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The protein folding rate 
and the geometry and topology 
of the native state
Jason Wang1 & Eleni Panagiotou2*

Proteins fold in 3-dimensional conformations which are important for their function. Characterizing 
the global conformation of proteins rigorously and separating secondary structure effects from 
topological effects is a challenge. New developments in applied knot theory allow to characterize 
the topological characteristics of proteins (knotted or not). By analyzing a small set of two-state and 
multi-state proteins with no knots or slipknots, our results show that 95.4% of the analyzed proteins 
have non-trivial topological characteristics, as reflected by the second Vassiliev measure, and that 
the logarithm of the experimental protein folding rate depends on both the local geometry and the 
topology of the protein’s native state.

Proteins attain a specific conformation in space, called the native state, in order to perform their biological func-
tion. The process by which a protein attains its native state is called protein folding. Even though the mechanisms 
of protein folding remain largely unknown, it is possible to measure how fast a protein folds, the protein folding 
rate. Protein folding rates span many orders of magnitude1. The topomer search model suggests that proteins 
“search” for their native state through an ensemble of possible conformations and that folding rate is determined 
by the ability of the protein to reach the topology of its native state2. This model emphasizes the importance 
of the 3-dimensional structure (also known as the tertiary structure) of the native state. It is natural therefore 
to hypothesize that the more complex a native state is, the slower its conformation will be attained, and thus, 
slower the folding rate of the protein. In this manuscript, we use rigorous tools from topology to characterize 
the complexity of the native state (in the absence of knots), and examine the role of topology and geometry on 
protein folding rates.

Many measures have been used to characterize the tertiary structure of the native state and its effect in protein 
folding3–22. One of the simplest characterizations of the native state is the number of sequence distant contacts, 
which is the number of sequence distant amino acids which are close in 3-space3. This quantity has shown one 
of the best correlations with experimental folding rates, suggesting that it captures something relevant to protein 
folding. Many studies have further explored this idea, showing that, in some cases, the N- to C- termini coupling 
is a major determinant of the protein folding rate23. However, it has been difficult to create a model of protein 
folding based on the number of sequence distant contacts alone. The number of contacts may in fact be a proxy 
for a more meaningful characteristic of a 3-dimensional conformation of a protein9.

A rigorous framework to define conformational complexity of curves is given in knot theory, which focuses 
on studying simple closed curves in 3-space (knots). Topological invariants are functions defined on closed 
curves which can classify them in different knot types24. Most efforts that aim at applying rigorous notions of 
topology to proteins, focus on identifying knots in proteins25–34. Proteins, however are not closed curves; by 
ignoring the chemical details and simply representing a protein by its CA atoms, the native state of a protein can 
be seen as an open ended polygonal curve in 3-space. Previous efforts to define knotting in proteins have relied 
on approximating the protein by a knot (or a knotoid, which is an open knot diagram)29,30,35–40. This method was 
very successful and revealed that many proteins contain knots or slipknots (a slipknotted protein is a protein 
that is best approximated by an unknot as a whole, but whose subsebsegments may be best approximated by a 
knot41), but it also showed that knotted or slipknotted proteins comprise less than 2% of analyzed proteins30. 
Using this method, the rest of the proteins, are all assigned a trivial topological characterization. However, the 
native states of the remaining proteins are not identical and their folding rates, even when comparing single 
domain two-state proteins, differ over many orders of magnitude. It is therefore necessary to find new ways to 
characterize the tertiary structure of proteins that bridge the notion of topological complexity continuously from 
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unknotted to knotted states. A measure of complexity which does not require an artificial closure of the proteins 
to measure protein complexity is the Gauss linking integral. When applied over a protein or an arc of a protein, 
it gives the Writhe or the Average Crossing Number. It can also be used to study the linking between parts of 
a protein. These measures have shown strong correlation with protein folding rate and support the hypothesis 
that a more geometrically/topologically complex native structure leads to a lower folding rate4,42,43. However, the 
Writhe and the ACN are significantly affected by the local geometry of the protein and are not strong measures 
of topological complexity.

