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Transcription rates are regulated by the interactions between RNA poly-
merase, sigma factor, and promoter DNA sequences in bacteria. However, it
remains unclear how non-canonical sequence motifs collectively control

transcription rates. Here, we combine massively parallel assays, biophysics,
and machine learning to develop a 346-parameter model that predicts site-
specific transcription initiation rates for any 0’° promoter sequence, validated
across 22132 bacterial promoters with diverse sequences. We apply the model
to predict genetic context effects, design 0’ promoters with desired tran-
scription rates, and identify undesired promoters inside engineered genetic
systems. The model provides a biophysical basis for understanding gene
regulation in natural genetic systems and precise transcriptional control for
engineering synthetic genetic systems.

Transcription is the gene expression process responsible for pro-
ducing all RNA and is a common engineering target for creating
novel products, including microbial chemical factories, toxin-
sensing genetic circuits, and mRNA vaccines'”. However, while
DNA assembly techniques enable the construction of custom-
designed genetic systems®, it remains challenging to a priori pre-
dict and control a system’s gene expression profile’, for example,
by initiating transcription with desired rates at specific DNA start
sites, while minimizing transcription from all other DNA sequence
regions. Currently, transcriptional control relies on empirical
characterization of promoters as modular genetic parts®. Applying
modular design to transcriptional control ignores other sources of
transcription, for example, inside coding regions, as well as local
and long-distance interactions that alter transcription rates and
start sites in unexpected ways’. Poorly controlled transcriptional
profiles can lead to malfunctioning genetic systems, including the
undesired production of anti-sense RNA and truncated proteins as
well as the misbalancing of protein expression levels that lead to
lower system activities®’.

A key challenge is to quantitatively predict how polymerase
initiation complex—RNA polymerase (RNAP) and a sigma factor (o)
in bacteria—interacts with arbitrary DNA sequences'®". To address

this challenge, researchers have characterized thousands of pro-
moters in vivo using high-throughput cloning and developed
models ranging in predictability” . Despite these efforts, it
remains unclear how the strengths of multiple interactions'® ¢
collectively determine transcription initiation rates and start sites,
particularly when bound to RNAP/67°, which initiates transcription
at the majority of bacterial promoters. Furthermore, it remains a
challenge to accurately measure the strength of these interactions
while taking into account differences in mRNA decay rates??*, the
presence of cryptic transcriptional start sites (TSSs)**, and
incomplete self-cleavage by insulating ribozymes* .

To address these challenges, we carried out massively parallel
in vitro experiments on designed promoter sequences with designed
barcodes to systematically measure the interactions controlling site-
specific transcription at 0’° promoters (Fig. 1A). With this data, we
developed a statistical thermodynamic model that calculates how
RNAP/o”° interacts with arbitrary DNA to predict transcription initia-
tion rates at each position. The model has only 346 interaction energy
parameters, but accurately predicts the transcription rates of 22,132
bacterial promoters with diverse sequences. We show how the model
enables the automated design and debugging of transcriptional pro-
files in engineered genetic systems.
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Fig. 1| Massively Parallel Transcription Rate and Start Site Measurements.

A Model development combined promoter design, barcoded oligopool synthesis,
library cloning & culturing, and next-generation sequencing to measure the tran-
scription start site distribution and transcription rate of each promoter variant.

B The interaction strengths between RNAP/0’® and promoter DNA control tran-
scription initiation rates. 14206 promoter variants were designed to quantify how
sequence modifications affect each interaction. Sequence design criteria are
shown. C The frequencies of observed transcription start sites are shown for each

set of promoter variants. The star indicates the predominant start site. The inset
schematic shows the system architecture, the locations of the promoter and bar-
code variants, and the cDNA architecture after library preparation. D The tran-
scription rates’ dynamic ranges are shown for each set of promoter variants,
considering only the predominant start site. Con: UP element promoter variants
with consensus hexamers. Anti: UP element promoter variants with anti-consensus
hexamers. Data are provided in Supplementary Data 1.

Results
Model formulation and library design
To begin, we designed 14,206 promoters with varied sequence motifs
to systematically perturb the interactions that affect RNAP/0”® binding
and transcriptional initiation (Fig. 1B). These interactions occur at DNA
sites known by their canonical positions***°, including (i) an upstream
6-nucleotide site called the —35 motif; (ii) a 20-nucleotide region that
appears upstream of the —35 motif, called the UP element; (iii) a
downstream 6-nucleotide site called the -10 motif; (iv) a spacer region
that separates the -10 and -35 motifs; (v) a 4-nucleotide site upstream
of the —10 motif, called the —10 extended motif (-10 ext); (vi) a typically
6-nucleotide region in between the —10 motif and TSS, called the dis-
criminator (Disc); and (vii) the first 20 transcribed nucleotides, called
the initial transcribed region (ITR).

Initial RNAP/07° binding to a promoter is controlled by the
interaction Gibbs free energies (AG) at the UP, =35, -10 extended,

and -10 motifs as well as the torsional stress controlled by the
length of the spacer region'®'*****\. Bound RNAP/6’® then under-
goes a conformational change that catalyzes double-stranded DNA
separation, creating a transcription bubble that initially encom-
passes half the —10 motif, the Disc, and the first two nucleotides of
the ITR***°. RNA polymerization begins at a TSS determined by
where the catalytic site in the  subunit contacts the DNA tem-
plate, canonically at position +1. The transcription bubble is then
stabilized by interactions in the Disc*? and the formation of an R-
loop, whereby the newly synthesized RNA strand immediately
hybridizes to the DNA template*’. The ITR sequence controls the R-
loop’s thermodynamic stability. Finally, transcription initiation is
successful once enough DNA is pulled into the stable transcription
bubble that the accumulated stress exceeds the interaction
strength between RNAP/07° and promoter DNA, causing promoter
escape and a transition to processive RNA synthesis®**,
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From these interactions, we formulated a statistical thermo-
dynamic model of transcriptional initiation that accounts for compe-
titive binding of RNAP/6” to all DNA and the multiple sequence
contacts that control RNAP/o”° recruitment at each promoter (Meth-
ods). So long as the internal states do not become abundant, for
example, by significant transcriptional pausing®, the model indicates
that we can decompose how a promoter’s sequence controls the
interaction energies into a sum of free energies that can be related to
the transcription initiation rate (7X), according to:

A Gtotal =4 GUP +4 G—35 + AGspacer + AG— 10ext +4 G—IO +4 Gdisc +4 GI TR
@

X
Iog< ) = — BAG,,q — AG, ) ?2)
TXref total total,ref

where AG, is the difference in free energy between an unbound
promoter and a promoter- RNAP/0’° complex with a stable transcrip-
tional bubble, which is used to predict a promoter’s TX rate in com-
parison to a reference promoter sequence with calculated AG;ozaprer
and measured TX. B is a measurable model constant that converts
free energies into state probabilities. Here, we arbitrarily set AGozarer
to zero so that stronger and more favorable interaction free energies
have more negative values as compared to the reference promoter,
which has a low transcription rate.

We designed the 14,206 promoter sequences to measure how
each motif sequence alters these free energies to create a sequence-
complete model. The baseline promoter sequence contained con-
sensus hexamers, consensus spacer length, and an optimized back-
ground sequence generated to match the G/C content of the E. coli
genome, while eliminating cryptic hexamer motifs and restriction cut
sites. The changes to the baseline promoter sequence included all
possible -10 hexamer motifs (4°=4096 variants), all possible -35
hexamer motifs (4°=4096 variants), all possible -10 extended motifs
placed within 8 combinations of consensus and anti-consensus hex-
amers (4*x8=2048 variants), 229 spacer sequences with varied
lengths and nucleotide compositions, 605 UP sequences with varied
AT content placed within 4 combinations of consensus and anti-
consensus hexamers (605 x 4 = 2420 variants), 735 discriminator var-
iants with varied lengths and GC content, and 582 ITR variants with
varied R-loop stabilities and pause elements (Fig. 1B). Using oligopool
synthesis and two-step library cloning, we constructed a barcoded
plasmid pool that uses each promoter in a common genetic context,
expressing a single protein with a moderate translation initiation rate
(about 5000 on the RBS Calculator v2.1 scale’). Barcodes were
designed to have pair-wise Hamming distances of 2 or greater. To
avoid potentially confounding effects, we used the two-step cloning
procedure to position the barcodes within the 3’ untranslated region.

