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Abstract

Naturally growing vegetation often suffers from the effects of drought. There exists a vast

number of drought indices (DI’s) to assess the impact of drought on the growth of crops and

naturally occurring vegetation. However, assessing the fitness of these indices for large

areas with variable vegetation cover is often problematic because of the absence of ade-

quate spatial information. In this study, we compared six DI’s to NDVI (the normalized differ-

ence vegetation index), a common indicator of vegetation occurrence and health based on

satellite-acquired reflectance data. The study area covers an aridity gradient from forests to

deserts along a 2,400-km-long section across the Inner Mongolia Autonomous Region of

China. On an annual timescale, standardized precipitation index (SPI) was the most appro-

priate in assessing drought in steppes and deserts. On a seasonal timescale, the self-cali-

brated Palmer drought severity index (scPDSI) displayed the greatest sensitivity during the

summer, but not during the other seasons. On a monthly timescale, scPDSI demonstrated

the greatest sensitivity to the various vegetation zones (i.e., forests, steppes, and deserts)

in June and July. Further analysis indicated that summer drought had a lag-effect on vegeta-

tion growth, which varied from one to six months according to the specific vegetation cover.

The mixed response of DI’s to NDVI and the lag-effect in transitional vegetation on annual,

seasonal, and monthly timescales were ascribed to differences in DI definition and the domi-

nant plant species within the transitional cover. The current study has the potential to inform

the drafting of selection criteria of DI’s for the study of drought-related impact on naturally

growing vegetation at timescales from month to year.

Introduction

Drought can lead to serious reduction in crop production, possibly affecting the socio-eco-

nomic sustainability of communities [1]. Drought can lead to plant growth reductions by
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reducing the stomatal conductance and plant photosynthesis over the short term and plant

biomass accumulation over the longer term [2]. Globally, drought causes billions of dollars of

loss and adversely affects millions of people each year. Historically, China has been one of the

most drought-prone countries of the world, with numerous records of long-lasting droughts

that were responsible for widespread famines [3]. Reliable drought identification and predic-

tion is hence vital for natural resources management in semiarid to arid parts of the world [4].

Drought indices (DI’s) have been extensively used in drought assessment, monitoring, and

forecasting. Over the years, more than 150 DI’s have been developed [5]. Drobyshev et al. [6]

studied the correlation of the standardized precipitation index (SPI), monthly drought code

(MDC), Palmer drought severity index (PDSI), self-calibrated Palmer drought severity index

(scPDSI) with direct monthly rainfall and fire frequency, and concluded that scPDSI was the

most adequate to evaluate fire frequencies in the southern region of Sweden. Wang et al. [7]

studied the pairwise relationships between SPI, SPEI, Palmer’s Z-index, PDSI, and soil mois-

ture and found that: (i) with increased soil depth, soil moisture was more strongly correlated

with DI’s at longer timescales; (ii) SPEI worked just as well as or better than SPI for all soil lay-

ers; (iii) the Z-index worked better than PDSI for shallow soils, with the opposite for deeper

soils; and (iv) multi-component DI’s worked better than DI’s based on a two-layer bucket

model. Tian et al. [8] evaluated six DI’s (i.e., PDSI, Palmer’s Z-index, precipitation percent

normal, precipitation percentiles, SPI, and SPEI) in monitoring agricultural drought in south-

central USA and found no single index was able to capture all aspects of drought in the region.

Liu et al. [9] analyzed agricultural drought in the northern China plains using SPI, SPEI

and PDSI, and found multiple indices were required to generate robust inferences of

drought. Bai et al. [10] evaluated the applicability of scPDSI and SPEI using long-term satel-

lite-acquired estimates of rainfall and the China Monthly Precipitation Analysis Product and

found that SPEI was consistent with observations in eastern China, whereas scPDSI was

found to provide inferior assessments of drought. Using monthly rainfall data at 6-, 12-, and

24-month timescales, Mahmoudi et al. [11] compared SPI, Percent of Normal Index (PNI),

Z-Score Index (ZSI), Deciles Index (DI), CZI index (CZI), Effective Drought Index (EDI),

and Modified China-Z Index (MCZI) and found through their research that SPI and EDI

were best suited to monitor drought in Iran. Javed et al. [12] investigated drought evolution

and spatiotemporal variations from 1982–2017 in crop-, forest-, grass-, and desertland in