To decouple geometry from topology of proteins and capture topological effects in both knotted and unknot-
ted proteins, with or without slipknots, we propose a new measure of the protein complexity; the second Vassiliev 
measure44. We show that the second Vassiliev measure can be applied to proteins without artificial closure of the 
chains to quantify topological complexity (including knotting). It takes a non-trivial value for most proteins and 
reflects various subtle degrees of topological complexity, varying continuously from trivial to knotted topology. In 
contrast to the Writhe and ACN, this tool is not affected by secondary structure elements. We apply the Writhe, 
the Average Crossing Number (ACN) and the second Vassiliev measure to a set of two-state proteins (which 
are known to fold in an all or none fashion) and a set of multi-state proteins (known to have well populated 
intermediates). Our results show that these measures capture different characteristics of the tertiary structure 
of the native state and that the folding rate depends both on the geometry and the topology of the native state, 
even for proteins without knots or slipknots.

Results
In this Section, we analyze the geometry and topology of a data set of two-state and multi-state proteins whose 
folding rates were reported in1,17. More precisely, single domain protein without disulfide bonds or covalently 
bound ligands were considered. For the multistate kinetics, the rate constants of the rate-limiting transition were 
considered, if the latter was not attributed solely to cis-trans proline isomerization. In addition, the experimental 
temperature was in the range, or could be reliably extrapolated, to 25C. Each protein was represented as a polygo-
nal curve by connecting the consecutive alpha carbon atoms, CA atoms, with a line segment. The coordinates of 
the CA atoms were obtained from the Protein Data Bank (PDB)45.

The Writhe, we denote Wr, and the Average Crossing Number, ACN, are derived from the Gauss linking 
integral and are very sensitive on the local geometry of proteins. The second Vassiliev measure, we denote v2 , 
and the second Absolute Vassiliev measure, we denote Av2 , are topological measures, quantifying the overall 
3-dimensional structure, and are not as sensitive on the local geometry. Higher values of Writhe and ACN in 
random polygonal curves are in principle associated with higher topological complexity. In proteins however, 
high values of Writhe or ACN may not necessarily reflect topological complexity of the backbone, as they are 
significantly affected by the presence of secondary structure elements. In particular, helices contribute high values 
of Writhe and ACN to the total Writhe and ACN of the protein. Previous work has shown that experimental 
folding rates correlate with both the Writhe and the ACN of the native state9, but it is difficult to decouple the 
role of topology from the role of geometry or the role of secondary structure elements.

To detect the effect of topology in protein folding, we propose using a stronger measure of topological com-
plexity, the second Vassiliev measure, v2 , and the absolute second Vassiliev measure, Av2 . The latter is used to 
capture contributions to v2 that cancel out because of opposite signs. v2 (and Av2 ) is not as sensitive to the local 
geometry as the Writhe or ACN, allowing it to capture the characteristics of the global conformation of a pro-
tein (see Fig. 1 for an illustrative example). In general, higher values of v2 represent higher knotting complexity. 
Proteins with no knots may have values of v2 that are much less than 1 in magnitude, but non-zero. Therefore, 
even though most proteins do not contain knots, they may be topologically not trivial, as it is reflected by non-
zero values of v2.

Figure 1.   Protein 1v9e from the PDB (left) and as a simple polygonal curve (middle) and a mathematical 
trefoil knot (right). 1v9e has v2 = 0.808 and Av2 = 0.844 . Note that v2 = 1 corresponds to the trefoil knot. 
Indeed, 1v9e is known to contain a trefoil knot using the knot fingerprint approach29. Its ACN = 117.6653 and 
Wr = 6.28669.
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Both v2 and Av2 quantify how “knotted” the tertiary structure of a protein is or has the potential to be, while 
Wr and ACN are measures of entanglement complexity of the protein, including secondary structure element 
effects. These can have different values on the same protein. Examples of unknotted proteins with similar ACN 
and Writhe values but different v2 values are shown in Fig. 2. For random chains, Wr,ACN , v2,Av2 are all expected 
to increase (in absolute value) with the length of a chain.

In “The topology and geometry of proteins” section we present our results on the topology and geometry of a 
small set of proteins. In “Folding rate as a function of the geometry and topology of the native state for a mixed 
(two-state and multi-state) set of proteins” section we present our results on folding kinetics and topology of the 
native state for a mixed set of two and multi-state proteins. In “Two-state proteins” section we focus only on the 
two-state proteins and in “Multi-state proteins” section we focus only on the multi-state proteins.

