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Abstract

Capillary rarefaction is broadly defined as a reduction in vascular density. Capillary rarefaction in the kidneys is thought to
promote hypoxia, impair hemodynamic responses and predispose to chronic kidney disease (CKD) progression and
hypertension development. Various mechanisms have been suggested to play a role in the development of capillary
rarefaction, including inflammation, an altered endothelial-tubular epithelial cell crosstalk, a relative deficiency in
angiogenic growth factors, loss of pericytes, increased activity of Transforming growth factor -b1 and thrombospondin-1,
vitamin D deficiency, a link to lymphatic neoangiogenesis and INK4a/ARF (Cylin-dependent kinase inhibitor 2a; CDKN2A).
In this review, we summarize the tools available to monitor capillary rarefaction noninvasively in the clinic, the
contribution of capillary rarefaction to CKD and hypertension, the known mechanisms of capillary rarefaction, and
potential future strategies to attenuate capillary rarefaction and reduce its negative impact. Therapeutic strategies to be
explored in more detail include optimization of antihypertensive therapy, vitamin D receptor activators, sirtuin 1 activators,
Hypoxia inducible factor prolyl hydroxylase inhibitors and stem cell therapy.
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Introduction

Emerging evidence suggests that the kidney has considerable
capacity to repair and regenerate. However, not all kidney cell
types have the same regenerative capacity. Unlike proximal
tubule cells, cells of the renal vasculature have a poor capacity
for repair, which may lead to a persistent reduction in vascular
density following an acute or chronic insult. The reduction in
vascular density is broadly termed ‘capillary rarefaction’ and is

thought to promote hypoxia, impair hemodynamic responses
and potentially predispose to chronic kidney disease (CKD) pro-
gression and hypertension development [1]. In this review, we
summarize the tools available to monitor capillary rarefaction
noninvasively in the clinic, the role of capillary rarefaction in
the progression of CKD and the development of hypertension,
the known mechanisms of capillary rarefaction, and potential
future strategies that attenuate capillary rarefaction and its
negative impact on CKD and hypertension.
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Noninvasive in vivo assessment of capillary
rarefaction

In kidney biopsy specimens, capillary rarefaction is assessed
histologically. However, kidney biopsy is an invasive procedure,
not suitable for future clinical trials assessing the impact of
therapeutic intervention on capillary rarefaction. Noninvasive
quantitative analyses such as nailfold capillaroscopy a com-
puted tomography (CT) are alternatives more suitable for
repeated assessment in the clinic, the latter marred by radiation
and contrast use, but allowing direct quantification of kidney
vascular rarefaction.

Dermal capillaries represent an ‘open’ and representative
window for the in vivo study of the human microcirculation that
can be directly, repetitively and easily visualized by noninvasive
techniques such as nailfold capillaroscopy to show capillary rar-
efaction [2, 3]. However, visual inspection of the capillaries is
limited by the depth of penetrance of light photons and pro-
vides only a one-dimensional analysis of a three-dimensional
problem.

Functional in vivo micro-CT imaging has allowed accurate
assessment of vessel dysfunction in preclinical CKD [4].
Furthermore, small-caliber artery rarefaction (interlobular
artery and more distal branches) can be followed separately
from capillary rarefaction [4]. In humans, contrast-enhanced CT
angiography has also been used to assess kidney vascular rare-
faction by quantifying renal blood volume. Renal blood volume
was lower in the cortex of CKD patients than in controls and
closely mirrored capillary rarefaction in the corresponding
nephrectomy specimens. In patients with follow-up CT angiog-
raphy, reduction of renal function was paralleled by a decline in
renal blood volume [5].