We then carried out in vitro transcription reactions, TSS mapping,
and next-generation sequencing to measure the TX rate of each
promoter at each TSS, utilizing a minimal system containing only
RNAP/6”°, the barcoded plasmid pool, NTPs, and buffer (Methods).
TSS mapping was performed by harvesting product RNA, ligating a 5’
RNA adapter, converting to cDNA, circularizing, using PCR to generate
amplicons containing the barcode and TSS, and obtaining over 323
million barcode-TSS mapped reads from lllumina sequencing. Across
all promoters, we found 182 TSSs with at least 1000 mapped reads,
revealing a primary TSS region and a less frequent, secondary TSS
region arising from a downstream cryptic promoter. TX rates were
then measured by carrying out DNA-Seq and RNA-Seq on triplicate
in vitro transcription reactions, separately harvesting DNA and RNA,
converting RNA to cDNA, using PCR to generate barcode-containing
amplicons, and obtaining between 81.3 and 130.5 million barcoded
reads per reaction. From the RNA/DNA read count ratios, we obtained

TX rates for 13480 promoter variants (mean and standard deviation),
excluding any with fewer than 50 read counts in any replicate. Repli-
cate read count measurements were highly reproducible
(R*=0.89-0.99, Supplementary Fig. 1) with 5391 high-precision TX
rates (coefficient of variation <0.40). All promoter sequences, DNA
read counts, RNA read counts, TX rates, and TSS frequencies are found
in the Supplementary Data 1.

Model training and validation

We began model training by identifying 5193 promoter variants
where RNAP/6”° bound to a single site with one predominant TSS,
enabling us to unambiguously pinpoint their motif sequences (Fig. 1C
and Supplementary Fig. 2). The TX rates for these single-site pro-
moters altogether varied by 123-fold with sizable effects from each
individual motif (Fig. 1D). Importantly, endogenous RNases were not
present in the in vitro transcription reactions, enabling us to vary the
Disc and ITR sequences without changing the mRNA's stability, which
is not possible in equivalent in vivo measurements. We started the
model development by specifying 472 sequence, structural, and
energetic properties that relate how each motif sequence con-
tributes to each free energy term (Supplementary Table 1). For
example, for all UP sequences, we calculate the minor groove width
of the distal and proximal UP sites®; for all ITR sequences, we cal-
culate the thermodynamic stability of the R-loop***’; for all spacer
sequences, we calculate the local DNA rigidity*®. As categorical
properties, we split the —35, -10, and Disc motifs into six 3-nucleotide
regions and include 384 3-mers. We split the —10 ext motif into
2-nucleotide regions and include 32 2-mers. We also include the
spacer length as a categorical property.

We then randomly split our dataset into a training set (4673
promoters, 90%), carried out tenfold cross-validation to identify the
optimal hyperparameters of a machine learning model, and tested its
accuracy on the remaining unseen test set (520 promoters, 10%). We
evaluated several models (Supplementary Table 2) that use regular-
ization to identify the optimal coefficients of a linear, additive model
that mirrors our free energy parameterization (Eq. 1) with dataset
normalization that mirrors our statistical thermodynamic model
(Eq. 2). We carried out feature reduction to remove extraneous prop-
erties, which lowered the number of fitted coefficients. The pruned
properties included the first 2-nucleotide region of the —10ext motif
and the last 3-nucleotides of the Disc motif, which had no discernable
effect on TX rate in this dataset.

Overall, we found that a ridge regression model with 346 fitted
coefficients yielded a convergent learning curve (Fig. 2A) and highly
accurate predictions (R?=0.80, Fig. 2B) with similarly low error dis-
tributions (Fig. 2D) across both the training and unseen test datasets.
We then performed ANOVA analysis to quantify how each predicted
free energy term contributed to the promoters’ measured TX rates in
our dataset and found that 83% of the TX rate variance could be
explained by varying the interactions that control initial RNAP/07®
recruitment, using the UP, -35, -10, -10 ext, and spacer motifs
(Fig. 2C). In contrast, 7.1% of the TX rate variance was explained by
differences in the interactions controlling DNA melting, R-loop for-
mation, and promoter escape, which are affected by the Disc and ITR
regions.

A key benefit of our hybrid biophysical-machine learning
approach is that the fitted coefficients quantify the physical interac-
tions between RNAP/0”° and each promoter motif (Fig. 2E), including
all motif sequences and enabling direct comparisons to already known
canonical interactions as positive controls. For example, without
human supervision, our approach correctly identified the canonical
=35 motif (TTGACA), -10 motif (TATAAT), extended -10 motif (TG),
and the optimal spacer length (17 base pairs). We also found that AT-
rich distal and proximal UP sites had more favorable interactions and
that GC-rich Disc motifs were enriched, which were previously
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Fig. 2 | Model Development and Validation using Machine Learning. A A
learning curve shows the training and testing of a ridge regression model to identify
the unknown interaction energies. B Model-predicted free energies are compared
to measured transcription rates for both (left) the training set and (right) the
unseen test set. Pearson correlation coefficient (R?) is equal to 0.80 for both the
training and test sets. C The explained variances for each promoter interaction are

Mean GC Mean GC
67% 40%

shown. D Histograms of model error are shown for the training and test sets, using
energy units. Mean absolute error (MAE) is equal to 0.27 RT for the training set (left)
and 0.28 RT for the test set (right). E The learned interaction energies are shown for
the strongest and weakest ones. A poster-sized schematic showing all interaction
energies is available (Supplementary Information). Data are provided in Supple-
mentary Data 1.

observed®*. However, most promoters do not contain canonical
motif sequences; their TX rates are controlled by a mixture of weaker
interactions. A key aspect of our model is its complete set of interac-
tion energies between RNAP/o 7° and double-stranded DNA, covering
all possible promoter sequences, which provides the ability to predict
the TX rate of any 0’ promoter. All interaction energies are available in

Supplementary Data 1, including numerical values and a poster-
sized chart.

Model generality
We then tested the model’s generalizability and accuracy across 22,132
characterized promoters, using sequence information alone to predict
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Fig. 3 | Validation of Sequence-to-Function Model on Diverse Promoters.

A Arbitrary DNA sequences are inputted into the model to predict its transcrip-
tional profile (transcription rates vs. nucleotide positions) without start site infor-
mation. B Model comparisons on 5391 designed promoters (LaFleur et al., this
study) are compared to in vitro transcription rate measurements (R*=0.79,
Spearman’s p = 0.80, MAE = 0.33 RT, MSE = 0.18 RT). C Model predictions on 10898
genome-integrated modular promoters'® characterized by Urtecho et al. are

Predicted AG,, (RT)

Predicted AG, (RT)

compared to in vivo transcription rate measurements (R> = 0.60, Spearman’s
p=0.67, MAE=0.93 RT, MSE =1.28 RT). D Model predictions on 4350 non-
repetitive plasmid-encoded promoters'? characterized by Hossain et al. are com-
pared to in vivo transcription rate measurements (R? = 0.45, Spearman’s p = 0.69,
MAE =1.08 RT, MSE =1.88 RT). MAE and MSE were determined by fitting a pro-
portionality constant (best-fit slope) accounting for experimental variation. Data
are provided in Supplementary Data 1.

their transcriptional profiles, specifically their TX rates for each
potential TSS position (Fig. 3A). Here, we do not input the promoters’
actual TSS positions and motifs, and instead combine the interaction
energies with statistical thermodynamics to identify the most likely
RNAP/0”° binding site configuration. For each potential TSS position,
we scan the surrounding DNA sequence and enumerate the several
ways that RNAP/0”° may bind to it, varying the spacer and Disc lengths
with corresponding changes in motif sequences. We apply the model’s
interaction energies to calculate the AGy, for each configuration
(Eq. 1) and determine the configuration with the most negative AGq¢al.
We repeat these calculations for each potential TSS position within the
inputted DNA sequence.