China using two remote sensing-based indices, i.e., (i) NDVI anomaly, and (ii) the vegetation

condition index (VCI), and an evaluation of SPI using inputs from moderate resolution

imaging spectroradiometer (MODIS) and long-term data records (LTDR). It revealed that a

positive correlation existed between the DI’s (i.e., NDVI anomaly, VCI, and SPI) and rainfall

for the different vegetation zones; with VCI performing better than NDVI anomaly. Differ-

ences in performance among DI’s resulted mainly because of differences in the physical envi-

ronment (e.g., local to regional climatology, soils, and vegetation cover) that the indices were

applied to [8] and the formulation of the indices. Determining which DI to use for particular

regions and for particular purposes is not entirely clear. Given the range of DI’s currently

available, it is essential to evaluate many of these indices to identify which ones are suitable

for particular settings and purposes.

Ecologists are greatly concerned with the response and adaptability of terrestrial ecosystems

to drought, particularly in water-stressed environments [13,14]. Drought affects both the func-

tion and structure of ecosystems [15]. Assessment of DI’s over large areas is often problematic

because of the absence of adequate spatial information [16,17]. Currently, all research pertain-

ing to drought impact on ecosystems has focused on agricultural ecosystems. Our study

expands this research by assessing the response of six DI’s applied to natural ecosystems, from

forests to steppes, to deserts, in northeastern China.
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Remote sensing technologies provide an important source of spatiotemporal data in the

study of vegetation dynamics and climate change, particularly because it offers near-continu-

ous images over time and their convenience [18–20]. Vegetation response to drought over

large, diverse areas is routinely observed with remote sensing techniques [21]. Healthy vegeta-

tion reflects more near infrared (NIR) and less red radiation. Normalized difference vegetation

index (NDVI) is a normalized ratio of red to NIR spectral reflectance, i.e., (NIR-red)/(NIR

+red). Prior research has shown that vegetation productivity, photosynthetic effective radia-

tion, and vegetation coverage are strongly correlated to NDVI [22,23]. In practice, NDVI is

often used in assessments of crop yields during periods of water-supply shortages and drought

[24–26]. Nicholson et al. [27] used AVHRR-based estimates of NDVI and found particularly

strong plant response to rainfall in the eastern desert steppes of Africa. Suzuki et al. [28] found

a strong relationship between the spatial distribution of NDVI and seasonal change and cli-

mate factors in Inner Siberia. Barbosa et al. [22] analyzed NDVI changes in northeastern Brazil

and found that values of NDVI in the area were greatly influenced by drought. Meng et al. [29]

studied the characteristics of climate variability and NDVI from 1982–2000 in China, and

observed strong correlation between NDVI and spatiotemporal variation in several key hydro-

climatological variables. The primary objective of the research is to assess the suitability of dif-

ferent DI’s for different temporal resolutions, ranging from month to season, to year across a

2,400-km-long aridity gradient from semi-humid (forests) to arid climates (deserts) in north-

eastern to northcentral China.

Methods and materials

Study area

The study area is located in Inner Mongolia Autonomous Region of China (37˚24’-53˚23’N,

97˚12’-126˚04’E), measuring 2,400 km from east to west and 1,700 km from north to south

(Fig 1). The climate transitions from semi-humid to arid conditions can be seen from east to

west of the study area. Vegetation zones along the gradient show clear transitions from forests,

meadow steppes, typical steppes, desert steppes, and deserts, with annual temperature and

cumulated precipitation increasing and decreasing from east to west, respectively (Fig 1). Plant

species associations for each vegetation zone appear in Table 1. With differences in rooting

depths, different plant species respond differently to drought. Owing to their deep roots, trees

and some shrubs are largely resistant to long-lasting drought, compared with their shallow-

rooted counterparts (e.g., grasses) [30].

Intercontinental climate is characterized by cold and long winters, and dramatic swings

in temperature during the spring and autumn. Inner Mongolia is one of the most sensitive

regions to global climate change, experiencing substantial changes in climate over the past 50

years [31]. Frequency and severity of drought is expected to increase under continued global

warming.