Capillary rarefaction and CKD progression

The major branches of the renal artery conduct more than 90%
of renal blood flow directly to the glomerular capillary bed
located in the kidney cortex [6]. Then, the efferent arteriole
branches into peritubular capillaries, which initially supply oxy-
gen and nutrients to the highly metabolically active proximal
tubular cells. Less than 10% of the arterial blood flow is deliv-
ered to the medulla and then to more profound parts of the
nephron. As a result, the cortex pO2 is between 30 and 50
mmHg, while in the medulla and medullary rays it is 10–20
mmHg, the lowest in the body [7, 8]. Thus, even under physio-
logical circumstances, tubular cells, especially in some parts of
the nephron, are relatively hypoxic. It is meaningful that
erythropoietin-producing cells reside in the kidney, where they
can sensitively detect hypoxia due to anemia. Under pathologi-
cal circumstances, the hypoxic areas may extend even into cor-
tex region [9]. In this regard, peritubular capillary rarefaction is
a hallmark of CKD and of the acute kidney injury to CKD transi-
tion [10, 11]. Both acute and chronic kidney diseases result in
capillary rarefaction in preclinical models and humans. Thus,
unilateral ureteral obstruction [12], remnant kidney model [13],
chronic allograft rejection [14] Col4a3-deficiency [15] and glo-
merulonephritis [16] are characterized by peritubular capillary
loss associated with interstitial fibrosis and tubular atrophy.
Although the sequence of events connecting peritubular capil-
lary loss to fibrosis and tubular atrophy is still not completely
characterized, hypoxia due to peritubular capillary rarefaction
is thought to be a primary event in CKD and peritubular capil-
lary rarefaction has been associated with reduced kidney regen-
erative capacity [17]. The functional micro-CT findings of

capillary rarefaction were observed before the onset of overt fib-
rosis and may be the earliest diagnostic and prognostic sign for
renal dysfunction. At histological level, CKD progression is asso-
ciated with evidence of capillary injury, such as focal widening
of the subendothelial space and higher numbers of endothelial
vacuoles and caveolae, reduced numbers of endothelial fenes-
trations and increased thickness of the cell soma and lamina
densa of the capillary basement membrane, and increased per-
meability [15].

Capillary rarefaction and hypertension

Capillary rarefaction has also been implicated in the pathogenesis
of essential hypertension. The pathogenesis of capillary
rarefaction in hypertension is unknown, but it may involve a low-
grade inflammatory response [18, 19]. In spontaneously hyperten-
sive rats, there is rarefaction of arterioles and capillaries in skeletal
muscles [20]. Additionally, the number of nailfold capillaries is
lower in patients with untreated essential hypertension than in
controls [21]. In the non-renal population of hypertensive and nor-
motensive individuals, capillary density significantly correlated
with high-density lipoprotein/low-density lipoprotein ratio, but
not with serum vascular endothelial growth factor (VEGF) or with
high-sensitivity C-reactive protein. An inverse association was
found with body mass index, insulin levels and homeostasis
model assessment-insulin resistance [22].

In essential hypertension, capillary rarefaction was associated
with cardiovascular reactivity and exercise-induced rheological
abnormalities. In all, 61 men with essential hypertension and
capillary rarefaction (<80 capillaries per field), and 20 age- and
sex-matched controls underwent a strenuous cycle ergometer
test to monitor, during exercise and recovery, the blood pressure
profile, the hemorheological pattern and other parameters.
Hypertensive men with <72 capillaries per field had an abnormal
hemorheological profile before exercise. The physiological
response to exercise was observed only in controls and in hyper-
tensives with >73 capillaries per field. Abnormal responses to
exercise worsened as capillaries were more rarefied [23].

Finally, hypertension is a frequent side effect of anti-
angiogenesis therapy targeting VEGF receptor signaling in can-
cer patients, to the point that development of hypertension
implies adequate VEGF inhibition and is associated with
improved tumor responses [24]. In this regard, the receptor tyro-
sine kinase sunitinib promoted dermal capillary rarefaction and
this could be one of the mechanisms for hypertension develop-
ment in these patients [25].

Mechanisms of capillary rarefaction

Recent evidence has identified various mechanisms that con-
tribute to the development of capillary rarefaction (Figure 1).
These include inflammation, an altered endothelial-tubular epi-
thelial cell crosstalk, a relative deficiency in angiogenic growth
factors, loss of pericytes, increased activity of TGF-b1 and
thrombospondin-1, vitamin D deficiency, a link to lymphatic
neoangiogenesis and INK4a/ARF (Cylin-dependent kinase inhib-
itor 2a; CDKN2A).

