described by a set of differential and algebraic equations [5]. The earliest such

models [14–16] involved two linear compartments—one for glucose in blood and the other for

insulin in blood—such that the rates of appearance/disappearance of glucose/insulin were line-
arly proportional to their level in blood. The next generation of models included non-linear
rates and consideration of additional hormones (e.g. glucagon) besides insulin [17]. Foster

[18] presented a six compartment model, one each for blood glucose, liver glycogen, muscle

glycogen, plasma insulin, plasma glucagon and free fatty acids in plasma, and the addition/

removal from each compartment happened in a non-linear fashion. Some of the other notable

multi-compartment, nonlinear models were those developed by Cerasi [19], Insel [20], Cramp

and Carson [21] and Cobelli et al. [22]. These models were increasingly more complex with

many physiological details taken in account. Sorensen [23] provides a good overview of the

earliest knowledge-based models (and some of the later models described next).

Bergman et al. [24, 25] designed a method to quantify a) the sensitiviy of an individual’s

beta cells to his/her BGL and b) the sensitivity of the individual’s BGL to insulin level in his/

her blood. For this purpose, a minimally complex mathematical model was developed that

could capture the individual differences in two sensitivities mentioned above. Bergman’s mini-
mal model has been modified in a variety of ways. Furler et al. [26] introduced modifications

to allow for absence of insulin production by pancreas and external insulin infusion. Berg-

man’s model has also been used to study closed [27] and semi-closed [28] loop optimal control

algorithms to determine the insulin infusion profile for an individual. Roy and Parker

extended Bergman’s model to take in account the level of free fatty acids in plasma [29]. Berg-

man’s model has also been extended to take in account the impact of physical exercise [30, 31].

Tiran et al. [32] developed a multi-compartment model for glucose circulation where each

relevant organ was modeled as a separate compartment. Guyton et al. [33] developed another

multi-compartment model consisting of a glucose circulation subsystem (separate compart-

ments for liver glucose, liver glycogen, kidney glucose, brain tissue glucose, brain blood glu-

cose, peripheral (muscles, adipose tissue) blood glucose, peripheral tissue glucose, central (i.e.

gastrointestinal tract) blood glucose and central tissue glucose) and an insulin circulation sub-

system (separate compartments for liver insulin which represents insulin from pancreatic beta

cells, kidney insulin, peripheral blood insulin, peripheral tissue insulin, central blood insulin

and central tissue insulin). The model consisted of a total of 32 nonlinear ordinary differential

equations (ODEs) with 11 nonlinear ODEs just to model insulin secretion from pancreas [23].

Sorensen [23] presented another physiologically complex, multi-compartment model albeit

with a much simplified model for pancreatic insulin secretion. Sorensen’s model consisted of a

total of 22 nonlinear ODEs of which 11 ODEs were associated with glucose circulation, 10
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ODEs with insulin and 1 ODE with glucagon. Parker et al. [34, 35] updated the Guyton/Soren-

sen models by accounting for uncertainty in parameter values and by including a model for

gastric emptying of carbohydrates in a meal [36]. Hovorka et al. [37] developed a multi-com-

partment model of glucose and insulin kinetics as part of a model predictive controller for sub-

cutaneous insulin infusion for people with Type 1 Diabetes. This model consists of a two-

compartment glucose subsystem (accounting for glucose absorption, distribution and dis-

posal), a two-compartment insulin subsystem (accounting for insulin absorption, distribution

and disposal) and an insulin action subsystem (accounting for insulin action on glucose trans-

port, disposal and endogeneous production).

Dalla Man et al. [38] developed a model that related the plasma concentrations of glucose

and insulin to various glucose and insulin related rates (the rate of appearance of glucose from

the gastro-intestinal tract, the rate at which the glucose is produced by liver and kidney, insulin

dependent and independent rates of glucose utilization, the rate of renal extraction of glucose,

the rate of insulin secretion by beta cells and the rate of insulin degradation). The parameters

of this model were determined using the experimental data collected for 204 normal and 14

Type 2 Diabetic subjects. This model was used to simulate patient behavior in UVA/PADOVA

Type 1 Diabetes Simulator [2] aimed at investigating the closed control strategies for insulin

pumps. A new version of UVA/PADOVA Type 1 Diabetes Simulator [3] modifies Dalla Man’s

model by incorporating glucagon secretion/action/kinetics and nonlinear increase in insulin

dependent glucose utlization as BGL dips below the normal range.

The CarbMetSim simulator presented in this paper is physiologically complex just like the

models presented by Tiran et al. [32], Guyton et al. [33], Sorensen [23] and Dalla Man [38].

The key difference is that CarbMetSim implements the physiological details in software with

various body organs implemented as objects whereas the existing models used ODEs to model

physiological details. It can be argued that implementing physiological details in software

allows for much more complex behavior to be taken in account than what is possible using

ODEs. Moreover, it is much easier to modify physiological behavior implemented in software

than via ODEs. In that sense, the presented simulator is an improvement over existing ODE

based approaches. It is hoped that these benefits coupled with its open-source nature will allow

CarbMetSim to emerge as a popular simulation model of human metabolism for both diabetes

research and self-management tools for diabetic people.

3 Key aspects in CarbMetSim design

In the following, we describe some of the key aspects of CarbMetSim’s design.

3.1 Food, exercise and human subject description

In CarbMetSim, a food is described in terms of its serving size and the amount of rapidly avail-
able glucose (RAG), slowly available glucose (SAG), protein and fat per serving. The RAG con-

tents include sugars and the rapidly digestible starch (i.e. starch that gets digested in vitro

within 20 minutes [39, 40]). The SAG contents include the slowly digestible starch (i.e. starch

that gets digested in vitro between 20 and 120 minutes [39, 40]). In general, the starch with

high amylopectin to amylose ratio is classified as rapidly digestible starch whereas the one with

high amylose to amylopectin ratio is classified as slowly digestible starch. The non-starch poly-
saccharide (also known as dietary fiber) part of the carbohydrates is currently ignored (even

though the fiber contents of the food are known to have an impact on the gastric emptying).

CarbMetSim currently does not have a detailed implementation of the protein and lipid

metabolism. However, it does model the impact of protein and fat contents of food on gastric

emptying. Hence, the food description should include the total amount of protein and total

PLOS ONE CarbMetSim: A discrete-event simulator for carbohydrate metabolism in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0209725 March 10, 2020 4 / 34

https://doi.org/10.1371/journal.pone.0209725


amount of fat per serving. CarbMetSim currently does not characterize protein in terms of its

amino acid contents. Since only 3 of the 20 amino acids have branched chains, a general

assumption is made that 85% of amino acids resulting from protein digestion have unbranched
chains and the remaining have branched chains [41].

CarbMetSim can currently simulate only aerobic exercises. In CarbMetSim, an exercise

activity is described in terms of its intensity in units of Metabolic Equivalent of Task or METs,

where 1 MET is 1 kcal of energy expenditure per kg of body weight per hour. By convention, 1

MET is considered equivalent to 3.5ml of oxygen consumption per kg of body weight per min-

ute. Each individual has a certain maximal rate at which he/she can consume oxygen. This

individual-specific maximal rate, called VO2max, depends on the gender, age and fitness level

of the individual [42]. The intensity of an exercise activity in terms of the associated oxygen

consumption rate (described as the%age of the individual’s VO2max, henceforth referred to as

%VO2max) determines to a large extent the relative fraction of the glucose and fatty acids oxi-

dized to meet the energy needs of the exercising muscles. Thus, CarbMetSim needs to know

the gender, age and (self-assessed) fitness level within the age group.of the human subject

being simulated. This information is used to estimate the VO2max for the human subject

using the tables in Kaminsky et al. [42].

3.2 Modeling insulin production

The insulin level in blood generally depends on the BGL. If the BGL is high, the insulin level

increases as well so as to signal the liver and the muscles to absorb glucose from the blood

stream and also to signal both the liver and the kidneys to slow down or stop the endogeneous

glucose production via glycogen breakdown and gluconeogenesis. Also, the insulin level in

blood decreases in response to physical exercise [43, 44–47] so as to signal the liver and the

kidneys to ramp up the endogeneous glucose production. In CarbMetSim, the current insulin

level in the blood is represented by a variable called insulinLevel (inside the Blood object) that

assumes values between 0 and 1. The value of insulinLevel depends on the current BGL, the

current exercise intensity (in%VO2max) and a number of configurable parameters: minGluco-
seLevel_ (typical hypoglycemic BGL), baseGlucoseLevel_ (typical fasting BGL), highGlucoseLe-
vel_ (typical peak BGL) (minGlucoseLevel_< baseGlucoseLevel_< highGlucoseLevel_),

baseInsulinLevel_ (representing the typical fasting insulin level), peakInsulinLevel_ (represent-

ing typical insulin level when BGL is at peak) (where 0� baseInsulinLevel_� peakInsulinLe-
vel_� 1), restIntensity_ (the oxygen consumption rate in%VO2max when the individual is not

exercising, by default 2 METs converted to%VO2max) and intensityPeakGlucoseProd_ (the

exercise intensity in%VO2max at which the liver and kidney produce glucose at the maximum

rate, by default 20%). The following rules govern the value of insulinLevel:

• If the current BGL is less than or equal to the minGlucoseLevel_, the insulinLevel stays at

value zero.

• If the current BGL is between the minGlucoseLevel_ and the baseGlucoseLevel_, the insulin-
Level depends on whether the individual being simulated is currently engaged in exercise or

not. If the individual is exercising and

• if the exercise intensity is greater than or equal to intensityPeakGlucoseProd_, the insulin-
Level stays at zero.

• otherwise, the insulinLevel depends on the exercise intensity. As the exercise intensity

decreases from intensityPeakGlucoseProd_ to the the restIntensity_, the insulinLevel
increases linearly from zero to the baseInsulinLevel_.
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If the individual is not exercising, as the BGL increases from minGlucoseLevel_ to baseGlu-
coseLevel_, the insulinLevel increases linearly from zero to the baseInsulinLevel_.

• As the BGL increases from the baseGlucoseLevel_ to the highGlucoseLevel_, the insulinLevel
increases linearly from the baseInsulinLevel_ to the peakInsulinLevel_.

• If the BGL is greater than or equal to the highGlucoseLevel_, the insulinLevel stays at the pea-
kInsulinLevel_ value.