The topology and geometry of proteins.  We analyze a set of proteins with no knots and no slipknots. 
Such proteins have been “invisible” by the common mathematical methods to characterize protein conforma-
tions. However, we find that 95.4% of the proteins analyzed in this study have non-zero value for the second 
Vassiliev measure. Putting this result in the context of previous studies, we note that by using the knot fingerprint 
method and the HOMFLYPT polynomial, it has been shown that less than 2% of proteins in the PDB contain a 
knot30, while other studies show that 32% of proteins contain an “entangled motif ” (two disjoint subchains with 
a Gauss linking integral of magnitude greater than 1)46. Here we provide a simple measure of topological com-
plexity that applies to practically all proteins to characterize their topological complexity.

We apply the second Vassiliev measure, as well as the Writhe and ACN on a set of multi-state and two-state 
proteins. We stress that these measures capture different conformational information. Figure 3 shows the correla-
tion of the different topological measures used in this study. We see that the Writhe and ACN capture different 
information than the v2 and Av2 . Indeed, even though the Writhe and the ACN are also measures of conforma-
tional complexity, related to topology, they are more sensitive to local entanglement rather than topology. In 
particular, Writhe and ACN are impacted by secondary structure elements.

Folding rate as a function of the geometry and topology of the native state for a mixed 
(two‑state and multi‑state) set of proteins.  Figure 4 shows the logarithm of the experimental folding 
rate as a function of the Writhe (Left) and normalized Writhe (Right) of the native state. We see a correlation 
r = 0.241 for the normalized Writhe, and the slope of the regression line is positive, which seems to contradict 
the hypothesis that more complex folded structures would be achieved at a slower rate. The Spearman correla-
tion coefficient is ρ = 0.256 , with p-value 7.8 · 10−3 , indicating a very weak correlation. Similar results were 
observed for a set of two-state proteins in9. At a closer inspection, we see that the folding rate decreases with 
more negative Writhe values. This was also observed in9. This further corroborates the result that the Writhe cap-
tures some aspects of handedness related to folding rates, as well as secondary structure elements. In particular, 
we know that helices contribute a positive value of Writhe. In an effort to decouple the local secondary structure 
effect from the topology of the protein using the Writhe, the Writhe of the primitive path was introduced in9 and 
it was shown that the folding rate correlates better with the latter. Note that previous results have also showed a 
different impact on folding rate of local versus global properties of the protein47.

Figure 5 shows the logarithm of the experimental folding rate as a function of the ACN (Left) and normalized 
ACN (Right). We notice that the folding rate decreases with increasing ACN and ACN/N with a correlation, 
r = −0.564 and r = −0.581 , respectively. The Spearman correlation coefficient is ρ = −0.631 and ρ = −0.529 , 
with p-values 3.1 · 10−13 and 4.5 · 10−9 , respectively. This agrees with the hypothesis that proteins fold slower 
to more complex native states. However, the fact that the folding rate decreases with ACN it does not mean 

Figure 2.   Protein 1l8w (left) and protein 1qop (right). They both have similar Writhe and ACN but 
different v2 values. Namely, Protein 1l8w has Wr = 28.27, ACN = 143.61 and v2 = 0.022 . Protein 1qop has 
Wr = 23.00797, ACN = 131.5524 and v2 = 0.229.
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Figure 3.   The plots on the diagonal show the distribution of each measure for the protein set. The scatter plots 
compare the measures pairwise for each protein. Blue points represent two-state and orange points represent 
multi-state proteins. We see that there is little correlation between Wr and v2 , Wr and Av2 , ACN and v2 , or ACN 
and Av2 . Wr and ACN show a correlation, as well as v2 and Av2.

Figure 4.   The protein folding rate as a function of the writhe (left) and writhe/N (right) for all proteins in the 
data set. The folding rate is represented as the natural log of the experimental folding rate kf .
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necessarily that it is affected by the topological complexity of the tertiary structure of the protein. The ACN, 
like the Writhe, is affected by the presence of secondary structures. So, the question remains to what extent the 
folding rate depends on the global topology versus the local entanglement of the native state.