Inflammation and crosstalk between tubular
epithelial cells and capillary endothelial cells

There is a bidirectional relationship between tubular epithelial
cells and capillary endothelial cells. Primary tubular epithelial
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cell injury promotes capillary rarefaction [26] and capillary rare-
faction further promotes hypoxic tubular cell injury, thus creat-
ing a vicious circle.

There are several examples in which tubular injury precedes
capillary rarefaction. Chronic ureteral obstruction results in tub-
ular atrophy, tubulointerstitial fibrosis and peritubular capillary
rarefaction [12]. Exposure of proximal tubular cells to plasma
proteins, as in proteinuric conditions, results in release of
inflammatory cytokines from tubular cells, which may drive
capillary rarefaction [27]. Genetically modified mice have been
used in conjunction with diphtheria toxin-induced sublethal
injury specific to proximal tubular cells, thus demonstrating
that proximal tubular cell injury is sufficient to elicit a strong
peritubular inflammatory response with secondary interstitial
fibrosis and peritubular capillary rarefaction [28].

Additionally, capillary rarefaction decreases tubular blood
and oxygen supply, promoting the loss of tubular cell viability
and tubular atrophy and interstitial fibrosis. Hypoxia causes
oxidative stress [29, 30] and increased expression of lethal
inflammatory cytokines such as FasL, interleukin-1b and tumor
necrosis factor a (TNF-a) [30]. Inflammatory factors and cells
promote endothelial cell injury, including a pro-coagulant and
pro-adhesive phenotype, leading to capillary occlusion by
thrombosis, as well as to endothelial cell apoptosis. Impairment
of blood flow decreases laminar shear stress on endothelial
cells, resulting in further endothelial apoptosis and tubular
hypoxia as a vicious circle [31]. This is especially striking in
antibody-mediated rejection following kidney transplantation.
During this type of rejection, endothelial cells become pro-
thrombotic, causing platelet and leukocyte adhesion, which
eventually leads to increased cell death [32].

VEGF

VEGF promotes peritubular capillary formation and prolifera-
tion [33, 34] and, as discussed above, anticancer drugs targeting
VEGF signaling promote dermal capillary rarefaction [25].

Hypoxia resulting from peritubular capillary rarefaction pro-
motes Hypoxia inducible factor (HIF) activation and the expres-
sion of HIF-dependent genes such as VEGF, potentially favoring
new capillary formation and thus offsetting capillary rarefac-
tion [27, 35]. Thus, VEGF release could be considered a compen-
satory response that enhances peritubular capillary density
[36]. Indeed, kidney-derived mesenchymal stem cells (MSCs)
reduce peritubular capillary rarefaction via secretion of VEGF
[37] and cobalt-induced HIF activation mitigated renal injury in
a CKD model [38]. However, in the remnant kidney model in
adriamycin-induced CKD in mice, and in human CKD, a sponta-
neous increased HIF-1a expression was not associated with
increased tubular cell VEGF, suggesting an HIF-VEGF blockade
in chronically injured tubules [39, 40]. Indeed, loss of tubular
VEGF resulted in substantial reduction of peritubular capillary
density [7]. In this regard, a decreased renal expression of VEGF-
A is associated with a reduction in peritubular capillary density
in diabetic nephropathy [41]. The late stages of the remnant kid-
ney model are also characterized by loss of VEGF expression
and VEGF administration preserved peritubular capillaries and
improved tubulointerstitial injury [13, 42]. In addition, as CKD
progresses, shear stress in the peritubular capillary decreases,
leading to lower nitric oxide and VEGF availability and facilitat-
ing Fas-FasL-mediated endothelial cell apoptosis [27]. However,
the biology of VEGF is complex and tightly regulated, since
excess VEGF may also be deleterious. Excessive and uncon-
trolled VEGF secretion may result in formation of leaky
and nonfunctional vessels, favoring inflammation, macrophage
recruitment and fibrosis [36, 43]. Furthermore, the VEGF120
and VEGF188 upregulated in preclinical CKD are dys-angiogenic
isoforms [44]. Thus, the role of VEGF isoforms may have differ-
ent impact on capillary rarefaction. There are various isoforms
of VEGF such as VEGF121, VEGF165, VEGF189 or VEGF206 [45].
However, although these isoforms have been known for a long
period, their specific impact on capillary rarefaction has not
been studied widely. In one study it was shown that impaired
adipose tissue angiogenesis is associated with overexpression
of antiangiogenic isoform of VEGF-A165b [46]. As also suggested
above, recent evidence showed that VEGF164 is proangiogenic,
whereas VEGF120 and VEGF188 were dys-angiogenic [44].
Apparently, more studies are needed regarding VEGF isoforms
and capillary rarefaction.