Data source

Daily and monthly hydrometeorological data (2000–2015) from 26 weather stations in Inner

Mongolia (Fig 1) were downloaded from the China Meteorological Data Network (http://data.

cma.cn/, last accessed Nov. 14, 2018). These data and their derivatives served as input in the

calculation of DI’s (see below). Vegetation evolution and dynamics was examined in terms of

MODIS-based estimates of NDVI, downloaded from the Geospatial Data Cloud (http://www.

gscloud.cn/, last accessed Nov. 14, 2018).
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Drought indices

The six DI’s considered here consist of SPI (standardized precipitation index), SPEI (standard-

ized precipitation evapotranspiration index), MI (relative moisture index), Pa (precipitation

Fig 1. Vegetation zones and weather station locations across the aridity gradient from east to west. Reprinted from [32] under a CC BY license,

with permission from the Chinese Journal of Plant Ecology, original copyright [1990].

https://doi.org/10.1371/journal.pone.0233525.g001

Table 1. Annual temperature, precipitation, and dominant plant species within the five vegetation zones.

Ecoregion Temperature (˚C) Precipitation

(mm)

Dominant Species Major Soil Types Parent Material

Mean Maximum Minimum

Forest -3.2 28.6 -31.2 450~500 Forest (Larix gmelinii, Larix sibirica, + Betula
platyphylla Suk)

Black soil + Dark

brown forest soil

Granite + Basalt

Meadow

Steppe

-2.2 28.5 -31.6 350~500 Grass (Leymus chinensis + Stipa baicalensis) Chernozem

+ Chestnut soil

Granite + Basalt

Typical

Steppe

3 31.2 -24.5 300~400 Grass (Stipa grandis + Stipa sareptana var.
krylovii)

Chestnut soil Granite, Basalt, Gneiss,

+ Conglomerate

Desert

Steppe

5.1 32.1 -23 135~311 Grass+shrub (Stipa tianschanica var. klemenzii,
Stipa breviflora, Stipa glareosa + sparsely
distributed Caragana sinica)

Chestnut soil

+ Brown calcic soil

Granite, Gneiss, Diorite,

+ Limestone

Desert 7.2 33.6 -19.2 45~215 Shrub (Caragana sinica + Nitraria
sphaerocarpa)

Gray desert soil

+ Grey-brown desert

soil

Granite, Diorite, Gneiss,

Gabbro, + Sandstone

https://doi.org/10.1371/journal.pone.0233525.t001
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anomaly percentage), K (Sielianinow coefficient), and scPDSI (self-calibrated Palmer drought

severity index) (Table 2). The China Meteorological Administration currently uses some of

these DI’s in the classification of meteorological drought throughout the country [31]. The K-

index forms the basis for the Climate Regionalization in China and is widely used in assess-

ments of climate change and associated drought, as well as assessments of rates of desertifica-

tion across China [20,32]. Traits of the six DI’s include:

SPI is used to quantify precipitation deficits as anomaly percentile on multiple timescales. SPI

depends on commonly available precipitation data and is relatively easy to implement in

the assessment of drought severity at different timescales [33]. It is computed by fitting a

Gamma probability density function to the frequency distribution of precipitation and

transforming the Gamma distribution into a standardized normal distribution [34]

(Table 2). The drought severity is defined by the probability of anomaly occurrence. Lloyd

et al. [34] found SPI suitable for quantifying meteorological, hydrological, and agricultural

drought.

SPEI is derived from SPI by standardizing the difference between water supply (precipitation)

and water demand estimated from potential evapotranspiration [35, 36] (Table 2). The

potential evapotranspiration is calculated with the Thornthwaite method, which takes into

account air temperature and an annual heat index, based on monthly air temperature. The

calculation of the index involves a climatic water balance implemented at different

Table 2. Drought indices considered in this study.

Drought indices Equations Variables

SPI (Standardized precipitation

index) [33]
SPI ¼ Sðt �

c0þc1tþc2t2

1þd1tþd2t2þd3t3
Þ

S = -1, if H(x)� 0.5;

S = 1 and H(x) = 1-H(x), if H(x)>0.5; H(x) = q+(1-q)G(x);

q = P (x = 0) > 0.

H(x) is the cumulative probability of

distribution;

G(x) is the gamma distribution; G(x) is

undefined for x = 0;

P (x = 0) is the probability of zero

precipitation, and x is precipitation in mm.