In CarbMetSim, the peakInsulinLevel_ represents the peak ability to produce insulin. A

value 1 for peakInsulinLevel_ means normal (or excessive, as in the case of initial stages of

Type 2 Diabetes) insulin production, whereas a value 0 means that the pancreas does not pro-

duce any insulin at all (as in people with Type 1 Diabetes). A value x (between 0 and 1) for pea-
kInsulinLevel_ means that peak insulin production is just x times the normal peak.

As described in the later sections, the insulinLevel variable has a profound impact on the

operation of different organ objects in CarbMetSim. So, its value should be interpreted in

terms of the impact it has on various organ objects, rather than the actual insulin concentra-

tion it corresponds to for a particular person. So, it is entirely possible that two very different

actual insulin concentrations for two individuals map to the same value for the insulinLevel
because they have the same impact on carbohydrate metabolism related functions of the

organs.

In CarbMetSim’s current implementation, the insulinLevel variable is tightly coupled with

the BGL in the manner described above. A future implementation will allow the insulinLevel
to vary in a configurable manner by allowing the user to specify the dosage of externally

injected short term insulin. This would allow the simulator to be useful for diabetes patients

dependent on short term insulin injections or insulin pumps.

3.3 Modeling glucose transport

Glucose crosses cell membranes using either active transporters or passive ones. The active

transporters, such as Sodium GLucose coTransporters (SGLTs) are able to move glucose from a

low concentration to a high concentration. The passive transporters, such as Glucose Trans-
porters (GLUTs) move glucose from a high concentration to a low concentration. CarbMetSim
models the operation of active transporters in an organ by specifying the average amount of

glucose transferred per minute via active transport. The actual amount transferred is a poisson

distributed random variable. The simulator uses Michaelis Menten kinetics to determine the

amount of glucose transferred in a minute via passive transport. As per the Michaelis Menten

kinetics, the rate of transport (V) across a membrane depends on the difference in the substrate

concentration (Y) across the membrane in the following manner: V ¼ Vmax
Y

YþKm
, where Vmax

is the maximum rate of transport and Km is the substrate concentration difference at which the

transport rate is half the maximum. The Vmax value associated with a GLUT transporter in an

organ indicates the number of transporters involved. Hence, the simulator treats Vmax associ-

ated with a particular GLUT in a particular organ as a poisson distributed random variable

with a configurable mean.

3.3.1 Modeling GLUT4 operation in muscles. Among the GLUTs, the GLUT4 transport-

ers are of particular importance because they allow the muscles to absorb glucose from the

bloodstream. When the human body is engaged in exercise, the physical activity itself activates
sufficient number of GLUT4 transporters [48–50] and the muscles are able to absorb the

desired amount of glucose from the bloodstream. CarbMetSim replicates this behavior. How-

ever, in the resting state, the number of active GLUT4 transporters depends on the insulin

level in the bloodstream. When the insulin level is low (because of low BGL), GLUT4
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transporters are inactive and the muscles do not absorb much glucose from the bloodstream.

As the insulin level rises in the blood (in response to increase in BGL), GLUT4 transporters

become active proportionately and allow the muscles to quickly absorb excess glucose from

the blood.

In CarbMetSim, GLUT4 activation during the resting states is modeled by manipulating the

Vmax value associated with GLUT4 transporters in the following manner:

• Since a large fraction of the absorbed glucose is converted to glycogen inside muscles and

there is a limit on how much glycogen can be stored inside muscles, the current amount of

muscle glycogen impacts the Vmax value. Specifically, as the muscle glycogen storage

increases from zero to a configurable maximum value, the Vmax value reduces linearly from

a configurable maximum (7 mg/kg/min by default) to a configurable minimum (3.5 mg/kg/

min by default).

• The impact of insulin level is captured by multiplying the Vmax value with a factor (between

0 and 1) that increases in value with increase in the insulinLevel. Currently, the insulinLevel
itself is used as the value of this factor. Since vigorous physical exercise causes temporary

increase in glucose absorption by muscles [51] to make up for the glycogen lost during exer-

cise), the insulinLevel does not impact the Vmax value in the first hour after an intense physi-

cal exercise activity (unless the current BGL drops below the baseGlucoseLevel_).

• The impact of insulin resistance in reducing the activation of GLUT4 transporters is mod-

eled by multiplying the the Vmax value with a configurable parameter (glut4Impact_) that

assumes values between 0 and 1 (by default 1.0).

3.4 Modeling glycolysis

Glucose serves as a key source of energy for various tissues, which either oxidize it completely

or consume it anaerobically via glycolysis. Complete oxidation of glucose yields 15 times more

energy than anaerobic glycolysis but can only be done if oxygen is available. Tissues with

access to plenty of oxygen oxidize glucose for their energy needs whereas others (possibly in

the same organ) use glycolysis. Glycolysis results in the generation of lactate, which serves as a

key substrate for endogenous glucose production via gluconeogenesis (described later).

The following organs in CarbMetSim use anaerobic glycolysis as an energy source: Muscles,
Liver, Kidneys, Intestine and Blood. The amount of glucose consumed for glycolysis increases

with the glucose availability, which is signaled by the insulin level in the bloodstream. This is

modeled in the simulator in the following manner. Each organ using glycolysis as an energy

source has two configurable parameters: glycolysisMin_ and glycolysisMax_ (in units of mg of

glucose consumed per kg of body weight per minute). At each tick, the organ generates a pois-

son distributed random number (min) with glycolysisMin_ as the mean value and glycolysis-
Max_ as the maximum value. Then, subject to the glucose availability in the organ, the

amount of glucose consumed in a tick for glycolysis is given by: min + insulinImpact × (glycoly-
sisMax_ −min). Here, insulinImpact is a factor (between 0 and 1) that increases in value with

increase in the insulinLevel. This factor is calculated using a sigmoid function, which is cur-

rently the CDF of a normal distribution with a configurable mean and standard deviation. The

simulator also uses configurable multiplicative parameters glycolysisMinImpact_ and glycolysis-
MaxImpact_ (with default values 1.0) to modify the values of glycolysisMin_ and glycolysis-
Max_ parameters associated with each organ. These parameters can be used to model the

impact of diabetes on glycolysis flux. A fraction (by default 1) of the glucose consumed for gly-

colysis is converted to lactate, which is added to the Blood object. Table 1 shows the default
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values for glycolysis related parameters for different organs. Here, the relative contributions of

different organs towards overall glycolysis flux were set as suggested in [52, 53]. The default

values of various configurable parameters in CarbMetSim were determined experimentally to

provide a close match with published measurements performed on non-diabetic human sub-

jects before and after a meal event [54].

3.5 Modeling gluconeogenesis

Gluconeogenesis is a metabolic pathway that allows the liver and kidneys to produce glucose

from lactate, glycerol, glutamine and alanine [40, 55]. This pathway assumes special signifi-

cance as the only source of glucose when no new glucose is arriving in the body via food and

the glycogen store in the liver has been exhausted.

Normally, gluconeogenesis occurs when the insulin level is low (i.e. in the post-absorptive
state). However, diabetic people may experience high gluconeogenesis flux even in the post-
prandial state when the insulin level is high [56, 57].

In CarbMetSim, the Liver and the Kidneys produce glucose via gluconeogenesis at configur-

able average rates (gngLiver_ and gngKidneys_ respectively, 0.16 mg/kg/minute each by

default) using substrates mentioned above. When the insulinLevel is above the baseInsulinLe-
vel_ (i.e. the BGL is more than the baseGlucoseLevel_), the average gluconeogenesis flux is mul-

tiplied by a factor (between 0 and 1) that decreases in value with increase in the insulinLevel as

per an inverse sigmoid function (currently, the complementary CDF of a normal distribution

with a configurable mean and standard deviation). This allows us to model the decrease in glu-

coneogenesis flux with increase in the insulin level. On the other hand, if the insulinLevel is

below the baseInsulinLevel_ (i.e. the BGL is below the baseGlucoseLevel_), the average gluco-

neogenesis flux is multiplied by a factor that decreases in value from a configurable maximum

(gngImpact_� 1, by default 6.0) to the minimum value 1 as the insulinLevel increases from

zero to the baseInsulinLevel_. This allows us to model the increased gluconeogenesis flux when

BGL is low and gluconeogenesis is probably the only source of glucose for the body. The simu-

lator currently assumes that the substrates are always available in sufficient quantity to allow

gluconeogenesis to take place in the manner described above.

3.6 Modeling liver glycogen synthesis & breakdown

In human body, the liver helps maintain glucose homeostasis by storing excess glucose in

blood during the post-prandial state (when the insulin levels are high) as glycogen and releas-

ing glucose to the blood during the post-absorptive and exercising states (when insulin level is

low) by breaking down the stored glycogen. Diabetes may effect both glycogen synthesis and

breakdown in the liver.

Subject to the availability of glucose, the amount of glycogen synthesized by the Liver object

in CarbMetSim simulator during each tick is a poisson distributed random variable with a con-

figurable average (glucoseToGlycogenInLiver_, 4.5 mg/kg/min by default) that is modified

Table 1. The default values for glycolysis related parameters in various organs.

Organ glycolysisMin_(mg/kg/minute) glycolysisMax_(mg/kg/minute)

Blood 0.0315 0.1135

Kidneys 0.0315 0.1135

Liver 0.0630 0.5675

Muscles 0.0630 0.8512

Intestine 0.0315 0.1135

https://doi.org/10.1371/journal.pone.0209725.t001
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multiplicatively by two factors. The first factor models the impact of insulin on glycogen syn-

thesis. This factor (with values between 0 and 1) increases in value with increase in the insulin-
Level and is calculated using a sigmoid function, which is currently the CDF of a normal

distribution with a configurable mean and standard deviation. The second factor called liver-
GlycogenSynthesisImpact_ (by default 1.0) simply modifies the configured average multiplica-

tively and can be used to model the impact of diabetes on glycogen synthesis in the liver. The

Liver object has a finite capacity to store glycogen and hence any excess glycogen is converted

to fat and stored in the AdiposeTissue object.