Loss of pericytes

Specific ablation of pericytes using a genetic model resulted in
endothelial cell damage within 10 days and subsequent perma-
nent peritubular capillary rarefaction [47]. An increase in the
distance between pericytes and endothelial cells, heralding
detachment of pericytes from capillaries, is an early feature of
acute kidney injury [47]. Pericyte detachment and loss leads to
structural instability of blood vessels and to capillary rarefac-
tion [48–50]. Furthermore, detached pericytes are key precursors
of myofibroblasts [51–53]. Pericytes-turned-myofibroblasts con-
tribute to interstitial fibrosis that leads to further capillary rare-
faction [43]. Additionally, pericytes serve as a local stem cell
population that replenish differentiated interstitial and vascular
cells lost during aging [54]. The loss of this reparative capacity
in the toxic renal microenvironment after acute kidney injury or
during CKD progression promotes cellular death of the unstable
endothelium, with subsequent capillary rarefaction [54, 55].

A number of mediators are involved in the crosstalk between
endothelial cells and pericytes via discontinuities in the capil-
lary basement membrane that helps maintain the normal

Fig. 1. Factors playing a role in capillary rarefaction.
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vessel structure and stability. platelet derived growth factor
(PDGF)-b/PDGF receptor-beta (PDGFR-b) and angiopoietin-Tie2,
appear to be crucial for pericyte differentiation, recruitment and
expansion during angiogenesis. Pericytes produce angiopoietin-
1, a growth factor that stabilizes the microvasculature by acti-
vating the endothelial Tie2 receptor. After renal injury
endothelium-derived angiopoietin-2, an antagonist of
angiopoietin-1, increases, favoring capillary leakiness and peri-
cyte loss [56]. The endothelium and pericytes also communicate
via ephrinB2, TIMPs/matrix metalloproteinases and others [57].
TGF-b, VEGF, Notch and Sphingosine-1-phosphate also regulate
blood vessel stability [55]. In addition, pericyte detachment and
myofibroblastic differentiation are associated with secretion of
anti-angiogenic factors such as ADAMTS1 (a disintegrin and
metalloproteinase with thrombospondin motifs-1), which fur-
ther accelerate capillary regression induced by kallikrein [55].

Bearing these issues in mind one may think that replace-
ment of stem cells and pericytes, in particular, may attenuate
renal injury. However, it may not always be the case. For exam-
ple, Kim et al. showed that administration of autologous MSCs
resulted in rapid aggravation of preexisting renal insufficiency.
Renal biopsy findings at dialysis showed severe interstitial fib-
rosis and inflammatory cell infiltration. This highlights the
potential nephrotoxicity of autologous MSC therapy in CKD
patients [58]. It was also concluded that regarding the results of
the preliminary data about stem cell therapy, long-term follow-
up data are not available and there is an absence of consensus
between therapeutic protocols [59].

TGF-b1 and thrombospondin-1

During hypoxia, TGF-b1 stimulates angiogenesis indirectly by
inducing VEGF-A expression [60]. However, TGF-b1 directly
causes endothelial cell apoptosis and capillary pruning and this
negative effect predominates during renal fibrosis [27].