SPEI (Standardized precipitation

evapotranspiration index) [5]

Di = Pi-PETi

Di values are aggregated at different timescales, following the procedure for SPI.

The difference Dk
i;j in a given month j and year i depends on the timescale k

chosen; Di-data series are subsequently fitted to a log-logistic probability

distribution function.

Pi and PETi are the precipitation and potential

evapotranspiration for month i (both in mm);

calculations of PETi are based on the

Thornthwaite method [46].

MI (Relative moisture index) [37] MI ¼
P-PET
PET

P is the rainfall in a given period (mm);

PET is potential evapotranspiration (mm)

during the same period.

Pa (Precipitation anomaly

percentage) [38] Pa ¼
P-P̂
P̂
� 100%

P is a period of precipitation;

P̂ is the average rainfall over the same period

over successive years.

K (Sielianinow coefficient) [39] K ¼ 0:16�
T
P

T and P are accumulated temperature (˚C)

and precipitation (mm), when temperature

is� 10oC.

scPDSI (Self-calibrated Palmer

drought severity index) [40]
scPDSIi ¼ 0:755scPDSIi� 1þ

1
1:63

Zi

Z = Kd

d ¼ P-P̂

Z is the Palmer moisture anomaly index;

d is the moisture anomaly;

P is the total monthly precipitation;

P̂ is a ‘climatologically appropriate’

precipitation amount for existing climatic

conditions’;

K is a climate coefficient (weight), determined

by month and geographic location.

https://doi.org/10.1371/journal.pone.0233525.t002
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timescales, and adjusted to a log-logistic probability distribution. Because SPEI is based on

an assessment of the water balance, it can be directly compared to scPDSI [35].

MI is calculated by dividing the difference between rainfall and potential evapotranspiration

by the potential evapotranspiration during the same period [37] (Table 2); MI has been

used to assess the degree of drought across multiple timescales.

Pa is calculated from the occurrence of drought caused by precipitation anomalies within a

given period, which is calculated by dividing the difference between observed precipitation

and normal (30-year mean) precipitation by the normal precipitation during the same

period (Table 2). The index can distinguish dry events at monthly and annual timescales

[38]. The index is simple to calculate and, as a result, is widely used.

K is calculated based on air temperature and rainfall amount during the growing season,

whenever air temperature is� 10˚C [39]. The original equation coefficient of 0.10 was

adjusted to 0.16 in adapting the method (Table 2) to China’s conditions [31].

Palmer drought severity index (PDSI) [40] is based on a sum of the current soil moisture

anomaly and a fraction of the previous index value. The soil moisture anomaly is calculated

based on an equation of water supply and demand and, as a result, it accounts for variables

of precipitation, runoff, soil water storage, and evaporation [41]. The model requires data

for air temperature, precipitation, and soil water content [42]. The resultant values are

classed into 11 drought severities. With long-term calibration deficiencies and limited util-

ity to areas of calibration, PDSI was further revised, giving rise to the self-calibrated PDSI

(scPDSI; Table 2) [43]. The drought index calculated with scPDSI is generally more spatially

compatible and accounts for extreme wet and dry events by taking into account frequencies

of rare events.

Data analysis

Monthly and seasonal values of NDVI in each vegetation zone were averaged from the original

16-day and monthly data, respectively. Annual NDVI was, in turn, derived by averaging the

growing-season data from May to August of each year. Values of NDVI were extracted within

a 50-km radius circle around each weather station.

Monthly DI’s were calculated directly from equations referenced in Table 2. To investigate

lag-effects (or hysteresis), pairwise-correlations between the six DI’s over two- to seven-month

delays and NDVI of the current month were assessed.

Seasonal DI’s were calculated according to the four seasons, namely spring (March-May),

summer (June-August), autumn (September-November), and winter (December-February of

the following year). Considering precipitation in winter has the potential to impact vegetation

growth in the following year, a year (or hydrological year) was defined here as the period from

September to August of the following year. Annual and seasonal indices of K, Pa, SPI, and

SPEI were calculated directly from corresponding total precipitation, mean air temperature,

and total potential evapotranspiration, whereas annual and seasonal indices of MI and scPDSI

were calculated by averaging their monthly values.

