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Autoimmunity is a common phenomenon reported in many globally relevant

infections, including malaria and COVID-19. These and other highly

inflammatory diseases have been associated with the presence of

autoantibodies. The role that these autoantibodies play during infection has

been an emerging topic of interest. The vast numbers of studies reporting a

range of autoantibodies targeting cellular antigens, such as dsDNA and lipids, but

also immune molecules, such as cytokines, during malaria, COVID-19 and other

infections, underscore the importance that autoimmunity can play during

infection. During both malaria and COVID-19, the presence of autoantibodies

has been correlated with associated pathologies such as malarial anemia and

severe COVID-19. Additionally, high levels of Atypical/Autoimmune B cells (ABCs

and atypical B cells) have been observed in both diseases. The growing literature

of autoimmune B cells, age-associated B cells and atypical B cells in Systemic

Lupus erythematosus (SLE) and other autoimmune disorders has identified

recent mechanistic and cellular targets that could explain the development of

autoantibodies during infection. These new findings establish a link between

immune responses during infection and autoimmune disorders, highlighting

shared mechanistic insights. In this review, we focus on the recent evidence of

autoantibody generation during malaria and other infectious diseases and their

potential pathological role, exploring possible mechanisms that may explain the

development of autoimmunity during infections.
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Autoantibodies during infection

Autoantibodies are well-known mediators of pathology in

autoimmune disorders, such as Systemic Lupus erythematosus

(SLE) where they cause organ inflammation and damage (1).

However, it has been less appreciated that autoimmunity is a

common phenomenon during infections, including viral, bacterial

and parasitic diseases such as HIV, tuberculosis or malaria, among

others (2, 3). Many human infections with a highly inflammatory

component, such as malaria and COVID-19, have been associated

with high levels of autoantibodies targeting various host

molecules, such nucleic acids (DNA, RNA), membrane proteins,

carbohydrates, and phospholipids (such as phosphatidylserine

(PS) (2, 3). Although infection-induced autoantibodies have

been reported for a long time, only recently a pathogenic role

during infection has been identified. For example, infection-

induced autoantibody production has been associated with

transient or post-infection pathologies, such as malarial anemia

(4–8) Intriguingly, most of these autoantibodies are present at

higher levels during acutely infected patients and drop upon

treatment or resolution of infection (2). The regulation and

roles of these autoantibodies are not completely understood.

ABCs and atypical B cells are known to expand and secrete

autoantibodies in autoimmune disorders, such as SLE (9, 10).

ABCs were largely described in mouse studies to accumulate with

age, in autoimmune disease models and during acute viral

infections and were delineated by expression of the non-classical

B cell markers CD11c and T-bet (10). On the other hand, atypical

B cells were initially described as a memory population that

accumulate in patients with HIV, tuberculosis, repeated malaria

exposures and other infections, as well as in autoimmune patients,

and were mainly characterized by the lack of expression of CD27

and CD21, but also by expression of CD11c and T-bet (11, 12).

During malaria, these atypical B cells have been implicated in

secreting autoimmune antibodies against PS, and in contributing

to malarial anemia (13, 14). ABCs and atypical B cells represent a

heterogonous population with many different development

origins, that could include both classical and non-classical

routes, such as the extrafollicular (EF) route which has been

associated with autoantibody secretion. Polyclonal activation and

relaxation of B cell tolerance during complex infectious diseases,

could account for this autoimmune phenomenon (15–17). Due to

the variable nomenclature used in the literature to describe these

cells in different settings, we will use “ABCs and atypical B cells” as

a generalized term to describe Atypical/Autoimmune/Age

associated B cells and Double Negative cells (DNs). Recently,

ABCs and atypical B cells have been implicated in the

autoimmune phenomena during infection, as they were shown

to expand and secrete autoantibodies in autoimmune disorders,

such as SLE. Concurrently, ABCs and atypical B cells have also

been reported to expand in acutely infected patients with malaria

(7, 8, 18), HIV ( (11, 19)), COVID-19 ( (20–23)) and other
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infections, as well as to accumulate in malaria-experienced

individuals with repeated seasonal exposure (Portugal et al.,

2017).In this review, we will summarize the evidence reinforcing

the relationship between autoantibodies and pathology as well as

possible mechanisms explaining its appearance. We will focus on

malaria patients but will also expand to recent evidence in

COVID-19 patients and other infections.
Pathological role of autoantibodies
during malarial anemia and
other complications

Autoantibodies during both human and mouse malaria have

been reported for decades, but until recently they had not been

functionally studied. Malaria leads to production of a range of

autoantibodies targeting all kinds of host molecules and cells, such

as the phospholipid PS (2, 24, 25). Autoantibodies targeting PS

have been directly shown to promote malarial anemia in rodent

infections with P. yoelii through binding to PS on uninfected red

blood cells (RBCs) and promoting their premature clearance (4).