We carried out these additional tests on four datasets: (1) 5391
designed promoters with high-precision TX rate and TSS measure-
ments, characterized here using in vitro RNAP/6° transcription assays
(LaFleur et al.); (2) 10898 promoters using combinations of motifs to
express a ribozyme-insulated transcript, characterized using genome-
integrated test circuits inside E. coli cells (Urtecho et al.)’; (3) 4350
non-repetitive promoters using highly diverse sequences to express a
transcript, characterized using test circuits carried on multi-copy
plasmids inside E. coli cells (Hossain et al.)’>; and (4) 1493 inducible
promoters that contain transcription factor binding sites and express a
ribozyme-insulated transcript, also characterized using genome-
integrated test circuits inside E. coli cells (Yu et al.)”. We first con-
firmed that the statistical thermodynamic model accurately predicted
free energies of the in vitro data collected by LaFleur et al. without
utilizing TSS measurements (R*=0.79, Spearman’s p = 0.80, Fig. 3B).
Next, we tested the model’s predictions on the three in vivo datasets,
which were not used during model development. We found that the
statistical thermodynamic model retained accuracy (R* = 0.60, Spear-
man’s p=0.67; R?=0.45, Spearman’s p=0.68; R?=0.65, Spearman’s

p=0.70; Fig. 3C, D and Supplementary Fig. 3), even though in vivo
mRNA levels are affected by other potentially confounding factors, for
example, variation in DNA copy number, alternate/multiple sigma
factor binding sites, and mRNA stability. Lastly, we evaluated the
model’s accuracy on each dataset by calculating the MAE across 20
evenly spaced transcription rate bins (Supplementary Fig. 4). We
found the model maintains high accuracy across the broad range of
transcription rates tested and that rate-binned MAEs were primarily
dependent on the number of promoters within each bin.

To evaluate the model’s predictions using additional types of
measurements, we then selected ten of the non-repetitive promoters
collected by Hossain et al. and characterized their expression levels in
test genetic circuits inside E. coli cells, utilizing RT-qPCR to measure
their mRNA levels and flow cytometry to measure their fluorescent
reporter protein levels. We found that the model’s predictions for
these promoters were highly proportional to their measured mRNA
levels (R*=0.75, Spearman’s p = 0.87) and fluorescent protein expres-
sion levels (R*=0.78, Spearman’s p = 0.87) over a 78640-fold dynamic
range (Supplementary Fig. 5). All dataset sequences, model predic-
tions, and TX rate measurements are included in Supplemen-
tary Data 1.

A non-linear interaction model to test for inter-motif
cooperativity

Next, we developed a non-linear free energy model to test whether the
incorporation of inter-motif interactions could improve the accuracy
of transcription rate predictions. To do this, we utilized the 10,898
promoters characterized by Urtecho et al. as our training dataset. We
considered all possible pair-wise interactions (quadratic terms) that
can occur between the six promoter regions, which added 30 unknown
coefficients. We then applied linear regression to determine the values
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the minima and maxima, and black dots by outliers. C Model predictions are
compared to in vivo fluorescence measurements for these promoters when spe-
cifying their upstream and downstream sequences (R? = 0.79, Spearman’s p = 0.85).
Data are provided in Supplementary Data 1.

of these coefficients, followed by model testing. When measuring
accuracy using Pearson R?, we found that the non-linear model had
higher accuracy on the Urtecho training dataset (R2=0.69 vs.
R?=0.60), but had similar accuracies when tested on the LaFleur and
Hossain test datasets (R>=0.76, R*=0.46) as compared to the linear
free energy model (R*=0.79, R*=0.45). When measuring accuracy
using MAE or MSE, the non-linear model had lower accuracies on the
LaFleur and Hossain test datasets (Supplementary Table 4). Alto-
gether, the addition of the pair-wise quadratic terms to the free energy
model did not improve model accuracy, which suggests the absence of
quadratic cooperative or anti-cooperative interactions between motifs
within the same promoter region. For subsequent results, we continue
to utilize the linear free energy model.

Promoter context effects

Across microbial biotechnology, promoters are routinely treated as
reusable, swappable genetic parts to control protein expression
levels®. However, the model predicts that the DNA sequences sur-
rounding a promoter will greatly affect its TX rate, specifically the UP
and ITR regions, which would explain why some promoters express
certain proteins at much lower levels. We next tested the model’s
ability to predict, explain, and overcome these genetic context effects.
First, we designed UP and ITR sequences that the model predicted
would greatly alter a promoter’s TX rate, inserted them around the
commonly used J23101 promoter, and measured their in vivo TX rates
using a fluorescent protein reporter inside E. coli cells (Methods).

Changing only the UP region or only the ITR region reduced the pro-
moter’s TX rate by up to 5.3-fold, while changing both regions reduced
the promoter’s TX rate by up to 9.4-fold (Fig. 4A). We next evaluated
whether these genetic context effects are potentially widespread by
carrying out Monte Carlo simulations to predict the range of TX rates
expected when varying 30 bp of the UP and ITR regions of several
commonly used promoters (Fig. 4B). We found that all promoters
exhibited sensitivity to genetic context with an overall average coef-
ficient of variation of 0.21. We then tested whether the model is able to
correctly account for genetic context effects and predict the pro-
moters’ activity in a particular context. To do this, we selected a classic
community dataset whereby the in vivo TX rates of these commonly
used promoters were previously characterized inside E. coli cells and
within a specific genetic context’. We then inputted the specific UP,
core promoter, and ITR sequences from this dataset into our model
and confirmed accurate predictions (R>=0.79, Spearman’s p =0.85,
Fig. 4C), further illustrating the model’s generality.

Forward engineering promoters

Next, we developed an automated optimization algorithm that designs
promoter sequences with desired transcriptional profiles, taking into
account both the upstream DNA sequence and the transcribed mRNA
sequence (Fig. 5A). The algorithm identifies optimal promoter
sequences that provide user-defined TX rates at desired TSSs, while
minimizing the TX rate at undesired, off-target TSSs (Methods). We
tested this algorithm by designing, constructing, and characterizing
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measurements for the 35 designed promoters (R? = 0.80, Spearman’s p = 0.89). Red
dots denote the mean of duplicate measurements (n = 2 biological replicates). Data
are provided in Supplementary Data 1.

35 synthetic promoter sequences with targeted, systematically varied
TX rates. The designed promoters were 60-77 base pairs long and
shared only ~-27% sequence similarity (Fig. 5B and Supplementary
Fig. 6). The model predicted single predominant TSSs at the desired
locations, though it becomes progressively more difficult to achieve
single-TSS predominance as the targeted TX rate is lowered. We then
measured the promoters’ TX rates, each expressing a ribozyme-
insulated transcript on a multi-copy plasmid inside E. coli cells during
exponential growth (Methods), and found that the model’s predictions
were highly accurate (R*=0.80, Spearman’s p = 0.89, Fig. 5C), enabling
fine control of site-specific transcription rates over a 1525-fold range,
while taking into account the surrounding genetic context.

Genetic circuit debugging and RNAP flux analysis

Finally, we demonstrated how the statistical thermodynamic model
facilitates the debugging of large genetic circuits by predicting their
transcriptional profiles and identifying cryptic promoters that could
disrupt the circuit’s function. As a demonstration, we selected a
recently characterized genetic circuit that uses 11 engineered pro-
moters and 7 transcription factors to carry out digital logic® (Fig. 6A).
The model predicted single-TSS peaks for 9 of the engineered pro-
moters and identified 51 cryptic promoters (18 sense and 33 anti-
sense). These predictions were qualitatively confirmed by system-wide
RNA-Seq measurements and transcriptional flux inferences with an
overall accuracy of 55% for cryptic promoter identification (Methods).
To further demonstrate the utility of the model, we compared model
predicted transcriptional profiles to the measured RNAP flux on a
portion of the circuit that showed leaky expression in the OFF state.
Across this 1000 bp region using the Pgap promoter to express AmtR,
the model correctly predicted the presence of cryptic TSSs with high
transcription rates that led to higher than expected mRNA levels
(Fig. 6B). By combining the transcription rate predictions with auto-
mated computational optimization, we then redesigned the AmtR

coding sequence, varying its synonymous codon usage to minimize its
transcriptional profile, which removed the cryptic promoters (Fig. 6C).
We then demonstrated that our automated algorithm can also gen-
erate no-promoter regions with minimized transcription rates by
designing 60 bp and 120 bp regions and measuring their transcription
rates using a reporter protein in test genetic circuits (Methods). We
found that both no-promoter regions yielded very low reporter
expression levels (only 7.6% above white cell autofluorescence and 161-
fold lower reporter expression than the commonly used J23100 pro-
moter when corrected for white cell autofluorescence) (Fig. 6C inset).