Indices of SPI, SPEI, and scPDSI were calculated with a python-script developed for the

National Integrated Drought Information System of the USA (www.drought.gov/drought/

climate-and-drought-indices-python, last accessed Nov. 14, 2018). Potential evapotranspira-

tion in MI (Table 2) was calculated based on the Penman-Monteith equation, using software

developed for the Food and Agriculture Organization of the United Nations (http://www.fao.

org/land-water/databases-and-software/eto-calculator/en/, last accessed Nov. 14, 2018).
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Indices of K, Pa, and MI were calculated in Excel (v. 2016, Microsoft Corporation). All subse-

quent correlations were determined in SPSS v. 22 (International Business Machines

Corporation).

Results

Annual pairwise-correlations

Table 3 provides the annual pairwise-correlations between the six DI’s and NDVI for the five

vegetation zones. Pairwise-correlations between the six DI’s and NDVI, from highest to lowest,

were associated with typical steppes, followed by meadow steppes, desert steppes, deserts, and

forests. In forests, pairwise-correlations between all DI’s and NDVI were generally low

(r< 0.46) and statistically not significant (p-value > 0.05). For the three steppes, pairwise-cor-

relations were generally high, i.e., maximum r = 0.90, 0.92, and 0.84, respectively, with p-

values< 0.01. In desert zones, pairwise-correlations were generally greater than those for for-

ests and lower for steppes (maximum r = 0.68, p-value < 0.01). From averaged pairwise-corre-

lations for the three steppes, the greatest pairwise-correlation was 0.85 for SPI, followed by

0.84 for SPEI, and 0.83 for Pa.

Seasonal pairwise-correlations

Seasonal pairwise-correlations between the six DI’s and NDVI for the five vegetation zones are

given in Table 4. Generally, NDVI had low correlation with all DI’s during the spring and

autumn, compared to their corresponding values in summer. In some cases, correlations were

negative in spring and autumn.

In forests, pairwise-correlations were generally low (i.e., r < 0.4; Table 4) and statistically

not significant. In meadow steppes, SPI and SPEI had the greatest correlation in summer, i.e.,

r = 0.68. In typical and desert steppes, scPDSI had the greatest correlation with NDVI, yielding

0.88 and 0.82, respectively, followed by SPEI in summer, with r = 0.81 and 0.69. In deserts,

scPDSI had the greatest correlation with NDVI in summer (r = 0.71).

Monthly pairwise-correlations

Fig 2 provides pairwise-correlations of current-month DI’s with current-month NDVI. Across

months, irrespective of vegetation zone, correlations were least in May. Similar to the annual

timescale, DI’s were the least correlated with NDVI for forests during the growing season. For

meadow steppes, correlation was lowest in August, compared to September. A similar trend

was found for typical and desert steppes when based on SPI, SPEI, MI, and Pa. Only scPDSI

Table 3. Annual correlation coefficients of NDVI and DI within the five vegetation zones.

Vegetation SPI SPEI MI Pa K scPDSI Maximum

Forests 0.45 0.43 0.32 0.45 0.46 0.33 0.46

Meadow Steppes 0.90�� 0.84�� 0.23 0.81�� 0.72�� 0.47 0.90

Typical Steppes 0.82�� 0.92�� 0.60� 0.85�� 0.69�� 0.57� 0.92

Desert Steppes 0.84�� 0.77�� 0.75�� 0.83�� 0.70�� 0.69�� 0.84

Deserts 0.68�� 0.46 0.62� 0.63�� 0.38 0.54� 0.68

Average for Steppes 0.85 0.84 0.53 0.83 0.70 0.58

Average for All Vegetation Zones 0.74 0.68 0.50 0.71 0.59 0.52

� Signifies correlation is significant at the 0.05 level,

�� at the 0.01 level.

https://doi.org/10.1371/journal.pone.0233525.t003
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Table 4. Seasonal correlation coefficients between NDVI and DI within the five vegetation zones. The “Maximum” in column 8 is given as an absolute value.

