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Abstract Microbiota inside the gut plays a vital role in

maintaining human health. Microbial dysbiosis is associ-

ated with various complications leading to a range of dis-

eases. Epigenetic changes enforced by various

environmental and lifestyle factors lead to heritable modi-

fications. These epigenetic modifications include DNA

methylation, histone modifications, chromatin remodelling,

and ribonucleic acid-based mechanisms. This review

summarizes the impacts of environmental factors on the

gut microbiome, epigenetic modifications, and their role in

cardiovascular diseases.
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Introduction

Microbes including viruses, archaea, and bacteria live

symbiotically on mucosal surfaces, mouth, gut, and skin of

human beings. Around 1,000 unique species of microbes

have been identified to survive in the human gut. The

microbial colonization initiates from birth and maintains

throughout the life span [1, 2]. Various studies have

demonstrated important roles of microorganisms in diverse

fields, such as fermentation [3, 4], biomolecules [5, 6],

bioremediation [7–10], anti-toxicity [11, 12], and diseases

and health [13–18]. Pathogenesis, including the recent

outbreak of coronavirus, can be effectively treated through

the application of these bioactive molecules, vaccines, and

nanomaterials [11, 14, 19–24]. Microbiota coevolution

with mammalian host results in the plethora of vital func-

tions, such as metabolic signaling, energy metabolism,

regulation of integrity, mobility of the gut barrier, and

formation of the immune system. Gut microbiota plays a

significant role in the manifestation of metabolic disorders

and infections [1, 12, 25, 26].

International Human Epigenome Consortium and the

Human Epigenome Projects have been initiated to under-

stand the overall epigenetic mechanisms involved in

human diseases and health. The changes in non-coding

RNA were believed to cause obesity, diabetes, and neu-

rodegenerative diseases and those affecting lung and liver

[27, 28] (Fig. 1). The epigenetic DNA imprinting is usually

the most active during the early 1,000 days period from

conception. During this journey, early nutrition plays a

major role in regulating developmental programming. This

phase of development possibly decides the individual

susceptibility to diseases like obesity, diabetes, cardiovas-

cular diseases (CVDs), and other chronic non-communi-

cable conditions that may occur later in life [29]. In this
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review, we describe the interactive roles of the microbiome

and epigenetic regulation on human health.

Gut Microbiome and Health

Glycaemia is controlled through the gut-brain axis. Insulin

resistance and hyperglycaemia are associated with dis-

turbed communication between the enteric nervous sys-

tem, and hypothalamus to the nutritional state [30].

Bacterial strains belonging to Clostridium, Bifidobac-

terium, Lactobacillus, Faecalibacterium, Roseburia, and

Escherichia coli are involved in patients with Diabetes.

Faecalibacterium and Roseburia produce short-chain fatty

acids (SCFAs) such as butyrate, which play a significant

role in differentiating Treg cells and exhibit anti-inflam-

matory properties [30, 31]. The altered intestinal flora

during Chronic kidney diseases (CKDs) exhibit an abun-

dance of Proteobacteria, Verrucomicrobia, and Fusobac-

teria, leading to the elevated levels of lipopolysaccharide

(LPS) and inflammation associated with the increased

levels of C-reactive protein, interleukin-6, and tumor

necrosis factor-a in serum [32]. In neurodevelopment

disorders (autism which affects one out of 59 children in

the USA), many functions get impaired due to microbiome

dysbiosis such as maintenance of intestinal epithelial cell’s

tight junctions, elimination of waste and toxins, absorption

of nutrition, food metabolization, production of neuro-

transmitters, and regulation of the immune system, and

prevention of the gut colonization by pathogenic bacteria

[33]. Epigenetic dysregulation is an important factor in the

autism etiology, representing the effect of drugs, envi-

ronment, and food on the intestinal microbiome [34].

Alzheimer’s disease (neurodegenerative) is mediated by

the enhanced permeability of the blood–brain barrier and

the gut due to microbiota dysbiosis through signalling

pathways and cytokines [35].