In this mouse model, young RBCs (reticulocytes) were

preferentially targeted by these anti-PS antibodies, prolonging

anemia recovery. These findings were validated in P. falciparum-

infected patients which showed an inverse correlation between

anti-PS antibodies and hemoglobin levels in different cohorts,

including French travelers with post malarial anemia (4), acutely

infected German travelers (7) and Ugandan pediatric patients

with complicated P. falciparum malaria (6). Additionally, anti-PS

antibodies were also corelated with anemia in a cohort of

Colombian patients suffering from either P. falciparum or P.

vivax malaria (Rivera-Correa et al., 2020), highlighting the

presence of this correlation in different cohorts around

the world. Lastly, these results were also expanded to four of the

human Plasmodium species as evidenced by a study in Malaysia

showing significant levels of anti-PS antibodies in P. vivax, P.

falciparum, P. malariae and P. knowlesimalaria (5). In this cohort,

anti-PS were associated with early anemia in P. vivax and P.

falciparum-infected patients. In addition to anti-PS antibodies, P.

vivax-malarial anemia has also been correlated with other

autoantibodies targeting RBC surface proteins such as spectrin

and band 3 in a Brazilian cohort (26, 27). Altogether, these studies

show the strong relationship of anti-PS and other autoantibodies

with malarial anemia in different human malaria cohorts around

the world.

In addition to anemia, autoantibodies have been hypothesized

to promote other malaria-associated pathologies (25). In a study

of a pediatric Ugandan cohort suffering from severe P. falciparum

malaria, anti-PS antibodies and anti-dsDNA antibodies were

associated with acute kidney-injury (AKI), post-discharge

mortality and morbidity, in addition to anemia (6). The

mechanism involved in promoting other malaria-associated
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pathologies is not well understood. Previous studies on mouse

models of malaria have linked dsDNA autoantibodies in

promoting kidney pathology through the accumulation of

immune complexes (28). Despite multiple Plasmodium species

being reported to lead to kidney pathology, the relationship

between kidney immune complex deposition and kidney

pathology has only been reported in P. malariae malaria (29).

This suggest that other non-autoantibody immune factors are

needed in addition to promote kidney pathology in other human

malarias underscoring the complexity of this phenomena (30).

Lastly, there have also been several studies reporting

autoantibodies against brain-associated antigens in patients

suffering from P. falciparum cerebral malaria, but their

pathogenic relevance remains to be determined (25). Although

the pathogenic role of autoantibodies during malaria has been

more evident, a possible protective role against infection cannot be

disregarded. Specific autoantibodies have been correlated with

protection against severe malaria (31, 32). Moreover, reports have

shown that sera from patients with autoimmune diseases can bind

to the parasite and inhibit parasite growth in vitro (33, 34). These

findings suggest that autoantibodies could have divergent roles as

both protective and pathogenic during malarial infection. These

divergent roles have been comprehensibly reviewed in previous

publications (2, 24, 25).
Possible mechanisms leading
to autoantibody production
during malaria

The generation of autoimmunity involves a complex mix of

genetic and environmental factors that are not well understood

in autoimmune disorders and much less in infection. Epitope

spreading, bystander activation, molecular mimicry, and cryptic

epitopes are particular phenomena that explain the generation of

specific autoantibodies during some infections, however, they do

not seem to explain the broad variety of self-antigen targets

observed in complex infections such as malaria (2) and COVID-

19. To add to this complexity, malaria parasites are eukaryotic

parasites that share many similar antigenic targets, such as PS

and dsDNA, that could target both the parasite and the host cells

equally. Additionally, hemolysis during malaria and other

infections, exposes many host antigens, such as PS, that can

activate the immune system and activate polyclonal B cell

responses (35).