Glycogen breakdown in the liver serves as the key source of glucose when no new glucose is

entering the body via food or when the glucose needs of the body increase due to intense phys-

ical exercise. Accordingly, in CarbMetSim, the amount of glycogen stored in the Liver that is

broken down to glucose during a tick closely depends on the insulinLevel (and hence on the

current BGL). When the insulinLevel is above the baseInsulinLevel_ (i.e. the BGL is more than

the baseGlucoseLevel_), the average glycogen breakdown flux in the Liver (glycogenToGluco-
seInLiver_, 0.9 mg/kg/min by default) is multiplied by a factor (between 0 and 1) that decreases

in value with increase in the insulinLevel as per an inverse sigmoid function (currently, the

complementary CDF of a normal distribution with a configurable mean and standard devia-

tion). This allows us to model the decrease in liver glycogen breakdown with increase in the

insulin level. On the other hand, if the insulinLevel is below the baseInsulinLevel_ (i.e. the BGL

is below the baseGlucoseLevel_), the average Liver glycogen breakdown flux is multiplied by a

factor that decreases in value from a configurable maximum (liverGlycogenBreakdownImpact_
� 1, by default 6.0) to the minimum value 1 as the insulinLevel increases from zero to the base-
InsulinLevel_. This allows us to model the increased liver glycogen breakdown when BGL is

low.

4 CarbMetSim design and implementation

CarbMetSim is a discrete event simulator implemented in an object-oriented manner. At the

top level, CarbMetSim consists of a SimCtl (SIMulation ConTroLler) object and a HumanBody
object. The SimCtl object maintains the simulation time (in ticks, where each tick is a minute)

and contains a priority queue of food/exercise events sorted in order of their firing times. At

the beginning of the simulation, the SimCtl object reads all the food/exercise events into the

priority queue. At each tick, the SimCtl object fires the events whose firing time has arrived (by

invoking appropriate methods on the HumanBody object) and then causes each organ to do

its work during that tick (again by invoking a HumanBody object method).

In the following, we describe the implementation and operation of various objects that

together implement the CarbMetSim simulator. The default values of various parameters listed

here were determined experimentally to provide a close match with published measurements

performed on non-diabetic human subjects before and after a meal event [54]. Validation of

simulation results against these and other published measurements is described in later sec-

tions. Table 1 shows the default values for glycolysis related parameters for different organs.

Default values of configurable parameters that determine the impact of insulinLevel on various

metabolic processes are shown in Table 2.

4.1 HumanBody

The HumanBody object serves as the container for following organ objects: Stomach, Intestine,
PortalVein, Liver, Kidneys, Muscles, AdiposeTissue, Brain, Heart and Blood. At the beginning

of a simulation, the HumanBody object does the following:
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• It reads the description of various foods: their composition in terms of rapidly/slowly avail-
able glucose (RAG/SAG), protein and fat.

• It reads the description of various exercise activities: their intensity in units of METs.

• It estimates the maximal rate of glucose consumption (VO2max, see Section 4.8) associated

with the individual being simulated using the tables in Kaminsky et al. [42] given this indi-

vidual’s gender, age and self-assessed fitness level within his/her age group, which are all sup-

plied as simulation parameters.

• It reads other simulation parameters that affect the operation of different organs.

The HumanBody contains methods that cause the food to be added to the stomach when

SimCtl fires a food event and update the energy needs of the body when SimCtl fires an exercise

event. When an exercise event gets over, the HumanBody resets the energy needs to the resting

state. When the Stomach has no food left, it informs the HumanBody about the situation. Thus,

at any given time, the HumanBody remembers whether the stomach has some undigested food

(Fed) or not (PostAbsorptive) and whether the body is currently engaged in some exercise

(Exercising) or not (Resting). Accordingly, there are four body states: Fed_Resting, Fed_Exercis-
ing, PostAbsorptive_Resting and PostAbsorptive_Exercising. Different body states allow different

values to be in effect for the configurable parameters governing the operation of the organs.

As mentioned before, the HumanBody object provides a method, which is invoked by the

SimCtl object at each tick and causes methods to be invoked on individual organ objects that

allow the organs to do their work during that tick.

4.2 Blood

The Blood object represents the bloodstream and interacts with various organs to exchange

glucose, amino acids and other substrates. The Blood object maintains the following substrate

variables: glucose, lactate, branchedAminoAcids (consumed by muscles, adipose tissue and

brain) and unbranchedAminoAcids. The Blood object also maintains the insulinLevel variable

discussed earlier and a fluidVolume_ variable representing the blood volume (5 liters by

default). Hormones other than insulin are not currently maintained. At each tick, the Blood
object updates the insulinLevel in the manner described in Seection 3.2. Also, some glucose is

consumed for glycolysis in the manner described in Section 3.4.

4.3 Stomach

The gradual emptying of stomach contents into the intestine, also known as gastric emptying,

is a complex phenomenon affected by a number of factors such as the volume, particle size,

Table 2. Configurable parameters (and their default values) for the mean and standard deviation of normal distri-

butions to determine the impact of insulinLevel on various metabolic processes.

Parameter Default Value

insulinImpactOnGlycolysis_Mean 0.5

insulinImpactOnGlycolysis_StdDev 0.2

insulinImpactOnGNG_Mean 0.5

insulinImpactOnGNG_StdDev 0.2

insulinImpactGlycogenBreakdownInLiver_Mean 0.1

insulinImpactGlycogenBreakdownInLiver_StdDev 0.02

insulinImpactGlycogenSynthesisInLiver_Mean 0.5

insulinImpactGlycogenSynthesisInLiver_StdDev 0.2

https://doi.org/10.1371/journal.pone.0209725.t002
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viscosity, osmolarity, acidity and nutritional contents of the meal [58–60]. A variety of models

have been suggested in the past for the emptying of food from the stomach into the intestine.

Many of these models were based on mathematical functions such as exponential [61, 62] and

power exponential [63]. Lehmann and Deutsch [36] presented a simple model for gastric emp-

tying of carboydrates in a meal, where the rate of gastric empyting has three phases—a linear

increase phase, a constant maximum rate phase and a linear decrease phase. Dalla Man et al.

[64] presented a three-compartment model of the gastrointestinal tract where the gastric emp-

tying rate follows a trough-shaped pattern (initially high followed by a non-linear decrease to a

minimum value followed by a non-linear increase back to the initial maximum value).

In CarbMetSim, when a food event is fired, the eaten food enters the Stomach instan-

taneously, where its contents are added to any existing stores of RAG, SAG, protein and fat.

The simulator currently uses a simple model for gastric emptying where all the food in the

stomach is assumed to be in the chyme form and the amount of chyme leaking to the intestine

each minute consists of one part determined using a poisson distribution (with default mean

500 mg) and another part proportional to the total amount of chyme currently present in the

stomach. This proportionality constant increases linearly with decrease in the energy density

of the chyme. The minimum value of this proportionality constant (0.03 by default) represents

the fraction leaking out of stomach each minute when the chyme consists entirely of fat (with

energy density 9.0 kcal/g). On the other hand, the maximum value (9.0/4.0 times the minimum

value) represents the fraction leaking out of stomach each minute when the chyme consists

entirely of carbs (with energy density 4.0 kcal/g). The nutritional composition of leaked chyme

is same as that of chyme present in the stomach. This simple model, inspired from [65], allows

us to take in account the fat/protein induced slowdown of gastric emptying. There are many

other factors that affect the gastric emptying process (the solid/liquid nature of food, fiber con-

tent, osmolarity, viscosity etc.) which CarbMetSim currently does not take in account. Thus, a

bolus of chyme leaks from the Stomach into the Intestine every tick (i.e. every minute) until the

Stomach is empty.

4.4 Intestine

Carbohydrate Digestion: The intestine digests the carbohydrate in the chyme using a number

of enzymes to produce monosaccharides such as glucose, fructose and galactose [40]. Cur-

rently, the Intestine object in CarbMetSim converts all the carbohydrate in the chyme to just

one monosaccharide—glucose. The Intestine receives a bolus of chyme from the Stomach
every tick as long as there is some food in the Stomach. The Intestine maintains a list of Chyme
objects where each object contains the undigested RAG/SAG contents of each bolus received

from the Stomach and the time when the bolus was received. At each tick, the Intestine digests

some amount of RAG/SAG from each Chyme object. The amount digested from a particular

Chyme object is determined using normal distributions (default mean & standard-deviation: 2

minutes & 0.5 minutes for RAG and 30 minutes & 10 minutes for SAG) such that most of the

RAG and SAG contents of a bolus are digested within 20 and 120 minutes respectively after

the bolus’s entry into the Intestine. The glucose resulting from digested RAG/SAG is added to

the glucoseInLumen variable in Intestine, which represents the total glucose present in the

intestinal lumen. This glucose is processed as described later in this section.

Fat and Protein Digestion: As a chyme bolus enters the Intestine from the Stomach, its fat

contents are simply added to the AdiposeTissue and its protein contents are added to a com-

mon protein pool in Intestine. At each tick, the Intestine digests a small amount of this protein

(determined as per a poisson distribution with default mean 1mg) and transfers the resulting

amino acids to the PortalVein. The simulator does not keep track of the amino acid contents of
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dietary protein and makes a simple assumption that 85% of these amino acids are unbranched
and the remaining 15% are branched.

Glucose Absorption from Intestine to PortalVein: The glucose moves from the intestinal

lumen to the enterocytes across the brush border membrane and then from the enterocytes to

the portal vein across the basolateral membrane. The transfer from the intestinal lumen to the

enterocytes takes place via a combination of active (SGLT-1) and passive (GLUT2) transport-

ers, where the number of GLUT2 transporters in action depends on the glucose concentration

on the lumen side. The transfer from the enterocytes to the portal vein takes place solely via

passive GLUT2 transporters [40]. The Intestine object maintains two variables: glucoseInLu-
men and glucoseInEnterocytes, which represent total glucose present in the intestinal lumen

and in enterocytes respectively. At each tick, the Intestine moves some glucose from glucoseIn-
Lumen to glucoseInEnterocytes. The amount moved has an active transport component (pois-

son distributed with default mean 30 mg/minute) and a passive transport component

determined using Michaelis Menten kinetics (assuming configurable volumes for the lumen

and the enterocytes). The Vmax value used for Michaelis Menten kinetics increases with glu-

cose concentration in the lumen with default maximum value 800 mg/minute. The Km value

used is 20 mmol/l by default [40]. Glucose transport from the enterocytes to the portal vein is

modeled by moving some glucose from glucoseInEnterocytes to the PortalVein at each tick.

The amount moved is determined using Michaelis Menten kinetics (average Vmax = 800 mg/

minute, Km = 20 mmol/l by default [40]).