The second Vassiliev Measure ( v2 ) is a better indicator of topology, measuring topological complexity in 
the global conformation rather than being affected by local entanglement. Figure 6 shows the logarithm of the 
experimental folding rate as a function of v2 (Right) and v2/N (Left). We see that the logarithm of the experi-
mental folding rate decreases with increasing v2 with r = −0.545 and r = −0.467 , respectively. The Spearman 
correlation coefficient is ρ = −0.594 and ρ = −0.495 , with p-values 1.5 · 10−11 and 5.8 · 10−8 , respectively. This 
result shows that the folding rate decreases with the topological complexity of the native state. Note that this is 
the first result that shows that folding rate correlates with aspects of global complexity, and specifically topology, 
irrespective of local structure.

Figure 7 shows the logarithm of the experimental folding rate as a function of Av2 . Our results show that 
the folding rate has a correlation of order r = −0.550 and r = −0.490 with Av2 and Av2/N  , respectively. The 
Spearman correlation coefficient is ρ = −0.641 and ρ = −0.550 , with p-values 10−13 and 8.3 · 10−10 , respectively, 
indicative of a moderate to strong correlation (similar to that of ACN). This is in agreement with the results on v2.

Two‑state proteins.  In the set of two-state proteins, as in the combined set, the logarithm of the experi-
mental folding rate shows a weaker than in the combined data set correlation with ACN and ACN/N, with 
coefficients of r = −0.393 and r = −0.459 , respectively, as seen in Fig. 8. The Spearman correlation coefficient 
is ρ = −0.533 and ρ = −0.417 , with p-values 1.2 · 10−6 and 2.5 · 10−4 , respectively.

The experimental folding rate of two-state proteins and the Writhe and normalized Writhe show a Spearman 
correlation ρ = 0.367 and ρ = 0.402 , with p-values 1.4 · 10−3 and 4.3 · 10−4 , respectively, and a linear correlation 
coefficient r = 0.213 , r = 0.403 (data shown in the SI).

We find that the folding rate shows a stronger correlation with v2 of the two-state proteins alone, compared 
to the mixed set. Figure 9 shows the logarithm of the experimental folding rate as a function of v2 and Av2 for 

Figure 5.   The folding rate as a function of the native state ACN (left) and the ACN/N (right) for all proteins. 
Multi-state proteins tend to have higher ACN than two-state proteins with similar folding rates.

Figure 6.   The protein folding rate as a function of v2 (left) and v2 /N (right) for all proteins.
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Figure 7.   The protein folding rate as a function of the approximate Av2 (left) and Av2 /N (right) for both two-
state and multi-state proteins.

Figure 8.   The protein folding rate as a function of the ACN (left) and ACN/N (right) of the set of two-state 
proteins. This set excludes the protein 1l8w which had an outlying ACN of about 140. When included the 
correlation decreases to r = −0.48.

Figure 9.   The protein folding rate as a function of the v2 (left) and Av2 /N (right) of the set of two-state proteins.
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two-state proteins. We find that the logarithm of the experimental folding rate decreases with increasing v2 and 
Av2 values with r = −0.582 and r = −0.599 , respectively. The Spearman correlation coefficient is ρ = −0.572 
and ρ = −0.670 , with p-values 1.3 · 10−7 and 9 · 10−11 , respectively, indicative of a moderate to strong correla-
tion, stronger than that of ACN. The normalized v2 and Av2 are shown in the SI.

Multi‑state proteins.  In the set of multi-state proteins, the logarithm of the experimental folding rate shows 
a particularly strong correlation with ACN, with r = −0.727 and r = −0.668 , shown in Fig. 10. The Spearman 
correlation coefficient is ρ = −0.726 and ρ = −0.631 , with p-values 1.2 · 10−6 and 6.4 · 10−5 , respectively.

The logarithm of the experimental folding rate shows a weak correlation with the Writhe and normalized 
Writhe with Spearman correlation coefficient ρ = −0.147 and ρ = 0.262 , with p-values 0.41 and 0.13, respec-
tively, and linear correlation coefficient r = 0.276 and r = 0.214 , respectively (data shown in the SI).

Figure 11 depicts the protein folding rate against v2 and Av2 for multi-state proteins. The logarithm of 
the experimental folding rate shows a moderate correlation with these measures with r = −0.563 for v2 and 
r = −0.554 for Av2 . The Spearman correlation coefficient is ρ = −0.522 and ρ = −0.583 , with p-values 1.6 · 10−3 
and 3 · 10−4 , respectively. The normalized v2 and Av2 are shown in the SI.