Epigenetic is defined as the heritable sequence-inde-

pendent DNA changes and operates through histone mod-

ification (methylation, phosphorylation, and acetylation),

DNA methylation, and micro-RNA-based mechanisms

[36]. It plays a prominent role in the pathogenesis of

CVDs, including cardiomyopathy, cardiac fibrosis, con-

genital heart disease, atherosclerosis, hypertension, and

heart failure. The imbalance of gut microbiota leads to

obesity (metabolic diseases) involving the enhanced

activity of the endocannabinoid system, increased levels of

LPS, and the abundance of carbohydrate fermenting bac-

teria [37]. Alterations in gut microbiome led to Inflam-

matory Bowel diseases (IBD, affects 3.5 million people)

due to a reduction in SCFA producing obligate anaerobes

and a rise in facultative anaerobes (E. coli) [38]. The

microbiome interactions with the host play an important

role in the pathogenesis of non-alcoholic fatty liver dis-

eases (NAFLD) [39].

Epigenetic Alterations and Microbiome

DNA methylation is one of the most ubiquitous and fun-

damental mechanisms of epigenetics alteration that occurs

on CpG island (50-C-p-G-30) by DNA methyltransferases

(DNMTs). DNMTs are highly susceptible to nutrient

availability and are influenced by gut microbial metabolism

[40]. The silencing of the estrogen receptors (ERa, and
Erb) due to DNA methylation, results in atherosclerosis.

5-aza-2-deoxycytidine (demethylating agent) up regulated

the expression of COL15A1, ERa, and ERb.Resveratrol up
regulated the expression of sirtuins (SIRT1- silent mating

type information regulation type 2 homolog 1), and

Acetylsalicylic acid targets ABCA1 via gene-specific DNA

methylation. Through global DNA methylation, Cocoa

down regulates DNMTs and methylenetetrahydrofolate

reductase, and folic acid regulates multiple gene

Fig. 1 Microbial dysbiosis and

diseases. CKD-Chronic kidney

diseases, IBD-Inflammatory

bowel diseases, NAFLD-Non-

alcoholic fatty liver diseases
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expression. These compounds are associated with the

therapy of atherosclerosis and coronary heart disease [41].

Around 28,000 genes have been mapped for long non-

coding RNAs (lncRNAs,[ 200nucleotides).Like master

transcription factors most of the lncRNAs show tissue-

specific expression patterns, also controls diverse opera-

tions involving metabolism, nuclear organization,

embryogenesis and development, differentiation, X-inacti-

vation, proliferation/cell cycle progression, epigenetic and

transcriptional regulation[42]. Out of 2000 miRNAs rec-

ognized in humans, 150–200 are associated with CVDs.

The presence of miRNAs in feces of humans and mice

could be considered as an indicator of intestinal malig-

nancies. The bacterial genes usually get influenced by

miRNA (an inverse correlation between the concentration

of microRNA and microbial density).Microbiota imbal-

ance—miR-181 axis has a key role in the development of

insulin resistance and obesity [42].

Ageing related CVDs involve telomere attrition, dys-

regulated nutrient sensing, stem cell exhaustion, genomic

instability, mitochondrial dysfunction, epigenetic alter-

ations, altered intercellular communication, loss of pro-

teostasis, and cellular senescence [43].Gut microbes

metabolize choline and L-carnitine into trimethylamine-N-

oxide (TMAO) via TMA by liver flavinmonooxygenase 3.

The evidence of links between CVD to gut microbiota via

TMAO is considered as a novel opportunity for therapeutic

intervention for hypertension, heart failure, stroke, CKDs,

Alzheimer’s, platelet aggregation, obesity, Type-1 and

Type-2 diabetes, and atherosclerosis through the uses of

TMAO inhibitor [43, 44]. The sirtuins 1 and 6 (SIRT1 and

6) have a strong influence on DNA methylation and play a

vital role in chromatin structure modulation through his-

tone deacetylation. SIRT1enhances endothelium-depen-

dent vasorelaxation through deacetylation of endothelial

nitric oxide synthase and plays a beneficial role against

cardiovascular ageing by promoting autophagy and by

suppressing oxidative stress and inflammation [45].