Discussion
We developed a biophysical model of RNAP/6”°-promoter interactions
—the Promoter Calculator—to predict site-specific transcription
initiation rates across any 0’° promoter sequence. We first trained and
tested the model by carrying out in vitro transcription rate measure-
ments and TSS mapping on thousands of designed promoter
sequences, followed by additional validation on thousands of pro-
moters characterized inside cells. Overall, the model contains 346
transparent parameters to calculate the strengths of the interactions at
the -10 hexamer, the -10 extended motif, the —-35 hexamer, the
upstream element (UP) element, the discriminator, the spacer region,
and the ITR with validated predictions across 22,132 diverse promoter
sequences. We then applied the model to design synthetic promoter
sequences with targeted transcription initiation rates and to debug
sources of cryptic transcription in engineered genetic systems. The
model provides a more complete understanding of how both cano-
nical and non-canonical motifs collectively control transcription rates
across all potential DNA sites, yielding the transcriptional profile of a
genetic system.

Careful experimental design was needed to maximize the infor-
mation content of our transcription rate measurements. First, by car-
rying out in vitro transcription assays using only RNAP/o”° enzyme, we
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sense and (bottom) anti-sense strand. Transcription flux ratios are the measured
differences in adjacent mRNA levels from RNA-Seq. White and gray shadows cor-
respond to each transcribed cistron. The horizontal dotted black lines show the
minimum transcription rates that define a start site. Experimental TSS cutoffs are
previously described®, and prediction cutoffs are defined in the Methods. Anno-
tated start sites are depicted in the circuit diagram with arrows. B The predicted 07
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transcriptional profile for the Pgyp-amtR portion of the circuit in the OFF state. Red
lines are model predictions, and gray overlays show measured RNAP flux. C The
predicted 07° transcriptional profile for a redesigned amtR protein coding
sequence that minimized the transcription initiation rate inside the coding
sequence. (inset) Measured fluorescence levels for designed no-promoter regions
predicted to have minimal transcription rates (NP1: 120-bp, NP2: 60-bp) as com-
pared to (WC) white cells and the J23100 promoter. Black dots denote independent
measurements. Bars denote the mean across duplicate measurements (n =2 bio-
logical replicates). Data are provided in Supplementary Data 1.

eliminated several competing interactions that routinely confound
in vivo transcription rate measurements. For example, our assays did
not contain alternative o-factors or RNases, resulting in mRNA level
measurements that were solely controlled by RNAP/67° interactions
during transcription. Second, by employing oligopool synthesis, we
were able to rationally design the thousands of promoter sequences
needed to perturb individual interactions and measure their effects on
transcription rates. Third, we designed all barcodes to have dissimilar
sequences (pair-wise Hamming distances 2 or greater) to avoid the
possibility of mis-mapping barcodes during data analysis, which would
lead to non-random biases in the transcription rate measurements.
Finally, the transcription start site mapping was found to be essential
to pinpointing sequence motifs for model training, particularly for
weaker promoters that often exhibited multiple transcription start
sites. Altogether, our experimental design, carried out in biological
triplicate, yielded a firm ground truth on which to build and test the
predictive model. Notably, our in vitro experimental approach can be
readily extended to other sigma factors and organisms to measure the
interaction strengths between their respective RNAP/o complexes and
double-stranded DNA. However, our in vitro transcription assays did
not contain transcription factors and did not measure regulated
transcription, although it is feasible to add purified transcription fac-
tors to study their regulatory effects.

A key advantage to our hybrid modeling approach, in contrast to
non-interpretable machine learning, was the extraction of coefficient
values that directly correspond to the strengths of the RNAP/6’>-DNA
interactions (Fig. 2, Supplementary Poster). In fact, using only these
interaction free energies in a numerical table (Supplementary Data 1),

it is straightforward for researchers to predict transcription rates and
design synthetic promoters without the use of a computational fra-
mework. Furthermore, the interaction free energies are all reported on
the same scale, enabling one to rank the importance of each motif
toward controlling transcription initiation rates.

We also tested our model accuracy on several in vivo datasets.
Overall, we found higher model accuracy when the in vivo dataset’s
experimental design yielded more precise transcription rate mea-
surements. For example, Urtecho et al. integrated all test genetic cir-
cuits into the E. coli genome to reduce the variation in DNA copy
number. They also utilized self-cleaving ribozymes to reduce the
effects of RNase activity, though even the most active ribozymes have
efficiencies of about 90%*". In contrast, Hossain et al. encoded all test
genetic circuits on multi-copy plasmids and did not utilize a ribozyme,
leading to significant stochastic cell-to-cell variation in mRNA levels.
Both in vivo datasets were affected by the presence of alternative o-
factors, which can potentially initiate transcription at motifs outside
the model parameterization. Correspondingly, model accuracy was
highest on the in vitro dataset (LaFleur, R*=0.79), followed by the
in vivo datasets (Urtecho, R? = 0.60; Hossain, R*=0.45).

However, we found that controlling for confounding factors in the
Urtecho and Hossain in vivo datasets led to even higher model
accuracies. For example, changes to the promoter ITR can impact
translation rates, which then indirectly affect mRNA levels by altering
ribosome protection and the mRNA transcripts’ decay rates®***°. To
assess this effect, we applied the RBS Calculator’ to predict the
translation initiation rates of all mRNAs and then analyzed model
accuracy on systems that exhibited high translation rates where mRNA
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decay contributes the least. We found that model accuracy improved
in both cases (Urtecho, R?>=0.61; Hossain, R*=0.50, Supplementary
Fig. 7). The opposite effect was observed when mRNAs were predicted
to have low translation rates; model accuracies were reduced (Urte-
cho, R?=0.51; Hossain, R*=0.43, Supplementary Fig. 7). These obser-
vations suggest that combining multiple models together, predicting
transcription, translation, and mRNA decay rates, is a viable route to
improving accuracy.

Surprisingly, in our set of forward engineered promoters char-
acterized in vivo, we found five examples of very strong promoters
that may have reached a plateau in maximal transcription rate where
the recruitment of RNAP/6’® and/or formation of a stable open com-
plex is no longer the rate-limiting step (Fig. 5C). These promoters have
predicted free energies of —4.4 RT or stronger and further strength-
ening of these interactions only resulted in the same reporter
expression levels. Instead, it is possible that another downstream step
in transcription becomes rate-limiting, for example, the transition
from a stable open complex to an active elongation complex. How-
ever, we do not observe a reduction in reporter expression levels using
such strong promoters, which could occur if overly strong interactions
inhibited RNAP’s ability to escape the promoter region.

During our model development and training, we also identified
several alternate models that were nearly as accurate as the final one
that we selected. For example, instead of splitting the —10 and -35
hexamers into four 3-mers (Fig. 2), we also developed free energy
models that utilized position weight matrices, where the RNAP/0”®
interactions with each single position in the hexamers were quantified
using 4 coefficients (one per A, C, G, T base pair). However, this mono-
nt model had lower accuracies on the LaFleur in vitro dataset as well as
the Urtecho and Hossain in vivo datasets (Supplementary Data 4). To
explain why, we compared the models’ interaction free energies and
found that the 3-mer model identified favorable interactions within
some non-canonical 3-mers located in the upstream region of the -10
hexamer (Supplementary Fig. 8). Separately, we also developed and
tested a non-linear free energy model that included all possible pair-
wise inter-motif interactions (Methods). However, even with the
addition of these quadratic terms, the non-linear model’s accuracy was
only higher on its training set (Urtecho, R>=0.69) and was similar or
lower on other datasets (LaFleur, R?>=0.76; Hossain, R*=0.46; Sup-
plementary Fig. 9; Supplementary Table 4). These results suggest that
it will be necessary to design and characterize new datasets to com-
prehensively test for the presence of cooperative inter-motif interac-
tions within the same promoter region.