Glycolysis: The intestinal cells get some of their energy via glycolysis of glucose to lactate in

the manner described in Section 3.4. If the glucose in enterocytes (glucoseInEnterocytes) is not

sufficient, the extra glucose needed for glycolysis comes from the bloodstream (the Blood object).

4.5 PortalVein

The portal vein carries blood that has passed through the intestinal tract to the liver. Due to its

special status as the conduit from the intestine to the liver, CarbMetSim maintains the portal

vein as a separate entity (the PortalVein object) from rest of the circulatory system (represented

by the Blood object). The glucose and amino acids resulting from the food digestion in the

Intestine travel to the Liver via the PortalVein.

Since the portal vein is a part of the circulatory system, it must have the same glucose concen-

tration as rest of the circulatory system when no new glucose is being received from the intes-

tine. This is achieved in CarbMetSim in the following manner. At the beginning of a tick, there

is no glucose in the PortalVein. During each tick, the following sequence of actions take place:

• The PortalVein imports glucose from the Blood so that the glucose concentration in the Por-
talVein matches that of Blood before the import. The PortalVein’s volume, used to calculate

the glucose concentration, is a configurable parameter with default value 5 dl.

• Glucose transfer takes place from the Intestine to the PortalVein (as described previously in

Section 4.4) and then from the PortalVein to the Liver (as described next in Section 4.6).

• Finally, any remaining glucose in the PortalVein is moved back to the Blood.

All the amino acids received from the Intestine into the PortalVein during a tick are moved

to the Liver during that tick itself.

4.6 Liver

The hepatocytes in the liver absorb glucose from the portal vein via GLUT2s when the glucose

concentration in the portal vein is higher. The absorbed glucose is phosphorylated to glucose

PLOS ONE CarbMetSim: A discrete-event simulator for carbohydrate metabolism in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0209725 March 10, 2020 12 / 34

https://doi.org/10.1371/journal.pone.0209725


6-phosphate, which is used either for glycogen synthesis or for glycolysis. Insulin and glucose

activate the enzymes associated with glycogen synthesis and inhibit those associated with gly-

cogen breakdown. Insulin also activates glycolysis of glucose 6-phosphate in hepatocytes to

form pyruvate, some of which is oxidized and the remaining is converted to lactate and

released to the bloodstream. On the other hand, lack of insulin (and presence of glucagon)

activates glycogen breakdown (to glucose) as well as gluconeogenesis (which again produces

glucose). The gluconeogenesis flux increases with the availability of the substrates (such as lac-

tate, alanine and glycerol) in the bloodstream even if the insulin level is high. Excess glucose in

the hepatocytes is either used for glycogen synthesis (if the insulin level is high) or leaves the

cells via GLUT2s and possibly other means (if the insulin level is low). High insulin level also

causes some of the excess glucose to be converted to lipid. Thus, the liver absorbs glucose dur-

ing the fed state and uses it for glycogen synthesis and glycolysis. On the other hand, the liver

releases glucose to the bloodstream during the post-absorptive and exercising states via glyco-

gen breakdown and gluconeogenesis. Another important aspect of the liver operation is its

oxidation of unbranched amino acids which provides for almost half of the liver’s energy

requirements.

CarbMetSim implements the liver operation in the Liver object. The simulator allows the

initial amount of glycogen stored in the Liver as well as the maximum amount it can hold to be

set via configurable parameters. By default, the Liver has sufficient glycogen at the beginning

of a simulation to produce 100 grams of glucose. Also, by default, an amount equivalent to 120

grams of glucose is the upper limit on the amount of glycogen that the Liver object can store.

At each tick, the Liver does the following:

• Glucose Absorption/Release: If the glucose concentration in higher in the PortalVein than in

the Liver, some glucose will be absorbed in the Liver via GLUT2s. Similarly, if the glucose

concentration is higher in the Liver than in the Blood, some glucose will be released to the

Blood via GLUT2s. The amount of the glucose absorbed/released is determined using

Michaelis Menten kinetics (with default average Vmax = 50mg/kg/min and default Km = 20

mmol/l [40]).

• Glycogen Synthesis/Breakdown: The Liver performs glycogen synthesis or breakdown in the

manner described in Section 3.6.

• Lipogenesis: If the glycogen storage in the Liver exceeds its maximum configured value, the

excess glycogen is converted to fat, which is stored in AdiposeTissue.

• Glycolysis and Gluconeogenesis: The Liver consumes some glucose for glycolysis in the man-

ner described in Section 3.4 and produces glucose via gluconeogenesis in the manner

described in Section 3.5.

• Amino Acid Consumption: The Liver consumes 93% of unbranched amino acids received

from the PortalVein and releases the rest (along with all the branched amino acids) to the

Blood object.

4.7 Kidneys

The kidneys filter the blood and require significant amount of energy for this task. Their outer

layer (the cortex) is well supplied with oxygen and hence meets its energy needs via oxidation

of glucose and fatty acids absorbed from the bloodstream. The inner core (the medulla) uses

anaerobic glycolysis for energy. The kidneys also generate glucose via gluconeogenesis.
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CarbMetSim implements the kidney operation in the Kidneys object. At each tick, the Kidneys
do the following:

• Glycolysis: The renal medulla in Kidneys meets its energy requirements via glycolysis, which

is implemented in the manner described in Section 3.4. The glucose consumed for glycolysis

is absorbed from the Blood object and the resulting lactate is released to the Blood object.

• Gluconeogenesis: The Kidneys produce glucose via gluconeogenesis in the manner described

in Section 3.5 and release it to the Blood object.

• Glucose Excretion in Urine: As the the glucose concentration in Blood increases from one

threshold (11 mmol/l [52, 66] by default) to another (22 mmol/l by default), the glucose

excretion in urine increases linearly from zero to a certain peak level (100 mg/min by

default). The simulator supports a configurable parameter excretionKidneysImpact_ (with

default value 1) to multiplicatively modify the amount of glucose excreted per tick in urine.

4.8 Muscles

The skeletal muscles have two types of cells or fibers: the red fibers oxidize substrates (fatty

acids, glucose) absorbed from the bloodstream to meet their energy needs while the white
fibers rely on glycolysis of glucose 6-phosphate obtained from the glycogen stored within the

white fibers for energy. The glucose absorption from the bloodstream occurs mainly via insu-

lin-sensitive GLUT4 transporters with some basal level absorption taking place via GLUT1

transporters. The skeletal muscles also use some branched chain amino acids absorbed from

the bloodstream to meet their energy needs.

Muscles Operation During Rest [40, 67, 43]: In the resting state, the muscles meet 85–90% of

their energy needs via the oxidation of fatty acids. About 10% of the energy comes from oxida-

tion of glucose and 1–2% from amino acids. The glucose is absorbed from the bloodstream

using GLUT4 and GLUT1 transporters as mentioned earlier. The absorbed glucose is used for

oxidation, glycogen synthesis and glycolysis [68]. The glucose oxidation and glycolysis in mus-

cles under resting conditions increases with the insulin level in the bloodstream.

Muscles Operation During Aerobic Activity [40, 67, 69]: Oxidation of glucose and fatty acids

is the main source of energy for exercising muscles. The relative fraction of these substrates

used to meet the energy needs depends on the exercise intensity, which in turn is decided

based on the rate at which the individual consumes oxygen while doing this exercise. Each

individual has a certain maximal rate at which he/she can consume oxygen. This individual-

specific maximal rate, called VO2max, depends on the gender, age and fitness level of the indi-

vidual [42]. So, the intensity of an exercise activity can be described by the oxygen consump-

tion rate (as the%age of the individual’s VO2max) associated with this exercise. The exercise

intensity can also be described in an individual-independent manner in units of Metabolic
Equivalent of Task or METs, where 1 MET is 1 kcal of energy expenditure per kg of body

weight per hour. By convention, 1 MET is considered equivalent to 3.5ml of oxygen consump-

tion per kg of body weight per minute. So, an exercise with a certain intensity in terms of

METs may translate to very different intensities in terms of%VO2max for different individuals.

Romijn et al. [69] reported that about 10% of the energy needs during aerobic exercise are

met by oxidizing glucose absorbed from the blood via GLUT4/GLUT1 transporters. The aero-

bic activity is sufficient to activate GLUT4 transporters. So, their action is not dependent on

the insulin during the aerobic exercise [48–50]. For low intensity (e.g. 25%VO2max) exercise,

almost all of the remaining energy needs are met by oxidizing fatty acids [69]. For moderate

and high intensity exercise, a significant fraction of energy needs is met by oxidation of glucose
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derived from the glycogen stored locally in the exercising muscles. Romijn et al. [69] reported

about 30% of the energy coming from the oxidation of glucose derived from locally stored gly-

cogen when the intensity of the aerobic exercise was 65%VO2max. Horton [67] reported oxi-

dation of glucose (absorbed from the blood and derived from local glycogen) providing for

about 50% and almost 100% of the energy needs when the exercise intensities were 50%

VO2max and 100%VO2max respectively. Most of the remaining energy needs are met by oxi-

dation of fatty acids [70]. Once the glycogen stored in the liver and the muscles is over, it

becomes impossible for the individual to perform very high intensity exercise. A small fraction

of the energy needs is met by glycolysis of glucose 6-phosphate derived from locally stored gly-

cogen. The glycolysis level increases linearly with exercise intensity. Finally, a very small frac-

tion of energy needs is met by consuming branched amino acids absorbed from the blood [70].

4.8.1 Implementation in CarbMetSim. In CarbMetSim, the skeletal muscles are imple-

mented as the Muscles object. Currently, the simulator implements response to the resting

condition and the aerobic exercise only. Specifically, exercise with a significant anaerobic com-

ponent cannot yet be simulated. Also, it is not yet possible to distinguish among different mus-

cle groups.

At the beginning of a simulation, the HumanBody object estimates the VO2max associated

with the individual being simulated using the tables in Kaminsky et al. [42] given this individu-

al’s gender, age and self-assessed fitness level within his/her age group, which are all supplied

to the simulator as input parameters. When an exercise event is fired, the exercise intensity is

translated from the units of METs into%VO2max. The exercise intensity determines the frac-

tion of the energy needs met via oxidation of glucose derived from locally stored glycogen. The

simulator allows the initial amount of glycogen stored in the Muscles as well as the maximum

amount it can hold to be set via configurable parameters. By default, both these parameters

have values equivalent to 500 grams of glucose.