Autoantibodies are secreted by autoreactive B cells that get

activated by a combination of specific signals that do not normally

occur in non-pathogenic immune responses. A body of research,

mainly in the SLE field, has described a specific B cell subset that is

expanded and is able to secrete autoantibodies during

autoimmune disorders called Age/Autoimmune B cells (ABCs

and atypical B cells) in mice and a similar population called
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Double Negative B cells (DNs) in humans (9, 17). A similar

population has been reported to be expanded during malaria (11)

and in highly inflammatory infections such as HIV, tuberculosis

and COVID-19. These cells differ from other B cell populations in

the expression of characteristic markers such as low classical

memory B cell markers CD21 and CD27, high expression of

transcription factor T-bet and integrin CD11c as well as surface

expression of FcRL5. Additionally, these cells have been reported

to express chemokine receptors such as CXCR3 and other

markers. A summary of the nomenclature and markers

described for this population has been summarized in previous

reviews (36, 37). Further evidence that ABCs and atypical B cells

generated during infection and autoimmune disorders are closely

related comes from scRNAseq analysis of these cells in malaria

patients, which share similar transcriptional profiles with HIV

patients, but also with patients from different autoimmune

disorders (SLE, rheumatoid arthritis or common variable

immunodeficiency), suggesting they share common drivers of

expansion and function (38).

During malaria, studies have reported the refractoriness of

human atypical B cells to secrete antibodies in vitro and reduced B

cell receptor (BCR) signaling in response to soluble antigens (18),

but atypical B cells were responsive to membrane-bound antigens

(39). Additionally, indirect evidence implicates that atypical B cells

secrete anti-malaria antibodies, suggesting divergent roles for

these cells during malaria (36, 40).

Accordingly, a recent study reported the presence of malaria-

specific atypical B cells and found that atypical B cells could

secrete antibodies with T cell help (41). Lastly, atypical B cells

proliferate in response to malaria, but also to vaccination,

indicating that they are part of a wider alternative lineage of B

cells that is a normal component of healthy immune responses

(42). Additional studies have directly shown that ABCs and

atypical B cells secrete autoantibodies (14). Accordingly, a

report focused on studying the repertoire of ABCs and atypical

B cells in malaria-experienced individuals revealed enrichment of

VDJ gene usage associated inherently with autoreactivity (VH4-

34) (38). Altogether these data suggest that ABCs and atypical B

cells could be major secretors of pathogenic autoantibodies, such

as anti-PS. These studies highlight the complexity of ABCs and

atypical B cells and their possibly divergent roles in both

protective and pathogenic responses during malaria (43).

Recent insights into the mechanisms leading to autoreactive B

cell generation have been elucidated in different mouse models. In

autoimmune settings, the integration of primarily three signals are

needed to generate ABCs and atypical B cells: BCR signaling,

specific type 1 cytokines (IL-21 and/or IFNg) and nucleic acid

sensing toll-like receptors (TLR7 and TLR9) (9, 10, 44). During

malaria, the integration of BCR signaling, IFNg and TLR9 were

deemed essential for ABCs and atypical B cells expansion and

anti-PS autoimmunity during mouse P. yoelii infection (13).

Similar findings were published in P. falciparum malaria

patients, describing how IFNg and TLRs were important for
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ABCs and atypical B cells generation (11, 12, 45). A recent study

also expanded the role of IFNg in promoting an ABCs/Atypical B

cell phenotype in P. vivax patients (46). In the SLE field, the

integration of these cytokines and TLRs, have been attributed to

promote an alternative B cell differentiation pathway titled the

extrafollicular (EF) pathway (47). In contrast to the classical

germinal center (GC) pathway that gives rise to long-lived

memory B cells or plasma cells, the EF route through polyclonal

activation gives rise to short-lived plasmablasts/plasma cells (PB/

PCs) (16, 17). The EF route is considered the main route by which

DNs (analogs of ABCs and atypical B cells, named for being

CD27-IgD-) can arise and secrete autoantibodies in SLE patients.