We next benchmarked our model against a recently developed
model of transcription initiation” that was trained using Flow-Seq
(Sort-Seq) characterization of promoters with randomly dispersed
mutations or random sequences. This model calculates the proportion
of time RNAP/o spends bound to a promoter sequence using an energy
matrix, which is then related to the measured transcription rates using
several fitted parameters, including an apparent chemical potential, an
effective slope, an effective intercept, and an optimized detection
threshold. Overall, when carrying out equivalent data analysis (Meth-
ods), our model achieves higher accuracy on the LaFleur, Urtecho, and
Hossain datasets (Supplementary Table 4). We also demonstrated our
model’s generality by designing synthetic promoters with highly dis-
similar sequences and targeted transcription rates with high accuracy
(Fig. 5C). All benchmark model calculations, measurements and
F-statistics are included in Supplementary Data 1, 2, 3, and 4.

Further model improvements will require taking into account
additional long-distance and non-additive transcriptional interactions,
for example, interference between colliding RNAPs*~* and sequence-
dependent sensitivities to DNA supercoiling®*, as well as additional
gene expression processes that ultimately affect measurements, such
as changes in DNA copy numbers, transcriptional regulation, transla-
tion rates, mRNA decay rates, and coupling between these

processes®*****, A key necessity will be to ensure both model accuracy
and model generality by evaluating predictions across many datasets
covering the full range of potential interactions. Overall, the best
approach to developing future model improvements will be to design
and characterize promoter datasets that specifically perturb insuffi-
ciently characterized interactions to measure their strengths.

In conclusion, we developed a parsimonious (human-under-
standable) biophysical model of bacterial transcription initiation with
demonstrated accuracy across thousands of 67 promoters with highly
diverse sequences, enabling site-specific control over transcription
initiation rates in engineered genetic systems. Our model shows how
multiple weak interactions contribute to RNAP/o™ transcriptional
control, including its promiscuous activity on DNA sequences without
cognate binding motifs*®, Our bottom-up model-building approach is
readily extendable to other RNAP/o complexes and demonstrates how
advances in machine learning can enhance, rather than replace,
existing thermodynamic formalisms with the overall goal of creating a
universal system-wide language for engineering gene regulation in
synthetic genetic systems.

Methods

Library design

14206 o’° promoters were rationally designed to include 2420 UP
elements, 4096 —35 hexamers, 229 spacers, 2048 —10 extended motifs,
4096 -10 hexamers, 735 discriminators, and 582 ITRs. The 2420 UP
element sequences were designed in two subsets: (i) the first set varied
adenine and thymine (AT) content from O to 100% within a back-
ground sequence containing combinations of consensus, anti-con-
sensus, and mutated —10 and -35 hexamers; and (ii) the second set
introduced short cytosine and adenine repeats into the distal and
proximal binding sites, while varying AT content within a background
sequence containing the same combinations of consensus, anti-con-
sensus, and mutated hexamers. The -10 hexamer set was designed to
include the 4096 6 nt sequences in the —10 hexamer, a consensus —35
hexamer, and a 17-bp spacer. The -35 hexamer set was designed to
include the 4096 possible 6 nt sequences in the —35 hexamer, a con-
sensus —10 hexamer, and 17 bp spacer. The 229 spacers were designed
by varying the spacer length from 1- to 32 bp, in between a consensus
-35 and a consensus —10 hexamer, while varying the spacer nucleotide
composition at each length. The -10 extended promoter variants were
designed to include the 256 possible 4 nt sequence at positions —14 to
-17 within 8 different background sequences containing combinations
of consensus, anti-consensus, and mutated -10 and -35 hexamer
sequences. The 735 discriminator variants were designed in two sets
with a background sequence containing a consensus —10 hexamer: (i) a
first set that varied the guanine-cytosine (GC) content from O to 100%
and the discriminator length from 6 to 8 bp with 5 randomly generated
sequences satisfying each criterion; and (ii) a second set that intro-
duced all possible 3 nt sequences in the first half of the discriminator
and varied the GC content in the remaining 4 nt. The 582 ITR variants
were designed to vary the number of purine bases, the GC content, and
the presence of -10 hexamer-like pause sequences within the ITR.
Unless otherwise stated, promoter variants were designed within a
background containing consensus hexamers and a canonical 17 bp
spacer. A complete list of the promoter sequences is available in the
Supplementary Data 1.

Oligo pool design and optimization

An oligopool containing a mixture of 170 nt oligonucleotides was
synthesized (Genscript). Each oligonucleotide design contained a
promoter variant, four restriction enzyme cut sites, two primer bind-
ing sites, and a unique 20-nucleotide barcode sequence (Supplemen-
tary Fig. 10). A custom design algorithm was used the create barcodes
and primer binding sites. Barcodes were designed to maximize pair-
wise hamming distance between each other and with respect to the
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unique k-mer list generated from the 14206 designed promoters and
the E. coli genome. Primer binding site sequences were designed to
have target melting temperatures of 55 °C, low probabilities of forming
primer dimers, and minimal primer structure. Primer binding site
sequences were also designed with maximum dissimilarity to barcode
sequences, promoter sequences, and the E. coli genome sequence.

Library cloning and growth

PCR was carried out using the oligopool as DNA template to create an
insertion cassette library, using QS5 High-Fidelity DNA Polymerase
(NEB), 20 cycles, and primers 1 and 2 (Supplementary Table 3). DNA
was extracted and purified via gel electrophoresis. The purified inser-
tion cassette library and plasmid pFTV1 were double-digested using
BamHI and Hindlll (NEB), purified, ligated, purified again, and then
transformed into NEB 5-alpha Electrocompetent E. coli (NEB). All liga-
tions used T7 DNA ligase (NEB) unless otherwise stated. Transforma-
tion recovery was 60 min at 37°C using 1mL of pre-warmed SOC
media. Transformation efficiency was 1.2e10” CFU per mL recovery
broth. The transformed cell library was used to inoculate duplicate
cultures using 5mL LB media supplemented with 50 ug/mL chlor-
amphenicol. Shaking cultures were incubated overnight at 37 °C. One
culture was used for cryostocking. Plasmid purification was performed
on the other culture using an EZNA plasmid mini kit (Zymo). The
plasmid library was sequentially digested with Spel and EcoRlI, fol-
lowed by rSAP treatment. Digested plasmid pool was then purified via
gel extraction.

To generate DNA templates for carrying out in vitro transcription
and TSS mapping, the digested plasmid pool was ligated to a Spel/
EcoRI-digested DNA fragment containing a ribosome binding site
(RBS) and mRFP1 coding sequence (Supplementary Fig. 10 and Sup-
plementary Table 3), followed by purification and transformation into
NEB 5-alpha Electrocompetent E. coli cells. The expression plasmid
library (Supplementary Fig. 10) was then harvested from overnight
shaking cultures grown in LB media supplemented with 50 ug/mL
chloramphenicol. For quantification of library coverage, PCR was car-
ried out on the plasmid library to generate promoter-barcode ampli-
cons, followed by next-generation sequencing (lllumina MiSeq),
barcode mapping, and promoter counting. 1ug aliquots of the
expression plasmid library were used as DNA template for the in vitro
transcription reactions.

in vitro transcription rate measurements
Replicate in vitro transcription reactions were carried out for 3 h at
37°C, combining 1ug of the expression plasmid library, 0.5 mM of
each NTP, 1X £. coli RNA Polymerase Reaction Buffer, and 1 uL of E. coli
RNA Polymerase Holoenzyme (NEB). DNA was removed by adding 2.5
units of TURBO DNase and incubating at 37 °C for 30 min. The RNA
product was purified using a RNA Clean & Concentrator Kit (Zymo).
For quantification of RNA variant levels after transcription (RNA-
Seq), cDNA first-strand synthesis reactions were first carried out on the
harvested RNA, using 200 units of SuperScript IV (Invitrogen), 1X
buffer, and transcript-specific primer 2 (Supplementary Table 3). PCR
was carried out to generate barcode-containing amplicons (121 bp),
using 5ng of cDNA as template, primers 2 and 3, and 25 cycles of
amplification (Supplementary Table 3), followed by next-generation
sequencing (Illumina HiSeq 2500, 150 bp paired-end), barcode map-
ping, and barcode counting. For quantification of DNA variant levels in
the expression plasmid library (DNA-Seq), PCR was first carried out on
10 ng of the expression plasmid library to generate promoter-barcode
amplicons (847 bp long), using primers 1 and 2 and 25 cycles of
amplification. The promoter-barcode regions were then condensed
into shorter amplicons (271 bp) by treating the PCR product with T4
Polynucleotide Kinase (NEB), carrying out DNA circularization by
ligation using T4 DNA Ligase (NEB), purifying the monomer DNA cir-
cles via gel extraction, and then PCR amplifying using primers 3 and 4

with 25 cycles (Supplementary Table 3). The promoter-barcode
amplicon library was sequenced using Illumina HiSeq 2500 (150 bp,
paired-end), followed by barcode mapping, promoter identification,
and counting. Three independent in vitro transcription reactions, RNA-
Seq, and DNA-Seq assays were carried out.