When the HumanBody is in Fed_Exercising or PostAbsorptive_Exercising state during a tick,

the Muscles object performs the following actions:

• Oxidation of glucose absorbed from the Blood: The Muscles absorb a random amount of glu-

cose from the Blood (up to a configurable limit which is 30μmol/kg/min by default) so that it

can be oxidized to meet on average 10% of the energy needs during this tick. This absorption

does not depend on the current insulinLevel in the Blood.

• Oxidation of glucose derived from local glycogen: The exercise intensity (in%VO2max) is used

to determine the fraction of energy needs that will be met by oxidizing glucose derived from

locally stored glycogen. As the exercise intensity increases from 0%VO2max to 100%

VO2max, a value between 0 and 0.9 is determined using a sigmoid function (currently, the

compressed CDF of a normal distribution) such that exercise intensities 50%VO2max and

100%VO2max yield values close to 0.4 and 0.9 respectively. This value is then used as the

mean to generate a random value that gives the fraction of energy needs during this tick to

be met by oxidizing glucose derived from local glycogen (as long as a sufficient amount of

local glycogen is available).

• Glycolysis: The glycolysis flux during the tick increases linearly from a (poisson distributed)

random value (with glycolysisMin_ as the mean) to glycolysisMax_ as the exercise intensity

increases from 0%VO2max to 100%VO2max. The glucose 6-phosphate consumed for glycol-

ysis comes from locally stored glycogen. The resulting lactate is added to the Blood object.

• Fatty Acid Consumption: If glucose oxidation and glycolysis described above do not meet the

current energy needs, Muscles consume fat (representing fatty acids) from the AdiposeTissue
to meet the remaining energy needs.
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When the HumanBody is in Fed_Resting or PostAbsorptive_Resting state during a tick, the

Muscles object performs the following actions:

• Glucose Absorption: GLUT4 based glucose absorption [40] occurs in the manner described

in Section 3.3.1. Also, basal absorption via GLUT1s occurs at a configured rate (by default

zero).

• Glycolysis: A fraction of the absorbed glucose (determined as described in Section 3.4) is con-

sumed via glycolysis and the resulting lactate is added to the Blood object.

• Glycogen Synthesis: If the glycogen store of the Muscles is less than the maximum amount

that Muscles could hold [40], a (poisson distributed) random amount of the absorbed glucose

(with a configurable mean, 7.0mg/kg/min by default) is converted to glycogen.

• Oxidation: Remainder of the absorbed glucose is considered consumed via oxidation.

• Fatty Acid Consumption: If glycolysis and glucose oxidation described above do not meet the

energy needs during the resting state, Muscles consume fat (representing fatty acids) from

the AdiposeTissue to meet the remaining energy needs.

4.9 Adipose tissue

CarbMetSim does not yet have a detailed implementation of lipid metabolism. Currently, the

AdiposeTissue object serves as the storage for fat. The Intestine object directly adds the fat con-

tents in chyme to the AdiposeTissue object. Similarly, the Liver object converts excess glycogen

to fat to be stored in the AdiposeTissue object. The Muscles object directly removes fat from the

AdiposeTissue in accordance with its energy needs.

4.10 Brain

The brain meets its energy needs by oxidizing glucose (although under starvation conditions it

can also use ketone bodies). The nerve cells in the brain use GLUT3 transporters to absorb glu-

cose from the bloodstream. Since the Km value associated with GLUT3 transporters is quite

low, the rate of glucose absorption by the nerve cells does not change much with glucose con-

centration in the bloodstream (unless it drops way below the normal levels). The brain oxidizes

about 120 g of glucose per day, equivalent to absorption of about 83.33 mg of glucose per min-

ute [40, 68]. In CarbMetSim, the brain operation is modeled as the Brain object which con-

sumes a (poisson distributed) random amount (with mean 83.33 mg) of glucose every minute

from the Blood object.

4.11 Heart

The heart meets most of its energy needs by oxidizing fatty acids. Depending upon their avail-

ability, up to 30% of the heart’s energy needs are met by consuming glucose and lactate [71]. A

much smaller part of the energy needs is met from amino acids and ketone bodies. The heart

uses both GLUT1 and GLUT4 transporters to absorb glucose from the bloodstream. The

Heart object in CarbMetSim models the heart operation. It absorbs a poisson distributed ran-

dom amount of glucose (with default mean 14 mg/minute [68]) from Blood and oxidizes it to

meet its energy needs.

5 Validation of CarbMetSim for a meal event

In order to determine the default values of various configurable parameters for normal sub-

jects and to illustrate CarbMetSim’s ability to model carbohydrate metabolism in normal
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subjects and those with Type 2 Diabetes (T2D) in post-absorptive and post-prandial phases, we

configured the simulator to provide a close match with measurements reported in Woerle

et al. [54]. Woerle et al. [54] did extensive measurements on 26 subjects with Type 2 Diabetes

and 15 age/weight/sex-matched subjects without diabetes to determine the flux along different

pathways for glucose arrival and consumption following a standard meal. The T2D subjects

included 16 men and 10 women with following characteristics: age 53 ± 2 years, body weight

93 ± 4 kg, BMI 30 ± 1kg/m2, body fat 34 ± 3%, average HbA1c 8.6 ± 0.3%. The normal subjects

included 7 men and 8 women with following characteristics: age 49 ± 3 years, body weight

89 ± 4 kg, BMI 30 ± 1kg/m2, body fat 36 ± 3%. All the subjects consumed a standard breakfast,

consisting of 84 g of glucose, 10 g of fat and 26 g of protein, at 10am on the day of the measure-

ments after a fast of more than 14 hours. Measurements were performed for the post-absorp-

tive phase before the breakfast and the post-prandial phase assumed to be six hours in

duration after the breakfast.

Two sets of simulations were performed using CarbMetSim: one for a normal subject and

one for a T2D subject (see Table 3). Each set consisted of 30 simulations with different seeds

for random number generation. Default values were used for most of the configurable simula-

tion parameters. These values (already reported in the previous sections) were set so that the

normal subject simulations achieves a close match with measurements reported in [54]. In par-

ticular, the impact of insulin level on the gluconeogenesis flux was disabled because insulin

level did not seem to influence the gluconeogenesis flux in the reported measurements. Con-

figurable parameters for which the default values were not used are shown in Table 3. In all the

simulations reported in this section and the remaining ones, the parameters did not change in

value with the body state (although the simulator is capable of using different values for a

parameter depending on the body state). Simulation parameters bodyWeight and age_ were set

to the average values reported for subjects in each category in [54]. Parameters age_, gender_
and fitnessLevel_ are used to determine VO2max, the maximal rate of oxygen consumption for

the subject being simulated and are not relevant for the simulations reported in this section.

The following parameters were set as per the data reported in [54] (see Tables 4 and 5):

Table 3. Configuration parameters for simulations for a single meal event.

Normal Type 2 Diabetic

age_ (years) 49 53

gender_ 0 (male) 0 (male)

fitnessLevel_ (%ile) 50 50

bodyWeight (kg) 89 93

minGlucoseLevel_ (mg/dl) 50 50

baseGlucoseLevel_ (mg/dl) 90 210

highGlucoseLevel_ (mg/dl) 145 360

baseInsulinLevel_ 0.001 0.001

peakInsulinLevel_ 1.0 0.6

glut4Impact_ 1.0 0.25

glycolysisMinImpact_ 1.0 4.0

glycolysisMaxImpact_ 1.0 1.5

excretionKidneysImpact_ 1.0 1.3

glucoseToGlycogenInLiver_ (mg/kg/min) 4.5 6.75

glycogenToGlucoseInLiver_ (mg/kg/min) 0.9 1.25

gngLiver_ (mg/kg/min) 0.16 0.38

gngKidneys_ (mg/kg/min) 0.16 0.38

https://doi.org/10.1371/journal.pone.0209725.t003
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• The baseGlucoseLevel_ and highGlucoseLevel_ values were set to the reported values for the

fasting and the peak BGL [54].

• The peakInsulinLevel_ values were set according to the reported peak plasma insulin levels

[54].

• The average glycogen breakdown flux in the Liver (glycogenToGlucoseInLiver_) values was

set to achieve a good match with the reported values for the post-absorptive glycogen break-

down flux and the total glycogen breakdown in the liver during the post-prandial phase.

Table 4. Normal Subjects: Key measurements from Woerle Et Al. [54] and corresponding results from 30 simulations with different seeds. “Before Breakfast” Simula-

tion Results Were Observed at 9.59AM. All Values Expressed as Mean ± Std Error.

Woerle et al. [54] Simulations

Before Breakfast

BGL 4.7 ± 0.1 mM (84.6 ± 1.8 mg/dl) 91.937 ± 0.010 mg/dl

Glycogen Breakdown 5.5 ± 0.6μmol/kg/min (88.1 ± 9.6 mg/min) 80.064 ± 0.171 mg/min

Gluconeogenesis 2.6 ± 0.2μmol/kg/min (41.6 ± 3.2 mg/min) 41.720 ± 0.053 mg/min

90 Minutes After Breakfast

Plasma Insulin 290 ± 29 pM 0.993 ± 0.001

Glycogen Breakdown 1.3 ± 0.6μmol/kg/min (20.8 ± 9.6 mg/min) 0 mg/min

Gluconeogenesis 2.6 ± 0.2μmol/kg/min (41.6 ± 3.2 mg/min) 41.824 ± 0.051 mg/min

Peak Post-prandial BGL 8 mM (144 mg/dl) 144.826 ± 0.046 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast

Gluconeogenesis 15.3 ± 1.2 g 15.041 ± 0.001 g

Glycogen Breakdown 4.3 ± 1.7 g 16.241 ± 0.002 g

Glucose Excretion in Urine 0.7 ± 0.4 g 0 g

Oxidation 45.6 ± 2.6 g 47.055 ± 0.008 g

Glycolysis 21.5 ± 2.2 g 22.614 ± 0.002 g

Glycogen Storage 40.6 ± 3.6 g 45.616 ± 0.008 g

https://doi.org/10.1371/journal.pone.0209725.t004

Table 5. Subjects with Type 2 Diabetes: Key measurements from Woerle Et Al. [54] and corresponding results from 30 simulations with different seeds. “Before

Breakfast” Simulation Results Were Observed at 9.59AM. All Values Expressed as Mean ± Std Error.