Vegetation Season SPI SPEI MI Pa scPDSI Maximum

Forests Spring -0.38 -0.15 -0.06 -0.06 -0.34 0.38

Summer 0.29 0.28 0.11 0.28 0.31 0.31

Autumn -0.09 -0.11 -0.43 -0.02 0.43 0.43

Meadow Steppes Spring 0.17 -0.09 -0.11 0.26 0.05 0.26

Summer 0.68�� 0.68�� 0.59� 0.67�� 0.65�� 0.68

Autumn 0.21 0.07 -0.24 0.04 0.26 0.26

Typical Steppes Spring 0.44 0.21 0.31 0.31 0.47 0.47

Summer 0.73�� 0.81�� 0.81�� 0.73�� 0.88�� 0.88

Autumn 0.41 0.43 0.44 0.41 0.54� 0.54

Desert Steppes Spring 0.01 -0.16 -0.07 0.06 0.21 0.21

Summer 0.61� 0.69�� 0.61� 0.63�� 0.82�� 0.82

Autumn 0.38 0.21 0.32 0.41 0.36 0.38

Deserts Spring 0.37 0.31 0.05 0.13 0.11 0.37

Summer 0.14 0.55� 0.46 0.43 0.71�� 0.71

Autumn -0.09 0.21 -0.14 -0.13 -0.07 0.21

Average for Steppes Summer 0.67 0.73 0.67 0.68 0.78

Average for All Vegetation Zones Summer 0.49 0.60 0.52 0.55 0.67

� Signifies correlation is significant at the 0.05 level,

�� at the 0.01 level.

https://doi.org/10.1371/journal.pone.0233525.t004

Fig 2. Pairwise-correlations of monthly drought indices of SPI, SPEI, MI, Pa, and scPDSI as a function of NDVI

across the five vegetation zones.

https://doi.org/10.1371/journal.pone.0233525.g002
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produced correlations greater in August than in September. In deserts, correlations based on

all DI’s were greatest in June, and subsequently decreased from July to September. Among

DI’s and irrespective of vegetation zone, scPDSI had the strongest correlation with NDVI in

June and July (Fig 2).

Lag-effect of drought

Pairwise-correlations between NDVI and lagged DI’s were much greater than between NDVI

and DI’s during the current-month for all vegetation zones (Fig 3). Lag times among DI’s

varied.

In forests, lagged scPDSI had the greatest correlation in June and July among the six DI’s,

with maximum correlation occurring after about six months of lag in June and about one

month of lag in July. For the other DI’s, however, maximum correlation was found to occur

after about one month of lag in June and August. In meadow steppes, lagged SPI and Pa had

high correlations with NDVI, after about two months of lag in June and about three months in

July. In August, however, maximum correlation existed between NDVI and all DI’s lagged by

one month. In typical steppes, greatest pairwise-correlations with SPI, SPEI, MI, and Pa and

NDVI occurred when the DI’s were lagged by about five months in June, three months in July,

and one month in August. Generally, all correlations were greatest for meadow and typical

steppes. In desert steppes and deserts, lagged scPDSI had the greatest correlation with NDVI,

when compared to the other DI’s. For all vegetation zones, NDVI in August were more

strongly correlated with the DI’s when lagged by one month, than when not lagged (Fig 3).

Discussion

Occurrence of drought over the study period

Located in the interior of Eurasia, Inner Mongolia is affected by continental climate and fre-

quently affected by drought. During the study period from 2000–2015, drought affected many

areas of the study region differently. Over the study period, six out of the 16 years (i.e., 2002,

2003, 2012, 2013, 2014, and 2015) were found unaffected by drought [44]. The dataset amassed

for this study provides a strong basis for the current examination of drought and suitability of

the various DI’s.

Implications of timescale

On an annual timescale, SPI and SPEI were shown to have a much stronger correlation with

NDVI in grasslands (steppes). This is consistent with results from a study that assessed the

impact of drought on wheat yield with the same two DI’s [5]. If annual drought is the primary

focus, SPI is the preferable DI for steppes and deserts.

Pairwise-correlations between DI’s and NDVI were highest in summer and lowest in spring

and fall in all vegetation zones, as a result of low temperatures prevailing during the latter two

seasons, i.e., low temperatures, not available soil water, limit vegetation growth during these

seasons [8,45]. Comparing different DI’s, scPDSI had stronger correlations with NDVI in the

summer for most vegetation zones, except the meadow steppes. In these steppes, SPI and SPEI

had stronger correlation with NDVI in summer (r = 0.68), about equivalent to the correlation

between scPDSI and NDVI (r = 0.65). Based on these results, scPDSI is a superior DI for sum-

mer conditions. This conclusion applies equally well to monthly data, where correlation

between scPDSI and summer NDVI were higher than any other pairwise-comparisons across

all vegetation zones, with the exception of forests (August only, Fig 2). Current-month scPDSI
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has added advantages of being a good measure of monthly drought and being based solely on

current-month information, offers a more generalized indicator of drought.