Transcriptional start site mapping

Starting with RNA harvested from the in vitro transcription reactions,
the locations of TSSs were determined by treating the RNA with
TURBO DNase to remove template DNA, purifying, treating with RNA 5
polyphosphatase (Epicentre) to remove 5’ phosphates, purifying,
ligating the RNA to an 5" RNA adapter (Supplementary Table 3) using
T4 RNA Ligase (NEB), and purifying again. The treated RNA product
was then converted to cDNA by treating with SuperScript IV (Invitro-
gen) and the transcript-specific primer 2 (Supplementary Table 3). PCR
was then carried out using 10 ng of cDNA as template, primers 2 and 5
(Supplementary Table 3), and 30 cycles of amplification. The linear
DNA product was then circularized by first treating it with T4 Poly-
nucleotide Kinase, followed by ligating using T4 DNA Ligase. Monomer
DNA circles were gel extracted. PCR was then carried out to generate
the barcode-TSS amplicon library, using primers 3 and 6 in 25 cycles of
amplification. The barcode-TSS amplicon library was then sequenced
using Illumina HiSeq 2500 (150 bp, paired-end).

Analysis of next-generation sequencing data

Barcode mapping, barcode counting, and promoter identification
were carried out using custom software developed to analyze data
from massively parallel reporter assays. The abundances of the cDNA-
derived RNA transcript variants were quantified by counting the
numbers of unique barcodes that were within 1 edit distance of the
expected barcode sequences. The numbers of each DNA variant within
the expression plasmid library were determined by first identifying
associated barcode sequences that perfectly matched the expected
barcode sequences, extracting the promoter sequence region, and
mapping it to the expected promoter sequence according to barcode
association. DNA counts were included if the promoter sequence
perfectly mapped to the expected sequence. The RNA transcript
counts and DNA counts were used to determine the relative tran-
scription initiation rate of each promoter variant i in replicate j
according to the formula:

_ RNA,;; « Z?:ODNA,-J
J DNA;; Z;I:ORNA,-J-

©)

r;

where RNA;; is the cDNA-derived barcode count for variant i in
replicate j, DNA;; is the DNA count containing promoter variant i in
replicate j, and n is the total number of variants in replicate j. Replicate
comparisons for RNA barcode counts, DNA promoter counts, and
transcription rate measurements are shown in Supplementary Fig. 1.
Transcriptional start site locations were determined using the TSS-
barcode reads. For each read, the barcode was mapped and used to
identify the associated reference promoter. The TSS location was then
mapped by first identifying the position of a known constant flanking
sequence, extracting the adjacent TSS-containing sequence, and
carrying out a Smith-Waterman alignment using the associated
promoter sequence as a reference. TSS locations were only counted
when the TSS-containing sequence contained only one start location
that perfectly matched the expected sequence.

Data filtering

For model training, the set of promoter variants with a single, pre-
dominant transcription start site was defined by the intersection of
three criteria: (i) promoter variants must have with at least 50 RNA-Seq
and 50 DNA-Seq counts across all triplicate measurements; (ii) pro-
moter variants must have one predominant TSS with at least twice the
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counts as the next most predominant TSS; and (iii) promoter variants
must have a predominant TSS within a 10 bp window surrounding the
anticipated TSS location. Data filtering yielded 5193 promoter variants
that satisfied these criteria. For model testing, the set of promoter
variants with high-precision transcription rate measurements was
defined using a single criterion: all promoter variants must have
coefficients of variation (CVs) that are <0.40. CVs are calculated by
determining the standard deviation of the transcription rate mea-
surements and dividing by the mean of the transcription rate mea-
surements across the three independent measurements. Data filtering
yielded 5388 promoter variants that satisfied this criterion.

A biophysical model of bacterial transcriptional initiation
Inside a cell or in vitro transcription reaction, free RNAP and o-factor
rapidly bind to form RNAP/c complex. Whenever multiple o-factors
are present, they compete against each other to bind RNAP with the
final concentrations of each RNAP/o controlled by the o-factor con-
centrations and their respective binding affinities. The RNAP/o com-
plexes then compete for binding to all available double-stranded DNAs
in order to initiate transcription. This competition is enhanced as most
copies of RNAP/o are already bound to DNA and engaged in tran-
scriptional elongation, leaving much fewer copies of RNAP/o free for
binding to DNA sites. Several factors enable us to assume that these
binding interactions rapidly reach chemical equilibrium, including (i)
the total amount of o-factor is in excess as compared to the amount of
freely available RNAP, leading to most free RNAP being bound by a o-
factor; (ii) the number of DNA binding sites is much higher than the
number of freely available RNAP/o complexes; and (iii) rapid RNAP
turnover after transcriptional termination replenishes the supply of
free RNAP and RNAP/o complex. Accordingly, we can apply statistical
thermodynamics to derive an equation that relates the transcription
initiation rate of a DNA sequence region to the binding free energy of
RNAP/o. Equation 2 is the simplification of this equation, focused on
predicting transcription initiation rates by RNAP/¢’°, which is the
predominant RNAP/o complex during exponential growth conditions.
In our in vitro transcription assays, only one o-factor (07°) is present in
the reaction, enabling us to precisely measure transcription initiation
rates from RNAP/0”° binding events.

Consider a genetic system with P copies of double-stranded DNA
(either chromosomal or plasmid) and R copies of freely available
RNAP/G”°. On that DNA, the sequence region (upstream and down-
stream) around nucleotide position i controls how well it binds to
RNAP/o”° and initiates transcription. p; is the copy number of DNA at
position i. TX; is the transcription initiation rate that begins producing
a mRNA transcript at a TSS located at position i. Here, we formulate a
model for predicting the transcription initiation rate in the forward
direction (TX")) given arbitrary DNA sequences surrounding position i.
We then apply the same model on the reverse complement of the
double-stranded DNA to predict the transcription initiation rate in the
reverse direction (7X%). As the model depends on non-symmetric
amounts of upstream and downstream sequence centered on position
i, the predictions TX; and TX?; are two separate calculations.

We consider the process of prokaryotic transcriptional initiation
at a single promoter as a two-state system. In state 1, RNAP/o is not
bound to the promoter DNA (free state). In state 2, RNAP/c is bound to
the promoter DNA with a stable transcriptional bubble, which includes
the transition from the closed-to-open conformation, the initial melt-
ing of promoter DNA to create an unstable transcriptional bubble, and
the formation of a stable transcriptional bubble (R-loop) via initial
transcription of the ITR region. For many promoters, RNAP/ 6 does not
engage in long-lived transcriptional pausing, enabling us to describe
the system as having two-states. However, in a subset of promoters, it
is possible to have long-lived intermediate states comprising of par-
tially melted DNA bubbles or unstable scrunched R-loops, which could
alter transcription rates. Here, the use of massively parallel

measurements does not provide the ability to measure the presence of
intermediate states, preventing us from incorporating their presence
in a model. Considering the thermodynamics of the two-state system,
we compare the Gibbs free energy between the initial state (state 1) and
the final state (state 2) to calculate the total change in the Gibbs free
energy (AGar)-

The chemical reaction and equilibrium condition for each DNA
sequence region is therefore:

RNAP : 67°+P;, <= C; @
C;=RP;exp(—BAG a1
where R is the amount of available (free) RNAP/07°, C; is the number of
promoter regions bound by RNAP/67, p; is the copy number of DNA at
position i, and 4G is the total change in free energy of RNAP/c” at
a binding site that results in transcription with start site at position i.
The total amount of available RNAP/0”° (R;eq) is the sum of the free/
unbound RNAP/6”° and the RNAP/6”° that is bound to DNA, which is:

Rtotal =R+ chj = R[l + Zij exp(_ﬁAGtotalj)] (5)

Which can be re-arranged to solve for R in terms of Ry, giving:

R
R= total 6
1+35P; exp(—=BAGeorarj) ©

Substituting Eq. 6 into Eq. 4 and re-arranging, we obtain a rela-
tionship between C; and the total change in Gibbs free energy for
RNAP/6’° at each potential DNA binding site in the genetic system.