Woerle et al. [54] Simulations

Before Breakfast

BGL 11.7 ± 0.6 mM (210.6 ± 10.8 mg/dl) 219.820 ± 0.063 mg/dl

Glycogen Breakdown 7.0 ± 0.4μmol/kg/min (117.2 ± 6.7 mg/min) 116.089 ± 0.183 mg/min

Gluconeogenesis 3.8 ± 0.3μmol/kg/min (63.6 ± 5 mg/min) 64.092 ± 0.078 mg/min

90 Minutes After Breakfast

Plasma Insulin 179 ± 19 pM 0.6 ± 0.000

Glycogen Breakdown 3.8 ± 0.7μmol/kg/min (63.6 ± 11.7 mg/min) 0 mg/min

Gluconeogenesis 3.8 ± 0.3μmol/kg/min (63.6 ± 5 mg/min) 64.127 ± 0.084 mg/min

Peak Post-prandial BGL 20 mM (360 mg/dl) 363.064 ± 0.076 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast

Gluconeogenesis 26.9 ± 2.2 g 23.069 ± 0.001 g

Glycogen Breakdown 10.1 ± 1.2 g 22.648 ± 0.006 g

Glucose Excretion in Urine 17.4 ± 2.7 g 16.750 ± 0.007 g

Oxidation 32.8 ± 2.8 g 35.039 ± 0.001 g

Glycolysis 28.7 ± 2.2 g 31.386 ± 0.010 g

Glycogen Storage 46.3 ± 3.3 g 46.514 ± 0.007 g

https://doi.org/10.1371/journal.pone.0209725.t005
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Each simulation ran for 18 hours of simulated time: from 12am in midnight till 6pm in the

next evening with one meal (consisting of 84 g of glucose, 10 g of fat and 26 g of protein) intake

event happening at 10am. There were no other events during the simulated time and the simu-

lated subject was already in the post-absorptive state when the simulation started at 12am.

Fig 1 shows the minute-by-minute values of interest in two simulations with a particular

seed value (for random number generation): one for the normal subject and the other for the

T2D subject. Fig 1a shows that the gastric emptying is complete within 45 minutes of meal

intake. The fat contents of the meal was responsible for some of the delay in gastric emptying.

Fig 1b shows the rapid digestion of glucose as it arrives in the Intestine and Fig 1c shows the

appearance of digested glucose in the PortalVein as described in Section IV-D. Fig 1d shows

the change in BGL throughout the post-prandial phase starting from the post-absorptive levels

before 10am.

Post-Absorptive Phase: During the post-absorptive phase (before 10am), the insulinLevel
(Fig 1e) is low enough to ensure that the glucose production via glycogen breakdown in the

Liver (Fig 1g) takes place at the peak level, there is no glycogen synthesis in the Liver (Fig 1f)

and glucose consumption via oxidation (Fig 1j) & glycolysis (Fig 1i) in various organs is at

their minimum levels. Gluconeogenesis (Fig 1h) takes place in the Liver and the Kidneys, unaf-

fected by the insulinLevel (as reported in [54]), at the configured rates specified in [54] and

provides the second source of glucose during the post-absorptive phase. While the minimum

glucose oxidation flux is largely determined by the needs of the Brain and Heart, the config-

ured values for the minimum glycolysis flux are chosen so that total glucose consumption dur-

ing the post-absorptive phase matches the glucose production during this phase. Accordingly,

the glycolysisMinImpact_ parameter was set to value 4.0 in simulations for the T2D subject and

hence the glycolysis flux for the T2D subject during the post-absorptive phase is much higher

than that for the normal subject (Fig 1i). Thus, during the post-absorptive phase, total glucose

production (glycogen breakdown + gluconeogenesis) is matched closely by the total glucose

consumption (oxidation + glycolysis + excretion in urine) and the BGL stabilizes to a value

near the baseGlucoseLevel_. Since the glycogen breakdown in Liver is configured to rapidly

slow down with increase in the insulinLevel, any temporary mismatch between glucose pro-

duction and consumption is quickly corrected.

Post-Prandial Phase: The post-prandial phase in these simulations begins with the meal

intake at 10am. The BGL begins to rise (as shown in Fig 1d) with the arrival of the digested glu-

cose in the PortalVein. Increase in the BGL causes the insulinLevel to increase (Fig 1e) which

rapidly brings glycogen breakdown in the Liver to a halt (Fig 1g). However, the influx of

digested glucose (� 700 mg/minute at peak) is more than sufficient to compensate for the halt

in glycogen breakdown (peak value� 120 and 80 mg/minute for T2D and normal subjects

respectively) and the BGL (and hence the insulinLevel) continues to rise. Glucose production

via gluconeogenesis (Fig 1h) continues as before unaffected by the increase in the insulinLevel
(as reported in [54]). In the simulation for the normal subject, increase in the insulinLevel
causes a proportional increase in the GLUT4 activation and hence in the glucose absorption

by Muscles (Fig 1l). The glucose absorbed by the Muscles is consumed via glycolysis and oxida-

tion. Since the glycogen stores in the Muscles are already full, none of the absorbed glucose is

stored as glycogen in the Muscles. Increased oxidation flux seen in Fig 1j between 10am and

1pm in the normal subject is mainly due to the increased glucose oxidation in the Muscles.
Impaired GLUT4 activation in the T2D subject (caused by glut4Impact_ value 0.25) means

that the diabetic Muscles are not able to absorb as much glucose as the normal Muscles (Fig 1l).

Also, almost all of the glucose absorbed by the diabetic Muscles is consumed via glycolysis

(since the oxidation flux shown in Fig 1j does not show any rise in the post-prandial phase for

the T2D subject). This is because of the much higher value of the minimum glycolysis flux in
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Fig 1. Simulating a meal event for a normal and a subject with Type 2 Diabetes (T2D): Minute-by-minute values of interest In

simulations with a particular seed for random number generation. (a): Gastric Emptying (mg/minute). (b): Carbohydrate Digestion in

Intestine (mg/minute). (c): Appearance of Digested Glucose in PortalVein (mg/min). (d): Blood Glucose Level (mg/dl). (e): Insulin Level. (f):

Liver Glycogen Synthesis. (g): Liver Glycogen Breakdown. (h): Total Gluconeogenesis in Liver and Kidneys. (i): Total Glycolysis in All Organs.

(j): Total Glucose Oxidation in All Organs. (k): Glucose Excretion in Urine. (l): Glucose Absorption in Muscles.

https://doi.org/10.1371/journal.pone.0209725.g001
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the T2D subject than for the normal subject (caused by the glycolysisMinImpact_ parameter

having value 4.0 for the T2D subject and 1.0 for the normal subject). Increase in the insulinLe-
vel causes glycolysis flux to increase in other organs too (Fig 1i). The peak glycolysis flux for

the T2D subject is configured to be higher than that for the normal subject (by setting glycoly-
sisMaxImpact_ to 1.25 for the T2D subject) so as to achieve a close match with reported results

in [54] for the total glycolysis flux during the post-prandial phase assumed to be between 10am

and 4pm (see Table 5). As the BGL approaches the highGlucoseLevel_ (and insulinLevel
approaches the peakInsulinLevel_), glycogen synthesis in the Liver starts and quickly ramps up

to its peak level (see Fig 1f) thereby significantly slowing down any further increase in BGL.

Note that the total glycogen storage during the post-prandial phase as reported in [54] (and

shown in Tables 4 and 5) is higher for the T2D subjects than for the normal subjects even

though the T2D subjects have much smaller peak insulin levels. As described in Section 3.6,

the insulinLevel has a big impact on glycogen synthesis in the Liver. In order to compensate for

lower insulin levels in the T2D subjects, the glucoseToGlycogenInLiver_ parameter in the simu-

lations is assigned a much higher value for the T2D subject than for the normal subject (6.75

mg/kg/min versus 4.5 mg/kg/min). For the T2D subject, a significant amount of glucose is also

lost via excretion in urine (see Fig 1k). Thus, BGL stays around the highGlucoseLevel_ as long

as the digested glucose is appearing in the PortalVein at the peak rate. As the digested glucose

appearance in the PortalVein slows down, the BGL begins to drop and the glycogen synthesis

in the Liver quickly comes to a halt thereby slowing down the rate at which the BGL falls.

Decrease in BGL also causes decrease in the glycolysis flux, the glucose absorption by the Mus-
cles and the glucose excretion in the urine, which further slows down the rate of BGL decrease.

As BGL approaches the baseGlucoseLevel_, the glycogen breakdown in the Liver quickly ramps

up to prevent any further decrease in the BGL and another post-absorptive phase begins.

Comparison with Measurements fromWoerle et al. [54]: Tables 4 and 5 show the key mea-

surements from [54] for normal and T2D subjects respectively along with the corresponding

results from the simulations. The simulations were configured to use the post-absorptive

(peak) glycogen breakdown and gluconeogenesis flux values reported in [54]. With appropri-

ate settings for other configurable parameters (Table 3), the post-absorptive BGLs in the simu-

lations were close to the values reported in [54] for both normal and T2D subjects. The

simulations were configured to ensure that the insulinLevel does not have any impact on gluco-

neogenesis flux (as reported in [54]). Accordingly, the gluconeogenesis flux in simulations 90

minutes after the breakfast was same as that before the breakfast matching the numbers

reported in [54]. The glycogen breakdown 90 minutes after the breakfast was still substantial

in [54] but had completely halted in the simulations. Overall, the peak post-prandial BGLs in

simulations matched the ones reported in [54]. Total glucose produced/consumed along vari-

ous pathways in the simulations for the normal subject during 6 hours after the breakfast was

similar to values reported in [54]. The only exception was glycogen breakdown. It is clear from

Fig 1 that the post-prandial phase in simulations was over by 1pm and hence glycogen break-

down happened at the peak level between 1pm and 4pm (Fig 1g). Apparently, this was not the

case during measurements reported in [54] and the average glycogen breakdown flux during 6

hours after the breakfast was quite low. This combined with the fact that the glycogen break-

down was still substantial 90 minutes after the breakfast (when insulin levels were at their

peak) means that glycogen breakdown process is relatively slow in reacting to the insulin levels.

We observed a similar mismatch between the simulation results for the T2D subject and the

values reported in [54] for total glycogen breakdown during 6 hours after the breakfast. Also,

for the T2D subjects, [54] reported somewhat higher total gluconeogenesis flux during 6 hours

after the breakfast (26.9±2.2 g) than what we observed in the simulations (23.069±0.001 g).