Discussion
Understanding protein folding requires rigorous methods for characterizing the native state of folded proteins. 
Many previous measures have been proposed to quantify the complexity of the native state of proteins. Even 
though the folding rate correlates strongly with one of the simplest characterizations of 3-dimensional complexity 
(the number of sequence distant contacts), the role of the topology of the 3-dimensional conformation of the 
entire protein in protein folding remains unclear. A reason why the role of topology in protein folding is elusive 
is that topological complexity has traditionally been associated with the presence of knots, but proteins with no 
knots or slipknots can have very different folding rates. In this manuscript, we rigorously show that folding rates 
depend on the mathematical topology of the native state, even for unknotted proteins. This is done using the 
second Vassiliev measure, a new measure of topological complexity of proteins that can characterize the topology 

Figure 10.   The protein folding rate as a function of the ACN and ACN/N of the set of multi-state proteins.

Figure 11.   The protein folding rate as a function of the v2 and Av2 of the set of multi-state proteins.
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of protein conformations continuously from trivial to knotted state. Our data show a moderate to strong cor-
relation of the logarithm of the experimental folding rate with the second Vassiliev measure of the native state 
with lower folding rates associated to greater second Vassiliev measure.

We also report the ACN and Writhe values for the proteins analyzed, which are measures of conformational 
complexity more sensitive on the local geometry of a protein. The ACN and the Writhe are affected by the sec-
ondary structure elements, with helical proteins giving higher values. The Writhe in particular can capture some 
aspects of handedness as well, since right-handed turns and helices contribute a positive value, while left-handed 
turns contribute a negative value. Even though these characteristics may be important in understanding folding 
mechanisms, they can hinder our understanding of the role of the global topology of the native state in protein 
folding. v2 and Av2 on the other hand can capture the global complexity of the native state without being biased 
from local structure. Our results on the correlation of the logarithm of the experimental folding rate and the 
Writhe, ACN and the second Vassiliev measure, v2 and Av2 , of the protein native state, show that the folding rate 
depends on both the geometry of the native state, as well as its topology.

The size of the proteins is a parameter already known to impact the protein folding rate13,48–50 and the topo-
logical complexity of a protein is expected to increase with its size. For this reason, we also report the normalized 
values of ACN, Wr and v2,Av2 . All the Spearman correlations show a small decrease for the normalized by the 
length values. For the combined data set, ACN, v2,Av2 all show a similar linear correlation, while the logarithm 
of the experimental folding rate shows the strongest correlation with Av2 . In general, the folding rate of the set of 
2-state and the set of multi-state proteins individually, shows a stronger linear correlation with each measure than 
that of the combined set, with the exception of the ACN for 2-state proteins. Such differences may be expected, 
as two-state and multi-state proteins have different folding mechanisms51. For 2-state proteins, the folding rate 
shows a strong correlation with Av2 and a moderate to weak correlation with ACN. The folding rate of multi-
state proteins, however, shows a stronger correlation with ACN than with v2 or Av2 . This may suggest that, for 
the data set analyzed here, local structure is more involved in the folding mechanism of multi-state proteins than 
global topology, while the opposite is true for two-state proteins. This is in agreement with previous results on 
the effect of topology that were based on the contact order or the Protein Contact Network alone52,53. Note that 
the multi-state proteins attain higher v2 values, indicative of more complex topology, which is expected for longer 
polypeptide chains. When normalized by their length however, the range of v2/N values for 2-state proteins is 
approximately 0 to 1.4, while for multi-state proteins is approximately 0 to 1.1. This suggests that for 2-state pro-
teins topological complexity normalised to chain length is a more important determinant of folding rates than 
for multi-state proteins. On the other hand, the normalized ACN ranges from 0.1 to 0.5 for the 2-state proteins, 
and from 0.2 to 0.5 for the multi-state proteins. Our results thus show that for these multi-state proteins with 
no knots or slipknots, the rate limiting step may be associated primarily with their local geometry rather than 
global topology. These results may suggest that, for proteins with no knots or slipknots, the lower the topological 
complexity of the native state, relative to the length of a protein, the more microstates a protein can explore with 
the same topology and thus higher the probability to be trapped in an intermediate state.