Pi exp(_ﬁAGmtal,i)

) P; exp(=BAG o)
total T P, exp(—=BAGprqr)) total

Ci=R > @)

Here, we see that the denominator in Eq. 7 is a partition function
(labeled 2) that takes into account the competitive binding of RNAP/
6’° to all potential DNA sites. When the genetic system is a bacterial
cell, the summation to calculate the partition function Z takes place
over all chromosomal and plasmid DNA inside the cell. When the
genetic system is an in vitro transcription assay containing thousands
of plasmid DNA variants (each variant having a different promoter
sequence), the summation takes place over all unique plasmid DNA
variants. In both scenarios, the value of the partition function Z is a
large number that depends on the characteristics of the entire system
(e.g., the cell strain, the growth conditions, the overall MRNA synthesis
rate) and not the specifics of a single promoter sequence that is being
altered.

The transcription initiation rate at the i start site (7X;) pro-
portionally increases with the number of RNAP/0”® bound at that site
(C;), which is:

TXi & Rtatal Pi exp(_ﬁAGtotal,i) (8)
V4

Measured TX rates for each dataset were normalized by promoter
copy number using DNA-seq, removing the dependency of the model
Eq. 8 on p;. Rather than trying to predict, measure, or estimate R,y and
Z, we can instead carry out a comparative analysis by selecting one
promoter from each dataset and labeling it as the reference promoter.
The reference promoter is characterized under the same conditions as
the studied promoters such that the number of free RNAP/G (R0¢q;) and
partition function values (2) are the same. The reference promoter’s
measured transcription initiation rate is labeled TX,.r and has a con-
stant value. The model’s predicted total change in free energy for
RNAP/67° is AGyoearrer- We then take the ratio between TX; and 7X,,-and
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simplify, yielding:

TX,
TXr(Ief = eXp(=BlAG;otar; — AGrotarer)) 9)

We then formulate a free energy model to calculate 4G,y from
sequence information. Our model considers each sequence-
dependent interaction and then sums them together as linear, addi-
tive contributions. The free energy model is:

AGtotal = AG—]O + AG—IOext + AG—3S + AGspacer + AGUF + AGdisc + AGITR
10)

where AG_;, is the contribution from the -10 hexamer sequence, AG_35
is the contribution from the -35 hexamer sequence, AGgpqcer is the
contribution from the DNA spacer’s length and rigidity, 4G is the
contribution from the discriminator sequence, 4Gz is the contribu-
tion from the ITR sequence, and 4G is the contribution from the UP
sequence.

The choice of a reference promoter is somewhat arbitrary, but it
should have a well-measured transcription rate. Here, we selected a
reference promoter with a measured transcription rate closest to the
log-mean-center of the dataset. Without loss of generality, we also set
AGoairer to zero. Therefore, the model is being trained to predict the
differences in 4G, between the promoter variants and the reference
promoter, which leads to an interaction energy scale that spans both
negative and positive values. In general, interaction energies have
negative values when they are stronger than the average interaction
strength. Interaction energies have positive values when they are
weaker than the average interaction strength.

A non-linear free energy model to test for inter-motif
cooperativity

We used the Utrecho et al. data for training the non-linear free energy
model. For each promoter in the dataset, we used our linear free
energy model to scan and predict the energy contribution for each of
the promoter motifs considered in this study. These include (i) the UP
element; (ii) the —35 hexamer; (iii) the spacer sequence, including the
-10 extended; (iv) the —10 hexamer; (v) the discriminator; and (vi) the
initially transcribed region. We then accounted for inter-motif inter-
actions by extending Eq. 10 to include all pair-wise quadratic interac-
tion terms between promoter motifs (interactions only, 6 x5 terms).
The model coefficients were determined using linear regression and
the quadratic model was tested on all datasets (Tables S4-S6).

Model training using machine learning

Machine learning was used to train, test, and validate several linear
models (Ridge Regression, LASSO, and Elastic Net) and parameterize
the unknown interaction energies. To do this, we first enumerated a list
of sequence motifs and biophysical characteristics (Supplementary
Table 1) that have the potential to contribute to the energetics of
transcriptional initiation as quantified in our free energy model
(Eq. 10). There are 472 features in the exhaustive unpruned list. For
model training, we represented numerical features by using empirical
data to calculate their values and normalizing each value by the dataset
max (as to not exceed 1). Categorical features were represented using
bit vectors (an array of Os and 1s, the absence or presence of a fea-
ture). By doing this, both categorical and numerical features were
brought to the same scale, and the relative energy contributions of
each feature could be readily determined as the model coefficient
multiplied by the feature value. We divided our filtered dataset (the set
of promoter variants with a single predominant TSS, see the Data Fil-
tering section above) into a training set (4673 promoters, 90%) and an
unseen test set (520 promoters, 10%). Transcription initiation rate
measurements were log-transformed and normalized by dividing each

promoter’s transcription rate by the minimum transcription rate in the
dataset.

We then carried out model training and hyperparameter optimi-
zation (alpha, 1 parameter) using tenfold cross-validation on the
training set. The best models were then evaluated on the unseen test
set. Accuracy metrics included the mean absolute error (MAE), mean
squared error (MSE), and the squared Pearson correlation (R?). Feature
importance was then carried out using one-feature drop analysis.
Model training and testing was repeated several times, each time
dropping individual features or sets of related features. The differ-
ences in model accuracy were calculated and features were pruned if
they did not appreciably increase model accuracy. Feature drop ana-
lysis identified several features whose values were highly correlated
with other features in the dataset, for example, AT content in the UP
region and the minor groove width in the UP region. The final set of
pruned features was identified by including all features that yielded
appreciable improvements in model accuracy. When faced with
equivalent feature set choices, we selected the smaller set of features
with fewer unknown coefficients, which often relied on biophysical
calculations. We also compared each model’s trained interaction
energies against the canonical interactions known to have the most
effect on transcription initiation rate, which we refer to as positive
controls, and selected models that achieved 100% of these positive
controls. Notably, the differences in interaction energies for the
highest performing models were small, but the small differences could
affect the rank-order of the top/bottom 10 sequence motifs, which
affected their positive control successes. In Supplementary Table 2, we
show the accuracies of the top performing linear models using either
the full or pruned feature sets. We selected the Ridge Regression
model for use in this study, though optimized versions of each linear
model type yielded high accuracies on the unseen test set.

The final set of pruned features included: (i) The energetic con-
tributions from binding to the —35 and -10 hexamer were represented
using one-hot encoding of the presence of each possible 3 nt motif
within each hexamer. All possible 3 nt motif sequences (64 3-mers) are
included and their presence or absence is a categorical feature, total-
ing 256 features. (i) The energetic contributions from the spacer
region were decomposed into two sets of features, including the
spacer length (15-20 bp, each represented as a categorical feature) and
the spacer’s DNA rigidity (a single numerical feature calculated based
on the sequence-dependent persistence length of double-stranded
DNA)*. (iii) The energetic contributions from binding to the -10
extended motif were represented using one-hot encoding of the pre-
sence of each possible 2 nt motif located upstream of the —10 hexamer,
totaling 16 categorical features. (iv) The energetic contributions from
the discriminator region were represented using one-hot encoding of
each possible 3 nt motif in the first 3-nucleotides of the discriminator
region, totaling 64 categorical features. (v) The energetic contribu-
tions from the UP region were represented using the numerical value
of the calculated minor groove width in the distal and proximal UP
sites (each 10 bp long)*. (vi) The energetic contributions from the ITR
were represented by calculating the thermodynamic stability of the
R-loop within the first 15 nucleotides of the ITR region (1 numerical
feature), which is the free energy of the duplexed DNA-DNA complex
subtracted by the free energy of the duplexed RNA-DNA complex.
Numerical feature values are divided by the maximum possible value
for normalization.