Since gluconeogenesis flux in the simulation had same values during both post-prandial and
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post-absorptive phase, higher total flux reported in [54] means that gluconeogenesis flux actu-

ally increased during the post-prandial phase (perhaps due to higher availability of gluconeo-

genesis substrates). The simulator currently does not support increase in gluconeogenesis flux

due to increased availability of substrates. Other results for T2D subjects in [54] were quite

similar to what we observed in the simulations. Overall, it can be said that the simulation

results closely matched those reported in [54] for both normal and T2D subjects.

6 Validation of CarbMetSim for an exercise event

Carbohydrate metabolism during and after an exercise event has been extensively studied for

both normal and diabetic subjects [50, 67, 72–75]. As described in Section 4.8, glucose oxidation

plays a major role in meeting energy needs during physical exercise. The exercising muscles get

the glucose they need by breaking down locally stored glycogen and by absorbing glucose from

the bloodstream. The glucose absorption from the bloodstream does not depend on the insulin

levels since the physical exercise itself is sufficient to activate GLUT4 transporters [48–50].

In case of normal people, physical exercise inhibits insulin secretion [43, 44–47] and pro-

motes secretion of other hormones such as glucogon [43, 46, 47, 76]. These changes allow the

liver to break sufficient glycogen to meet the increased glucose needs. So, as long as glycogen is

available in the liver and in the exercising muscles, the glucose production via glycogenolysis

(in the liver and the exercising muscles) and gluconeogenesis (in the liver and kidneys) gener-

ally matches the glucose consumption by exercising muscles (and other organs) and the blood

glucose level stays in the normal range [50, 67]. The blood glucose level will drop once the

glycogen stores have been exhausted and gluconeogenesis alone is not sufficient to match the

glucose consumption by the exercising muscles. In case of people with Type 2 Diabetes or

insulin-treated Type 1 Diabetes, physical exercise fails to sufficiently reduce insulin level in the

blood and as a result the glycogen breakdown in the liver may not be sufficient to meet the

additional glucose needs [77]. Thus, the blood glucose level may drop significantly during

physical exercise. Finally, people with Type 1 Diabetes with too little insulin in their system

may experience an increase in BGL (which was already high before the exercise) when they

indulge in physical exercise. This may happen because the secretion of glucagon and other

hormones during exercise increases glucose production via glycogen breakdown in the liver to

a rate much higher than the impaired rate at which the exercising muscles absorb glucose in

some people with Type 1 Diabetes [50, 78, 79, 67].

In order to demonstrate CarbMetSim’s ability to simulate the impact of aerobic physical

exercise, we report in this section the simulations where normal male subjects perform a long

aerobic exercise following an overnight fast. These simulations replicate the experiments

reported in [51] and [80]. Ahlborg and Felig [51] observed 20 normal male subjects as they

performed a leg exercise at intensity 58%VO2max for 3 to 3.5 hours after a 12 to 14 hour over-

night fast. In a later study, Ahlborg et. al. [80] observed 12 normal male subjects as they per-

formed a leg/arm exercise at intensity 30%VO2max for 2 hours after a 12 to 14 hour overnight

fast. The characteristics of these subjects are shown in Table 6. For each subject, the concentra-

tions in the blood were recorded for a number of substrates and hormones including glucose.

The relevant BGL data reported in [51] and [80] is shown in Table 7 and Fig 2. In the following

subsections, we interpret each set of BGL data and demonstrate that with proper configuration

CarbMetSim can be made to replicate each pattern.

6.1 Exercise at intensity 58% VO2max
In the case of experiments involving physical exercise at intensity 58% VO2max, Table 7 and

Fig 2 show that there is a continuous drop in the BGL as the exercise progresses. The BGL
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approaches hypoglycemic levels towards the end of the exercise. Also, there is only a modest

recovery from hypoglycemic BGL once the exercise concludes. These observations, coupled

with the fact that the exercise began after a long fast, indicate that the liver glycogen was

exhausted some time after the start of the exercise and that the local glycogen and the gluco-

neogenesis were the only sources of glucose for the exercising muscles. The BGL dropped con-

tinuously because the gluconeogenesis alone was not sufficient to compensate for the

absorption of glucose from the blood by the exercising muscles. After the completion of the

exercise, gluconeogenesis continues to be the only source of glucose and is insufficient to bring

the BGL to pre-exercise level.

We generated 20 age and weight value pairs for normal male subjects to simulate using the

average and standard error values specified in [51] (see Table 6) and simulated the described

experiment on these subjects. Each simulation started at simulated time 12am and had the sub-

ject perform a 210 minute long exercise (at intensity 58%VO2max) starting at 12pm. Each sim-

ulation ended at simulated time 5pm and used the same seed value for the random number

generation. We adjusted the simulation parameters so as to cause the liver glycogen exhaustion

early on in the exercise and thus match the BGL trends reported in [51]. The simulation

Table 6. Characteristics of subjects reported in [51] and [80].

Average Standard Error Range

20 Subjects Doing Leg Exercise at 58% VO2max [51]

Age (years) 26 0.7 20-31

Weight(Kg) 71 1.6 57-82

Height(cm) 182 1.4 169-187

VO2max(liters/min) 3.8 .13 2.6-4.8

6 Subjects Doing Arm Exercise at 30% VO2max [80]

Age (years) 27 1 24-29

Weight(Kg) 80 6 61-100

Height(cm) 186 4 171-198

VO2max(liters/min) 4.1 .3 3.3-4.8

6 Subjects Doing Leg Exercise at 30% VO2max [80]

Age (years) 27 2 19-31

Weight(Kg) 74 4 62-93

Height(cm) 181 3 170-194

VO2max(liters/min) 3.9 .2 3.3-4.8

https://doi.org/10.1371/journal.pone.0209725.t006

Table 7. BGL measurements reported in [51] and [80].

Blood Glucose Level (mmol/l): Average ± Standard Error

Leg Exercise at 58%VO2max [51] Arm Exercise at 30%VO2max [80] Leg Exercise at 30%VO2max [80]

Rest 4.39±0.08 4.00±0.11 4.33±0.09

Exercise:40min 4.09±0.10 4.01±0.31 4.28±0.10

Exercise:90min 3.86±0.28 4.06±0.20 4.07±0.16

Exercise:120min 3.55±0.11 3.98±0.23 3.81±0.15

Exercise:180min 2.78±0.13

Exercise:210min 2.56±0.13

Recovery:10min 3.12±0.13 3.96±0.31 4.06±0.25

Recovery:20min 3.19±0.13 3.76±0.29 4.11±0.25

Recovery:40min 3.18±0.10 3.83±0.25 4.13±0.21

https://doi.org/10.1371/journal.pone.0209725.t007
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parameters (that differed from the default values) for the simulated subjects are shown in

Table 8. In each simulation, the initial glycogen store in the Liver was set to 60 grams so that

very little glycogen was left in the Liver by the time the exercise event began at 12pm. The

gngImpact_ parameter was set to values between 13.2 and 15.5 so as to appropriately limit the

glucose production via gluconeogenesis during the exercise event.

Fig 2. Average BGL measurements (After Conversion to mg/dl) reported in [51] and [80].

https://doi.org/10.1371/journal.pone.0209725.g002

Table 8. Configuration parameters for simulations for a single exercise event at intensity 58% VO2max.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

age_ (years) 23 26 26 30 22 25 26 24 24 22 20 23 31 26 26 30 21 29 25 26

gender_ (0 = Male) 0

fitnessLevel_ (%ile) 50

bodyWeight (kg) 57 63 59 78 60 71 75 76 72 64 74 82 71 62 64 70 78 65 65 74

minGlucoseLevel_ (mg/dl) 40

baseGlucoseLevel_ (mg/dl) 79

highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001

peakInsulinLevel_ 1.0

gngImpact_ 15.5 15.1 15.35 13.2 15.35 14.75 14.5 14.5 14.7 15.1 14.55 14.3 13.5 15.25 15.1 13.5 14.35 15 15 14.6

Initial Liver Glycogen (g) 60.0

https://doi.org/10.1371/journal.pone.0209725.t008
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Fig 3 shows the results of CarbMetSim simulations replicating the physical exercise event at

intensity 58% VO2max as reported in [51]. The BGL values for each simulated subject, along

with the average BGL values reported in [51], are shown in Fig 3a. As this figure shows, the

BGLs in the simulations have a close match with the measurements reported in [51]. For all

subjects, the BGL hovered around its pre-exercise level for some time once the exercise began

and then dropped continuously throughout the exercise duration with final values being in the

hypoglycemic range. After the conclusion of the exercise activity, the BGL recovered but failed

to reach its pre-exercise level.

Fig 3b shows the amount of glycogen left in the Liver for a particular simulated subject. As

mentioned before, the initial amount of glycogen in the Liver was set so that all this glycogen

would be exhausted in the early stages of the exercise activity. As is clear from Fig 3b, all the

glycogen in the Liver was exhausted by 1pm after which the gluconeogenesis was the only

source of glucose for this particular subject. Fig 3c and 3d show the glycogen breakdown flux

in the Liver and the combined gluconeogenesis flux in the Liver and Kidneys for this particular

Fig 3. Results of simulations replicating a physical exercise event at intensity 58% VO2max as reported in [51]. (a): Green: BGL for 20 simulated

subjects; Red: average BGL reported in [51]. (b): Liver glycogen for the subject # 1. (c): Liver glycogen breakdown for the subject # 1. (d): Total

gluconeogenesis in Liver and Kidneys for the subject # 1.

https://doi.org/10.1371/journal.pone.0209725.g003
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subject. Note that the glycogen breakdown flux and the gluconeogenesis flux fluctuated

between high and low values once the exercise began (and before the Liver glycogen was

exhausted). This behavior is in accordance with the manner in which the insulinLevel varies

(Section 3.2) and the manner in which the glycogen breakdown in the Liver (Section 3.6) and

gluconeogenesis in the Liver and Kidneys (Section 3.5) react to the insulinLevel. As described

in Section 3.2, when the BGL falls below the baseGlucoseLevel_, the insulinLevel becomes zero

if the body is engaged in an exercise at an intensity higher than the intensityPeakGlucoseProd_
(default value 20% VO2max). Since the exercise intensity (58% VO2max) was indeed higher

than the intensityPeakGlucoseProd_, the insulinLevel fell to zero whenever the BGL fell below

the baseGlucoseLevel_. This caused both glycogen breakdown in the Liver and gluconeogenesis

in the Liver and Kidneys to proceed at the highest levels. When the BGL exceeded the baseGlu-
coseLevel_, the insulinLevel exceeded the baseInsulinLevel_ and the glycogen breakdown & glu-

coneogenesis fluxes dropped down to the regular levels.