Polyclonal B cell activation has been a hallmark during malaria

and contributes to the B cells dysfunction observed during the

disease (48). Accordingly, a study on mouse P. yoelii malaria,

revealed that hemolysis-induced PS polyclonal activation of B

cells, through PS-receptor AXL, accounted for great part of the

polyclonal responses that lead to the accumulation of short lived

PB/PCs that secrete non-specific antibodies and limit protective

humoral immunity (35). In this study, they also reported that

blocking PS exposure limits non-specific polyclonal PB/PC

expansion and reduces P. yoelii infection in mice. Moreover,

this accumulation of short-lived PB/PCs dampens the essential

GC response needed for proper anti-malarial antibody responses

(49). Additionally, the extension of time by which this polyclonal

activation of B cells is prolonged could account for reports of

sustained autoantibodies post-infection (for at least 1 month in P.

vivax and P. falciparum infections) that may contribute to

associated pathologies, such as post-malarial anemia and

increased hospital post-discharge mortality (4, 24) (6).

Altogether, these data suggest that these mechanisms, that are

possibly shared between SLE and malaria, could explain the

activation of the pathogenic autoantibody responses we see

during acute malarial infection.
Lessons from malaria applied to
COVID-19 and other infections

Other highly inflammatory infections have been associated

with generation of autoantibodies, most recently noted in the

ongoing COVID-19 pandemic (3, 50). Similar to malaria, high

levels of circulating autoantibodies have been reported in COVID-

19 patients, but surprisingly, circulating immune complexes were

not increased in these patients. The autoantibodies include similar

targets to malaria, such as PS and dsDNA (51), but also expand to

newer targets such Annexin A2 (52), that have not been studied in

malaria patients. The autoantibody repertoire seems to be broad

during COVID-19 and is not clear if it’s selected preferably against

any autoantigen although their pathogenic role has been highly

suggested by multiple studies (53, 54). The malaria-shared

autoantibodies anti-PS and anti-dsDNA have been correlated
Frontiers in Immunology 04
with severity in COVID-19-patients (51), similarly as they have

in malaria (Table 1). Autoimmune anti-Annexin A2 also

correlated with mortality (52). A study in mice, reported that a

range of anti-phospholipid antibodies could promote the

pathological coagulation defects highly associated with COVID-

19 infections (55). Moreover, the number of antibodies found

targeting immune molecules such as cytokines (ex. Type I

interferon) has been a highly reported phenomenon in severe

COVID-19 (57–59). Accordingly, malaria has also been associated

with targeting of immune components such as IFNGR2 (60),

which could distinguish malaria from bacterial blood infection in

a small cohort of Ghanese children. Furthermore, early detection

of a set of autoantibodies that included anti-IFN-a2, and five anti-

nuclear autoantibodies (ANAs) (Ro/SS-A, La/SS-B, U1-snRNP,

Jo-1, and P1) that are also commonly associated with (SLE), could

anticipate distinct patterns of the puzzling phenomenon of Post-

acute sequelae of COVID-19 (PASC) or “Long-COVID” (56).

These reports suggest pathological implications of a range of

autoantibodies in COVID-19 patients both at acute and post-

infection manifestations. The mechanisms that give rise to

autoantibodies during COVID-19 could be similar to the ones

in malaria and SLE patients (61). Various studies have reported

the expansion of ABCs and atypical B cells (20, 62), a

phenomenon that could be explained by the enhanced EF route

of B cells reported in COVID-19 patients (63). Additionally, the

“relaxation” of B cell tolerance has been suggested as an additional

mechanism promoting autoreactive B cells and autoantibody

secretion in COVID-19 patients (64).

Many other infections also lead to similar autoantibodies as

observed during malaria (2). Different anti-phospholipid

antibodies have been reported during infections of important

global pathogens such as Mycobacterium tuberculosis (65), HIV

(66) and others such as hepatitis C, cytomegalovirus, varicella

zoster, Epstein-Barr virus, adenovirus, and parvovirus B (67, 68).

Active tuberculosis has been associated with a range of

autoantibodies including with high levels of anti-cardiolipin

and other anti-phospholipid antibodies (65, 69). Additionally,

autoantibodies targeting RBC components have been reported to

increase tuberculosis susceptibility in HIV patients through

erythrophagocytosis (70), suggesting a pathogenic role for

autoantibodies in co-infection scenarios. Furthermore, anti-

phospholipid antibodies, such as anti-cardiolipin, have been

utilized as a diagnostic tool for active Treponema pallidum

infections, being one of the primary methods to diagnose

syphilis in humans (71). A similar application was recently

suggested for Lyme disease diagnosis (72). Anti-phospholipid

and anti-ganglioside autoantibodies were also reported to be

correlated in Zika virus-associated Guillain-Barré syndrome

patients from Brazil (73, 74). Moreover, autoimmunity against

PS and ABCs and Atypical B cell expansion was reported to

delay anemia recovery in mice infected with African

trypanosome Trypanosoma brucei (75). These findings were

translated to a cohort of Ugandan Human African
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trypanosomiasis (HAT) patients where anti-PS levels were