In addition, during the initial model training, feature encoding
relied on the positional identification of sequence motifs using the
following procedure. The predominant TSS was determined from TSS
Mapping measurements. The promoter variant sequence was then
scanned, taking into account that discriminator lengths varied from 5
to 10 nt and spacer lengths varied from 15 to 20 nt. The positions of the
-10 and -35 hexamer motifs were then identified by scanning across
the sequence, evaluating a position weight matrix tailored for each
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motif, and calculating a motif score. The positions with the highest
motif score were labeled as the -10 or -35 hexamer. If two or more
locations had equivalent motif scores, the motif location with the most
optimal spacer length (17 nt) was selected. This procedure was tailored
to function alongside our experimental promoter library design, which
included the 4096 possible —35 hexamer motif sequences alongside a
consensus —10 hexamer as well as the 4096 possible 10 hexamer
motif sequences alongside a consensus —35 hexamer. Even though
these designs used a canonical spacer length of 17 nt, an alternate
procedure that assumed that the spacer length was always a constant
yielded scenarios where sequence changes led to shifts in the locations
of the actual -10 or -35 motif and corresponding changes in motif
sequence. Failing to account for these shifts led to mismatched inter-
action energies during model training, for example, non-canonical
motifs having interaction energies similar to canonical motifs, created
by the formation of a canonical motif with a shifted location.

Individual promoter construction and Isogenic characterization
Individual promoters were constructed to test the effects of changing
UP and ITR regions on transcription rates (Fig. 4) and to test the
automated design of promoters using model predictions (Fig. 5).
Promoters were constructed by synthesizing pairs of overlapping oli-
gonucleotides and using PCR assembly to create insertion DNA cas-
settes. Cassettes and the mRFPl-expression plasmid pFTV1 were
double-digested, purified via gel extraction, ligated, and transformed.
Plasmid products were sequence verified using Sanger sequencing.
Isogenic E. coli DH10B cells were transformed with each plasmid, fol-
lowing by quantification of their mRFP1 expression levels during
exponential growth, using spectrophotometry and flow cytometry
measurements. Cells were grown overnight in LB media supplemented
with 50 ug/ml chloramphenicol, followed by a 1:100 dilution into
200ul M9 minimal media supplemented with 50 ug/ml chlor-
amphenicol within 96-well optical bottom microtiter plates. OD600
and mRFP1 fluorescence measurements were recorded every 10 min
until cultures reached an OD600 of 0.20. Cultures were then serially
diluted 1:10 into pre-warmed supplemented M9 media and grown
again until they reached an OD600 of 0.20. 10 ul aliquots were then
extracted and added to 190 ul PBS with 2 mg/mL kanamycin to stop
protein production. Flow cytometry was then carried out on the fixed
cells to record their fluorescence distribution (BD LSR Fortessa). The
mRFP1 fluorescence level was the arithmetic mean of the measured
fluorescence distribution subtracted by autofluorescence, which was
the arithmetic mean of the fluorescence distribution of wild-type E. coli
DHIOB cells. An example of our gating strategy is provided in Sup-
plementary Fig. 14. All designed promoter sequences, model calcula-
tions, and flow cytometry measurements are available in the
Supplementary Data 1.

Monte Carlo analysis of promoter genetic context

The core promoter sequences for the Anderson Library were retrieved
from the iGEM website. We randomly generated 10,000 pairs of 30 bp
DNA sequences with equal weighting of all four nucleotides. These
DNA pairs were used to flank the core promoters creating a simulated
DNA context. The Promoter Calculator was then used to scan and
predict the transcription rate of each member of the promoter library
in all 10,000 contexts. Box plots were generated using each promoter’s
predicted transcription rate distribution.

Automated promoter sequence design

We used an optimization algorithm (simulated annealing) to auto-
matically design 35 promoter sequences with systematically varied
transcription initiation rates, using the statistical thermodynamic
model prediction within the optimization algorithm’s objective func-
tion. Designed promoter sequences were allowed to have variable TSS
positions and use the surrounding upstream/downstream DNA

sequence as part of the promoter. The surrounding upstream/down-
stream DNA sequences were kept constant for all promoter designs.
The promoter lengths varied from 60 to 77 bp, yielding an average
sequence similarity of only ~27%.

Identification of cryptic promoters for genetic circuit
debugging

The statistical thermodynamic model was used to predict the tran-
scription initiation rates across the 1l-promoter genetic circuit
(6793 bp), as studied and characterized in Borujeni et al.%, and identify
desired and undesired/cryptic TSSs on both its sense and anti-sense
DNA strands. We labeled a location as a TSS when its predicted tran-
scription initiation rate was at least threefold higher than the average
transcription initiation rate per each strand. We used RNA-Seq mea-
surements and RNAP flux inferences from Borujeni et al.® to assess the
accuracy of these TSS predictions (Fig. 6). To do this, we counted the
number of actual TSS peaks that were within 10 bp of the model-
predicted TSSs and divided by the total number of model-predicted
TSSs. This window threshold is reasonable considering that RNA-Seq
measurements using 150 bp reads have limited positional precision
and the RNAP flux inference calculation was shifted by up to 20 bp for
known promoters with predominant TSSs.

Model benchmarking

We carried out benchmarking by comparing transcription rate mea-
surements to model predictions, using our model and the models
developed by Lagator et al.” Predictions on promoters using the
Lagator models were carried out by using their provided source code
and data files, which were retrieved from https://github.com/szarma/
Thermoters. We show all Lagator model predictions on their training
and test datasets (Supplementary Fig. 11) as well as the training and test
datasets used in this study (Supplementary Fig. 12). In the Lagator et al.
manuscript, comparisons are made between log;o(P,,) and log;o(TX),
where P, is the Lagator model prediction and TX is the measured
transcription rate. In our model formulation, comparisons are made
between the predicted AGo, and log(TX). To compare between
models, we converted Lagator predictions to natural log scale. Both
models assume a linear relationship between these predicted and
measured quantities. We therefore calculated the Pearson R?, the MAE,
and the MSE for each model on each dataset (Supplementary Table 4, 5
and 6). Unlike the Pearson R?, the MAE and MSE are affected by the
slope and intercept of the linear relationship between the predicted
and measured quantity. We therefore carried out three approaches to
calculate the MAE and MSE for all models on all datasets: (1) for each
model and dataset, we identify the best-fit slope via linear regression
and use it to calculate MAE and MSE (Supplementary Table 4); (2) for
each model and dataset, we identify the best-fit intercept via linear
regression and use it to calculate MAE and MSE (Supplementary
Table 5); and (3) for each model and dataset, we identify the best-fit
slope and intercept via linear regression and use it to calculate MAE
and MSE (Supplementary Table 6). We also compared model residuals
for the best performing models with only a proportionality constant
(slope-only, Supplementary Fig. 13) to test the proportionality
assumption both models operate under. F-tests were carried out to
compare model errors (Supplementary Data 4).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All promoter sequences, model calculations, and experimental mea-
surements are available in Supplementary Data 1, 2, 3, 4 and 5. Next-
generation sequencing read data files in fastQ format are publicly
available at NCBI with accession identifier PRINA754118.
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Code availability

We used Python v3.7.7 and custom code that employed the following
Python modules to develop Promoter Calculator: sklearn v1.0.2, SciPy
v1.7.3, numpy v1.21.2, pandas v1.3.5, matplotlib v3.5.0, pickle v4.0. Flow
cytometry analysis was done with FlowCal 1.2.2. A Python source code
implementation of the statistical thermodynamic model of transcrip-
tional initiation is available at https://github.com/hsalis/SalisLabCode
with Git tag name r2022.
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