Once the liver glycogen was exhausted, the gluconeogenesis alone (even when occurring at

the highest level) was not sufficient to push BGL above the baseGlucoseLevel_ and hence the

insulinLevel stayed at zero level for rest of the exercise duration and the gluconeogenesis con-

tinued to occur at its highest level as the only source of glucose for the blood. Once the exercise

was over, the insulinLevel increased to a positive value below baseInsulinLevel_ (as per the

rules described in Section 3.2) and in response the gluconeogenesis flux assumed a value

between the regular and the highest levels (as per the rules described in Section 3.5). Gluconeo-

genesis at this level allowed the BGL to climb up from the hypoglycemic range to a level below

the baseGlucoseLevel_.

6.2 Arm exercise at intensity 30% VO2max
In the case of experiments involving an arm exercise at intensity 30% VO2max, it is clear from

Table 7 and Fig 2 that the BGL largely maintains its pre-exercise level during the entire exercise

duration (although there is a small drop in the BGL during the recovery phase). These observa-

tions indicate that the liver glycogen was not exhausted during the exercise and that the break-

down of liver glycogen and gluconeogenesis together were sufficient to meet the needs of the

exercising muscles. Once the exercise was over, the liver glycogen breakdown and gluconeo-

genesis returned to their pre-exercise levels and accordingly the BGL also returned to its pre-

exercise level.

We generated 6 age and weight value pairs for normal male subjects to simulate using the

average and standard error values specified in [80] for the arm exercise experiments (see

Table 6) and simulated the described experiment on these subjects. CarbMetSim does not cur-

rently distinguish between different muscles and hence the arm exercise was simulated as a

regular exercise. Each simulation started at 12am and had the subject perform a 120 minute

long exercise (at intensity 30% VO2max) starting at 12pm. Each simulation ended at 5pm and

used the same seed value for the random number generation. The simulation parameters (that

differed from the default values) for the simulated subjects are shown in Table 9. In each simu-

lation, the initial glycogen store in the Liver was set to 100 grams so that the liver glycogen

does not get exhausted during the exercise. The gngImpact_ parameter was set to value 15.0 so

that the glucose production via gluconeogenesis can ramp up to a high enough level when

required during the exercise.

Fig 4 shows the results of CarbMetSim simulations replicating the arm exercise event at

intensity 30% VO2max as reported in [80]. The BGL values for each simulated subject, along

with the average BGL values reported in [80], are shown in Fig 4a. As this figure shows, the
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Table 9. Configuration parameters for simulations for a single “arm” exercise event at intensity 30% VO2max.

Subject # 1 2 3 4 5 6

age_ (years) 24 29 28 27 27 28

gender_ (0 = Male) 0

fitnessLevel_ (%ile) 50

bodyWeight (kg) 61 100 97 62 88 87

minGlucoseLevel_ (mg/dl) 40

baseGlucoseLevel_ (mg/dl) 72

highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001

peakInsulinLevel_ 1.0

gngImpact_ 15.0

Initial Liver Glycogen (g) 100.0

https://doi.org/10.1371/journal.pone.0209725.t009

Fig 4. Results of simulations replicating a physical exercise event involving arms at intensity 30% VO2max as reported in [80]. (a): Green: BGL for

6 simulated subjects; Red: average BGL reported in [80]. (b): Liver glycogen for the subject # 1. (c): Liver glycogen breakdown for the subject # 1. (d):

Total gluconeogenesis in Liver and Kidneys for the subject # 1.

https://doi.org/10.1371/journal.pone.0209725.g004
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BGLs in the simulations have a close match with the measurements reported in [80]. For all

subjects, the BGL hovered around its pre-exercise level throughout the exercise duration and

then went back to the pre-exercise level. Fig 4b shows the amount of glycogen left in the Liver
for a particular simulated subject. As desired, the liver glycogen did not get exhausted during

the exercise and in the recovery phase. Fig 4c and 4d show the glycogen breakdown flux in the

Liver and the combined gluconeogenesis flux in the Liver and Kidneys for this particular sub-

ject. As was the case with the 58% VO2max simulations reported in the previous section, the

glycogen breakdown flux and the gluconeogenesis flux fluctuated between high and low values

once the exercise began. The explanation for this behavior was provided in the previous sec-

tion. These oscillations explain the BGL oscillations throughout the exercise duration. Once

the exercise was over, the insulinLevel increased to the baseInsulinLevel_ (as per the rules

described in Section 3.2) and in response the liver glycogen breakdown and gluconeogenesis

fluxes (and hence the BGL) assumed their pre-exercise levels.

6.3 Leg exercise at intensity 30% VO2max
Finally, we have the experiments involving a leg exercise at intensity 30%VO2max. In these

experiments, the BGL dropped modestly during the exercise and then seemed to climb back to

the pre-exercise level (see Table 7 and Fig 2). The fact that the post-exercise BGL approached

pre-exercise level indicates that the liver glycogen was not exhausted during the exercise or in

the recovery phase. However, the fact that the BGL dropped modestly throughout the exercise

indicates that glucose production during exercise (via liver glycogen breakdown and gluconeo-

genesis) was a little less than the amount absorbed from the blood by the exercising muscles.

Clearly, in these experiments, the physical exercise was not able to stimulate liver glycogen

breakdown and gluconeogenesis sufficiently so that their combined glucose production could

match the demands of the exercising muscles.

We generated 6 age and weight value pairs for normal male subjects to simulate using the

average and standard error values specified in [80] for the leg exercise experiments (see

Table 6) and simulated the described experiment on these subjects. As mentioned before,

CarbMetSim does not currently distinguish between different muscles and hence the leg exer-

cise was simulated as a regular exercise. Each simulation started at 12am and had the subject

perform a 120 minute long exercise (at intensity 30%VO2max) starting at 12pm. Each simula-

tion ended at 5pm and used the same seed value for the random number generation. In these

simulations, we wanted to precisely control the glucose production via liver glycogen break-

down and gluconeogenesis during exercise. The total glucose production during exercise had

to be just a little less than what the exercising muscles were absorbing from the blood. To

achieve this end, we reduced the liverGlycogenBreakdownImpact_ (that controls the liver gly-

cogen breakdown during exercise; see Sections 3.6 and 3.2) to value 1.0 (i.e. no extra glycogen

breakdown in the Liver during the exercise) while increasing the glycogenToGlucoseInLiver_
parameter (that controls the regular glycogen breakdown in the Liver) value appropriately.

The gngImpact_ parameter (that controls the gluconeogenesis flux during exercise; see Sec-

tions 3.5 and 3.2) was also set appropriately to limit glucose production via gluconeogenesis

during exercise. All simulation parameters (that differed from the default values) for the simu-

lated subjects are shown in Table 10. In each simulation, the initial glycogen store in the Liver
was set to 100 grams so that the liver glycogen would not be exhausted during the exercise or

the recovery phase.

Fig 5 shows the results of CarbMetSim simulations replicating the leg exercise event at

intensity 30% VO2max as reported in [80]. The BGL values for each simulated subject, along
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with the average BGL values reported in [80], are shown in Fig 5a. As this figure shows, the

BGLs in the simulations have a reasonably good match with the measurements reported in

[80]. As desired, for all subjects, the BGL dropped modestly during the exercise duration and

then went back to the pre-exercise level. Fig 5b shows the amount of glycogen left in the Liver
for a particular simulated subject and Fig 5c shows the glycogen breakdown flux in the Liver
for this subject. As desired, the liver glycogen flux did not increase during the exercise. Fig 5d

shows the combined gluconeogenesis flux in the Liver and Kidneys for this particular subject.

Since the BGL was always below the baseGlucoseLevel_ throughout the exercise duration and

the exercise intensity was greater than intensityPeakGlucoseProd_, the insulinLevel was zero

throughout the exercise duration and hence the gluconeogenesis took place at its highest level

throughout the exercise duration. However, the zero value of the insulinLevel was not able to

stimulate liver glycogen breakdown because the liverGlycogenBreakdownImpact_ was set to

value 1. The combined glucose production via gluconeogenesis and liver glycogen breakdown

was just below the glucose absorbed from the blood by the exercising muscles and hence the

BGL dropped modestly throughout the exercise duration as desired. Once the exercise was

over, the insulinLevel increased to the baseInsulinLevel_ and in response the gluconeogenesis

flux (and hence the BGL) assumed their pre-exercise level.

7 Conclusion

This paper described CarbMetSim, a discrete event simulator that models the carbohydrate

metabolism in human beings and predicts a subject’s BGL in response to a timed sequence of

diet and exercise activities. The paper also presented a preliminary validation of CarbMetSim’s

behavior in response to single meal and exercise events where the simulator’s predictions were

compared against the group-level averages reported in the published literature. The simulator

needs significant additional validation against continuous blood glucose data of individuals
representing different demographic groups, different types & levels of Diabetes and different

lifestyles before it may be considered ready for use in diabetes self-management and research-

related applications. Besides more elaborate validation, our future work on CarbMetSim will

include expanding its functionality to correct its current limitations identified towards the end

of Section 1. With all this additional work, CarbMetSim will reach a stage where it can be

immensely useful as the underlying engine for a variety of diabetes self-management and

Table 10. Configuration parameters for simulations for a single “leg” exercise event at intensity 30% VO2max.

Subject # 1 2 3 4 5 6

age_ (years) 20 31 22 29 30 25

gender_ (0 = Male) 0

fitnessLevel_ (%ile) 50

bodyWeight (kg) 62 93 68 70 82 71

minGlucoseLevel_ (mg/dl) 40

baseGlucoseLevel_ (mg/dl) 78

highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001

peakInsulinLevel_ 1.0

gngImpact_ 6.2 5.6 6.2 6.2 5.6 6.1

Initial Liver Glycogen (g) 100.0

glycogenToGlucoseInLiver_(mg/kg/min) 1.4 0.9 1.3 1.25 1.05 1.25

liverGlycogenBreakdownImpact_ 1.0

https://doi.org/10.1371/journal.pone.0209725.t010
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educational tools. With its open source nature and ease of modification/extension, CarbMet-
Sim also has the potential to emerge as a good simulation framework for diabetes research.
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