Thrombospondin-1 could potentiate the fibrotic response
by both activating TGF-b and exerting antiangiogenic actions,
thus leading to capillary rarefaction [36]. Inhibition of thrombo-
spondin expression suppressed tubulointerstitial fibrosis by
promoting VEGF production and restoring peritubular capillary
density [61].

Vitamin D deficiency

The role of vitamin D deficiency in tubulointerstitial damage
and peritubular capillary rarefaction following acute kidney
injury induced by ischemia-reperfusion was studied in rats fed
vitamin D-free or standard diets for 35 days. On Day 28, rats
were randomized into four groups: control, vitamin D deficient,
bilateral kidney ischemia-reperfusion and a combination of
both. Vitamin D deficiency alone led to reduced capillary den-
sity and it further exacerbated the capillary rarefaction induced
by kidney ischemia-reperfusion [11].

Link to lymphatic neoangiogenesis

Peritubular capillary rarefaction may be associated with simul-
taneous proliferation of lymphatic vessels. Cortex and medulla
microvascular density was lower in end-stage renal allografts
than in controls, while new lymphatic vessels were observed in
the graft tubulointerstitium, but not in controls [62, 63]. The
drivers of the divergent response of peritubular capillaries (rare-
faction) and lymphatic capillaries (neoangiogenesis) should be
explored in further studies, but there is some evidence for a role
of angiotensin II [63].

INK4a/ARF (CDKN2A)

Deletion of the INK4a/ARFlocus encoding p16 and p19 improved
kidney regeneration and decreased capillary rarefaction after
renal ischemia-reperfusion [64]. p16 and p19 play a role in tubu-
lar atrophy and interstitial fibrosis by promoting apoptosis and
cell senescence.

Potential implications for therapy and future
research

Since there is evidence that capillary rarefaction plays an
important role in CKD progression, tubular atrophy and intersti-
tial fibrosis and it contributes to the development of essential
hypertension, prevention or treatment of capillary rarefaction
may potentially halt the progression of CKD and hypertension.
The potential for intervention includes the use of already avail-
able drugs (e.g. specific antihypertensive agents) or novel thera-
peutic approaches.

Antihypertensive medication

An unresolved issue is the distinct effect of different antihyper-
tensive medications on capillary rarefaction. Angiotensin-con-
verting enzyme inhibitors and angiotensin-1 receptor blockers
may induce angiogenesis and reduce or even reverse microvas-
cular rarefaction [65]. In rats with CKD, an angiotensin II antago-
nist for 10 weeks regenerated the kidney vasculature that had
previously undergone rarefaction and this was associated with
reduced apoptosis and increased endothelial cell proliferation
[66]. Angiotensin-converting enzyme inhibitors also decreased
both peritubular capillary rarefaction and lymphatic neoangio-
genesisin a rat renal allograft model [63]. However, in observa-
tional cross-sectional human studies, dermal capillary density
in treated hypertensive individuals has been reported to be
lower than or higher than in control normotensive individuals
[67, 68]. The reason for these seemingly contradictory findings
is unclear and may depend on the specific antihypertensive
agents, length of untreated or treated hypertension, or other
factors. Only prospective studies are likely to provide significant
insights.

Vitamin D receptor activators (VDRA)

The fact that vitamin D deficiency aggravates capillary rarefac-
tion does not necessarily imply that pharmacological vitamin D
doses of VDRA prevent kidney capillary rarefaction. We found
no report addressing this. However, in a randomized clinical
trial, the VDRA paricalcitol slowed the progressive endothelial
dysfunction of moderate CKD, pointing to potential endothelial
preservation capabilities [69]. Moreover, calcitriol prevented
reduction of cardiac capillary density in rats with CKD [70].