Senescence-accelerated mouse prone 8is one of the most

suitable models to study non-chronological and natural

vascular ageing. Ceramides get accumulated/enhanced

during ageing and age-related stress conditions, thus

involved in cell cycle arrest/apoptotic signalling. During

ageing, chronic cellular damage results in over cargo

accumulation or due to diminished autophagic flux making

autophagy insufficient causing the interacting signals

between gut microbiota, ageing, and sphingolipids [46].

Microbiota Based Health Interventions

Protein sources (casein, soy, cod, beef, chicken, and pork)

modulate energy efficiency, and obesity progression by

affecting gut microbiota. The terrestrial animal-based

proteins have been found to be more obesogenic than those

of seafood or vegetables [26, 47]. Human and animal-based

studies have suggested that the level of Lactobacilli and

Bifidobacterium can be increased after consuming soy

foods and is beneficial for reducing the risk of diseases.

Metabolites (betaine, folate, choline, and vitamin B12) are

potentially implicated in the synthesis of 6-methyltetrahy-

drofolate (methyl donor) to generate S-adenosylmethion-

ine, which participates in DNA methylation [47].The gut

metabolites like folate, acetate, and butyrate are responsi-

ble for epigenetic modifications through the regulation of

various enzyme activities. The SCFA, butyrate is known to

be a potent histone deacetylase (HDAC) inhibitor which

promotes histone hyper acetylation and enhances the

accessibility for gene transcription. Butyrate-based HDAC

inhibition triggered its anti-inflammatory property by

repressing nuclear factor jB and interferon c production,

and by enhancing peroxisome proliferator-activated

receptor c (PPARc) expression in colon cancer. PPARc is

protective against cardiac diseases, therefore butyrate and

its sub-products like sodium butyrate acts as an anti-in-

flammatory agent against CVDs. Butyrate has another

protective potential which operates by histone H3 modifi-

cation which alters G1-specific cell cycle proteins leading

to the arrest of the proliferation of smooth muscle cells and

induces the production of regulatory T cells in the colon to

boost the immune system [47].

Probiotics (living microorganisms), which when given

out in sufficient amounts confer health benefits on the host.

Lactobacilli containing fermented milk products have been

reported for the longevity of Bulgarians. The mechanism of

probiosis comprises stimulation of epithelial cell prolifer-

ation, immunomodulation, manipulation of intestinal

microbial communities, differentiation, and fortification of

the intestinal barrier, and the suppression of pathogens

[48]. Faecal microbiota transplantation carries therapeutic

potential against functional gastrointestinal disorders,

obesity, metabolic syndromes, and inflammatory bowel

disease through the administration of faecal microbiota into

the recipient’s intestinal tract from a healthy donor. This

transplantation changes the microbial composition of the

gut of the recipient and makes them healthier [49]. Many

drugs are playing the bidirectional communication with the

microbiome. Known drugs in case of diabetes that interact

with the microbiome include anti-diabetic drugs like met-

formin, a thiazolidinedione, inulin-type fructans, dipeptidyl

peptidase-4 inhibitors, glucagon-like peptide-1 receptor,
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andalpha-glucosidase inhibitor. Gut microbiota composi-

tion studies suggested that increased frequency of moderate

exercise from never to daily enhances diversity among the

phylum firmicutes (including Faecalibacteriumprausnitzii,

and species from the genus Coprococcus, Lachnospira, and

Oscillospira) that promotes a healthier environment in the

gut. Regular physical exercise associates strongly with

cardiovascular health benefits during ageing through the

mechanism of epigenetic modifications [50].

Conclusion

Gut microbiome and host bidirectional communications

play an important role in the prevention and treatment of

many diseases like diabetes, autism, Alzheimer’s, CVDs,

CKD, IBD, obesity, fatty liver, and lung diseases. The

detailed works on microbes and their metabolic products

are expected to modulate the associations of microbes.
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