Lag-effect of drought

The lag-effect suggests that the effects of drought on vegetation potentially become more

important as time elapses. This coincides with observations that the response of NDVI lags

changes in temperature and precipitation [46–49]. This lag-effect occurs not only as a function

of leaf accumulation, but also because of the amount of water stored in the soil complex. Leaf

biomass, especially in grasses including in annual and perennial plant species, is an accumu-

lated value and determined by past drought conditions. Rainfall and meltwater infiltration

Fig 3. Pairwise-correlations of lagged monthly drought indices with corresponding NDVI during the months of June, July, and August across the

five vegetation zones.

https://doi.org/10.1371/journal.pone.0233525.g003
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into the deeper soil is generally available to vegetation over extended periods, causing plant

growth, and therefore NDVI, to lag the incidence of infiltration into the soil.

Lag times vary as a function of vegetation zone. Pairwise-correlations between lagged DI’s

(by 2–7 months) and NDVI were consistently highest for desert steppes and deserts and lowest

for forests, meadows, and typical steppes. Grasses in steppes are adapted to short-term

drought, whereas shrubs with their various adaptations to dry air and soil conditions are much

more resistant to long-term drought [50]. This plant association to drought is consistent with

our belief that grasses in steppes are more sensitive to seasonal and monthly drought, and

shrubs in deserts are more sensitive to annual drought.

Capacity to store water in soils may help explain the observed lag-effect of drought.

Drought indices of SPI, SPEI, Pa, and MI account for only the water supply and demand com-

ponents of the water budget (i.e., precipitation and evapotranspiration), resulting in the indi-

ces being skillful at only accounting for present-time drought response. This may explain why

SPI, SPEI, Pa, and MI provide improved correlations with NDVI when lagged. This intro-

duced lagging of the indices effectively compensates for the absence of soil water storage and

potential carry-over effects in their explanation of drought (Table 2). Unlike the two-compo-

nent indices, scPDSI incorporates soil water storage in its definition of drought (Table 2). Due

to its three-component formulation, scPDSI is regarded as the better measure of monthly

drought across vegetation zones. This conclusion is consistent with findings from prior studies

on the utility of DI’s; for instance, the study by Chang et al. [51]. This finding has significant

implication for gauging the timing, development, and persistence of drought.

Vegetation response to drought

In forests, all DI’s had weaker correlations with NDVI across all timescales, even after taking

into account the lag-effect of drought. Forests, located near mountain ranges, receive addi-

tional water from snowmelt, improving overall growing conditions for forests downslope [50].

The deep roots of trees can access water from deep in the ground and large quantities of carbo-

hydrates and nutrients stored in the roots can cause forests to be less vulnerable to severe, pro-

longed meteorological drought [32]. In forests, water is normally not a limiting factor.

The steppes are located in the semiarid to arid parts of the aridity gradient. With their shal-

low rooting systems, grasses are fundamentally more sensitive to reductions in precipitation

[52]. Grasses in steppes absorb water from the upper soil layers, and as a result rely on fre-

quent, short pulses of meteoric water input [53]. In steppes, the six DI’s were effective at cap-

turing drought across the three timescales and month-long lag times considered. The lag-

effect of drought at the monthly timescale indicated that longer timescales were necessary to

impact vegetation growth in the steppes. All told, lagged SPI, SPEI, MI, and Pa provided rea-

sonably good measures of monthly drought. In considering lag on NDVI response, Pa, SPEI

and SPI lagged by one to three months, provided the strongest measure of drought in meadow

and typical steppes, whereas current-month scPDSI provided a more reliable measure of ongo-

ing drought in desert steppes.