It is possible that many of the proposed measures together could provide better correlations with protein 
folding rate10. However, in addition to correlation, it is important to establish causation. Our results show that 
the topology and geometry of the native state, as it is captured by rigorous and well understood mathematical 
tools from knot theory, should be accounted in a model of protein folding that is applicable to all proteins, with 
or without knots and slipknots.

Methods
In this Section, we give the definitions of the mathematical measures used to characterize the 3-dimensional 
conformation of proteins.

The Writhe of a curve in 3-space is defined as the Gauss linking integral over the curve54:

Definition 1.1  For an oriented curve ℓ with arc-length parametrization γ (t) , the Writhe, Wr, is the double 
integral over l:

where integration is over all s, t ∈ [0, 1], s �= t.

The Writhe measures how much the chain turns around itself. Taking into account the orientation of the 
curve (from start to end-point), given a projection of the curve, one can add up the number of crossings, with 
signs according to orientation and the convention shown in Fig. 12. The Writhe is a real number, equal to the 
average algebraic sum of crossings over all possible projection directions.

By taking the absolute value of the integrand, we obtain the Average Crossing Number. Namely,

Definition 1.2  For an oriented curve ℓ with arc-length parametrization γ (t) , the Average Crossing Number, 
ACN, is the double integral over l:

where integration is over all s, t ∈ [0, 1], s �= t.

(1)Wr(l) =
1

4π

∫

[0,1]∗

∫

[0,1]∗

(γ̇ (t), γ̇ (s), γ (t)− γ (s))

||γ (t)− γ (s)||3
dtds.

(2)ACN(l) =
1

4π

∫

[0,1]∗

∫

[0,1]∗

|(γ̇ (t), γ̇ (s), γ (t)− γ (s))|

||γ (t)− γ (s)||3
dtds.
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The ACN is a positive real number that measures the average sum of crossings (without signs) over all pos-
sible projection directions.

Both Writhe and ACN can be computed exactly, avoiding numerical integration, using the algorithm 
described in55. The Writhe and the ACN are continuous functions of the chain coordinates (not topological 
invariants) for both closed and open curves.

The second Vassiliev measure of open curves in 3-space was introduced in44 and is defined as follows:

Definition 1.3  For an oriented curve l with parametrization γ (t) , v2 is defined using the following integral:

where χ(j1, j2, j3, j4) = 1 , when (j1, j2, j3, j4) ∈ E and χ(j1, j2, j3, j4) = 0 , otherwise and where E ⊂ [0, 1]4 , such 
that Ŵ(j1, j3) = −Ŵ(j2, j4) , where Ŵ(s, t) = γ (s)−γ (t)

|γ (s)−γ (t)| , for s, t ∈ [0, 1].

The second Vassiliev measure of an open curve in 3-space is equal to the average of the algebraic sum of 
“alternating pairs” of crossings over all projection directions. Namely, for any given projection of the curve, an 
alternating pair of crossings, (j1, j3) and (j2, j4) , is such that that if the projection of γ (j1) is over, resp. under, that 
of γ (j3) , then the projection of γ (j2) is under, resp. over, that of γ (j4) . The second Vassiliev measure does not have 
a closed form and can only be estimated as the average over a large number of projections. In this manuscript, v2 
was estimated as an average over 10,000 projections for two-state and 5,000 projections for multi-state proteins.

For closed curves, the second Vassiliev measure is a second Vassiliev invariant of knots and it is an integer 
topological invariant that can distinguish several knot types. For proteins, the second Vassiliev measure is a real 
number that is a continuous function of the chain coordinates in 3-space, and, if the protein ties a knot, it tends 
to the topological invariant of the knot. We note that the term “topology” in mathematics may be elusive for 
open curves in 3-space. It would be more accurate to use another term, such as “potential topology” for such 
curves. However, in this manuscript, we will use the term topological complexity, for all proteins, when v2  = 0.

Since v2 is an average algebraic sum of patterns of crossings in a projection over all projection directions, 
positive values in one projection may cancel with negative values in another. For this reason, we introduce 
Av2 , which we define by taking the absolute value in the integrand in Eq. (3). For open curves, this is a positive 
number, which varies continuously with the coordinates of the chain and as the endpoints of the chain tend to 
coincide, it tends to the absolute second Vassiliev invariant of the resulting knot.
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