Sirtuin 1 activators

A number of sirtuin 1 activators are known, most notably resver-
atrol, although the pharmacokinetic properties of resveratrol are
suboptimal and additional sirtuin 1 (SIRT1) activators have been
developed to delay aging and age-related diseases [71]. To our
knowledge, these have not yet been tested for their preservation
of kidney capillary density properties. However, sirtuin 1 may
prevent capillary rarefaction. Sirtuin 1 is highly expressed in
endothelial cells and regulates angiogenesis signaling pathways
via its deacetylase activity [72]. In mice with inactive Sirtuin 1,
angiogenesis is compromised [73, 74]. Endothelial Sirtuin 1
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dysfunction causes activation of endothelial Notch1 signaling,
which leads to enhanced apoptosis and senescence of peritubu-
lar capillary endothelial cells with impaired endothelial prolifera-
tion and expanded myofibroblast population, peritubular
capillary rarefaction and fibrosis following kidney injury.
Specifically, Sirtuin 1 mutant mice have more severe renal fibro-
sis and renal function impairment than wild-type mice following
induction of folic acid nephropathy [75]. Compared with wild-
type kidneys, SIRT1 mutant kidneys up-regulate Delta-like 4
(DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target
genes) and Notch intracellular domain-1 (NICD1, active form of
Notch1) in microvascular endothelial cells post-injury. SIRT1
mutant primary kidney microvascular endothelial cells display
lower motility and vascular assembly, and faster senescence
than wild-type cells [10].

VEGF

Since VEGF is the major survival factor for capillary endothe-
lium, it may attenuate capillary rarefaction. Administration of
recombinant VEGF-A121 decreased peritubular capillary rare-
faction, improved renal function, lowered mortality and
reduced fibrosis in a remnant kidney model [13]. However, VEGF
is not yet in clinical use, in part due to the potential for harm
due to excess VEGF activity, which may depend on the tissue
microenvironment and on the existence of two VEGF receptors,
VEGFR1, involved in the inflammatory responses, and VEGFR2,
predominantly mediating angiogenesis [72]. In this regard, a
VEGF mutant with specificity for VEGFR2 resulted in increased
kidney damage, despite the supposed specificity for the VEGF
receptor mediating the potentially beneficial effects [76]. A bet-
ter way to enhance VEGF activity and keep it within physiologi-
cal levels may involve a family of HIF activators, the HIF prolyl
hydroxylase inhibitors, to which are undergoing clinical trials to
treat anemia in patients with CKD [77]. These drugs increase
hemoglobin levels without increasing blood pressure, an effect
ascribed to increased VEGF secretion. These agents should be
tested to prevent kidney capillary rarefaction.

Stem cell therapy

Kidney-derived MSCs have also been suggested to ameliorate
capillary rarefaction through the release of proangiogenic fac-
tors, such as VEGF, or microparticles [78, 79]. Stem cell-derived
microparticles decrease endothelial-to-mesenchymal transi-
tion, enhance endothelial cell proliferation and reduce apopto-
sis, resulting in decreased peritubular capillary rarefaction [78].
Microvesicles released from endothelial progenitor cells also
protected against CKD progression by inhibiting capillary rare-
faction [80]. Injection of kidney progenitor-like cells into ani-
mals with subtotal nephrectomy resulted in slower loss of renal
function, and milder macrophage and myofibroblast recruit-
ment, and vascular rarefaction [81]. Finally, adipose stromal
cells accelerated recovery from renal ischemia-reperfusion,
decreasing inflammation and tubular injury, and preserving
peritubular capillaries [82]. The challenges for cell therapy are
still enormous, but positive clinical trials have been reported in
recent, large-scale, Phase 3 trials in other fields of medicine [83].

Conclusion

In conclusion, capillary rarefaction contributes to the develop-
ment and progression of CKD and, potentially, to hypertension.
Various mechanisms contribute to capillary rarefaction, which

point to several potential therapeutic strategies. However, for
some mechanisms, it is still unclear whether the improvement
in capillary rarefaction is a primary event, or an event secon-
dary to the improvement in other factors such as tubular cell
injury or inflammation. Whether diminishing capillary rarefac-
tion slows down the progression of CKD and the development
of hypertension remains to be defined in clinical trials.
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