elevated in acutely infected patients. Similarly to COVID-19

and malaria, cytokines can be autoantibody targets during

different infections such as: type II IFN during infections with

intra-macrophagic microbes, IL-17A/F during mucocutaneous
Frontiers in Immunology 05
candidiasis and IL-6 during staphylococcal diseases (76). Since

the signals leading to ABCs/Atypical B cell expansion, such as

TLR ligation and IFN-g, are present in many other infections,

these cells are proposed to be a possible common source for

autoantibodies during different infections (11, 15). Altogether,
TABLE 1 Autoantigen targets for autoantibodies and their associated pathology during malaria or COVID-19. n/d, not determined.

Self-antigen Malaria Associated with Atypicals or
ABCs?

COVID-19 References

Phosphatidylserine (PS) and/or other
Phospholipids(PL)

Anemia
(P. falciparum and P.

vivax)
Acute kidney injury

(AKI)
(P. falciparum)
Mortality and
morbidity

(P. falciparum)
Complicated malaria

(P. vivax)

Yes Severity
Coagulation defects (general

aPL)

(4–8, 51, 55)

Double stranded-DNA (dsDNA) Anemia
(P. falciparum)

Acute kidney injury
(AKI)

(P. falciparum)

Yes Severity (6, 7, 51)

Red Blood Cell whole lysates or specific protein
antigens
(ex. Band 3 and Spectrin)

Anemia
(P. falciparum and P.

vivax)
Complicated malaria

(P. vivax)

Yes Severity (6–8, 25, 26)

Annexin A2 n/d n/d Severity
Mortality

(52)

Other autoantibodies Cerebral malaria n/d Severity
Mortality

Long-COVID

(3, 25, 53, 54,
56)
FIGURE 1

ABCs and atypical B cells are generated during different infections and secrete autoimmune antibodies that can contribute to pathology. ABCs and
atypical B cells generation during infections requires at least two signals: 1) the activation of TLR9 or TLR7, typically by nucleic acids derived from the
infectious agent or by host mitochondrial DNA released by neutrophil extracellular traps (NETs); 2) exposure to IFN-g and/or IL-21. Autoimmune
antibodies generated by autoimmune antibody-secreting cells (ASCs) can contribute to pathology and severe disease. Created with BioRender.com.
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these data suggest a global pathogenic role of autoantibodies

during malaria, COVID-19 and other infections with shared

auto-antigen targets and related mechanisms of pathogenesis.
Conclusions

High levels of autoantibodies are observed in many relevant

infections, such as malaria and COVID-19. Their presence

during infection has been reported extensively, but their

contribution to pathology has been a recent research focus.

The growing literature on the activation and expansion of

ABCs and atypical B cells in autoimmune disorders such as

SLE, has contributed with mechanistic insights that may be

relevant for the generation of autoantibodies during malaria,

COVID-19 and other infections.

Specifically in malaria, autoantibodies contribute to

pathogenesis through the binding of anti-PS autoantibodies to

uninfected erythrocytes, promoting malarial anemia. The

expansion of ABCs and atypical B cells and their ability to

secrete anti-PS and other autoantibodies in both mouse and

human malaria marks them as a primary candidate responsible

for the generation of autoimmunity during infection. The signals

driving ABCs and Atypical B cell expansion, such as TLR

ligation, are present in many autoimmune disorders as well as

infections, suggesting shared mechanistic pathways for

autoreactivity in scenarios as diverse as SLE, malaria and

COVID-19 (Figure 1). However, the transient aspect of

infection-induced autoantibodies and the heterogeneity of

ABCs and atypical B cells and their divergent functional roles

during malaria highlight the complexity of this phenomenon

during infection. Further studies are needed to understand the
Frontiers in Immunology 06
mechanisms by which these cells arise, explore fully their

different roles and explain their dynamics during malaria and

other infections.
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