In deserts, shrubs are the dominant vegetation (Table 1). Desert plants generally have lower

transpiration rates, with enormous capacity to absorb water from the ground [53]. Shrubs in

deserts adapt to dry conditions with their unique features to limit water losses by, for example:

(i) curling their leaves or growing hairs on their surfaces; (ii) storing water in their fleshy or

succulent parts; and (iii) accessing water with their vast network of horizontal and vertical

roots [54]. Many shrubs in deserts utilize water from the deeper soil and rely on moisture that

is replenished with each successive rain pulse [50].
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Besides the impact of abiotic variables, growth of natural vegetation can be adversely

affected by non-abiotic factors, such as human, livestock, and insect activity. During the 13

years from 2001–2013, NDVI predicted with temperatures and precipitation data from Inner

Mongolia was significantly correlated with MODIS-based estimates of NDVI, which suggest

that human, grazing, and other biological effects on plant growth were less significant than the

effects associated with prevailing hydrometeorological factors [55]. In grassland and desert

regions of Inner Mongolia, livestock is the primary factor affecting grass development and

growth. Based on results from the Century model [56], growth of grass was shown to be

inversely proportional to the severity of grazing.

Conclusions

Until now, most of the studies of this kind have focused on drought effects in agricultural

crops; few studies have examined these effects on naturally growing, transitional vegetation. In

this study, we analyzed the pairwise-correlations between six common DI’s and NDVI, as a

measure of vegetation occurrence and response. This study found that:

At an annual timescale, there were strong pairwise-correlations between the six DI’s and

NDVI for semiarid steppes, weak but statistically significant correlations for deserts, and no

correlation for forests. Compared with the different DI’s, SPI is the most appropriate to assess

drought in steppes and deserts, followed by SPEI and Pa.

At a seasonal timescale, there were strong pairwise-correlations between the six DI’s and

NDVI during the summer, but not during the spring or autumn. The scPDSI-index was most

fitting for typical steppes, desert steppes, and deserts during the summer, followed by SPEI;

SPI and SPEI were most appropriate for meadow steppes. None of the six DI’s considered

were appropriate for forests.

At a monthly timescale, there were significantly stronger correlations between NDVI and

scPDSI of the current month, compared with the other DI’s in June and July. During the sum-

mer, NDVI had stronger correlation with DI’s of previous months (accounting for a lag-effect

of drought) than their corresponding current-month values. The monthly lag-effect is obvious

for all DI’s, except scPDSI. The lag ranged from one to six months and was distinct for the dif-

ferent vegetation zones, varying from month-to-month. The lag-effect was most obvious in

August, irrespective of vegetation zone.

Based on our analysis, SPI could be viewed as the most appropriate to monitor drought on

an annual basis and scPDSI, for summer drought in semiarid steppes and deserts. We recom-

mend that users of these indices pay attention to the lag-effect of drought and the functional

response of local vegetation at a monthly timescale. With climate change, drought has the

potential to affect naturally growing vegetation more severely than in the past. With the

16-year dataset provided here, it is fairly difficult to conclude about the overall suitability of

the DI’s over longer time horizons.

Acknowledgments

We gratefully acknowledge the hydrometeorological data from the National Meteorological

Information Centre and NDVI data from NASA and the Geospatial Data Cloud. We appreci-

ate the suggestions from two anonymous reviewers.

Author Contributions

Conceptualization: Yuqing Wang, Chengfu Zhang, Fan-Rui Meng.

Formal analysis: Yuqing Wang, Fan-Rui Meng, Charles P.-A. Bourque.

PLOS ONE Evaluation of the suitability of six drought indices in naturally growing, transitional vegetation zones

PLOS ONE | https://doi.org/10.1371/journal.pone.0233525 May 29, 2020 12 / 15

https://doi.org/10.1371/journal.pone.0233525


Funding acquisition: Chengfu Zhang.

Methodology: Yuqing Wang, Chengfu Zhang, Charles P.-A. Bourque, Cunhou Zhang.

Project administration: Chengfu Zhang.

Resources: Yuqing Wang.

Supervision: Chengfu Zhang.

Writing – original draft: Yuqing Wang.

Writing – review & editing: Chengfu Zhang, Fan-Rui Meng, Charles P.-A. Bourque.

References
1. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, et al. The impacts of climate change on water resources

and agriculture in china. Nature 2010; 467(7311):43–51.

2. Yuan W, Luo Y, Li X, Liu S, Yu G, Zhou T, et al. Redefinition and global estimation of basal ecosystem

respiration rate. Global Biogeochemical Cycles 2011; 25(4):1441–1458.

3. Zou X, Zhai P, Zhang Q. Variations in droughts over china: 1951–2003. Geophysical Research Letters

2005; 32(4):353–368.

4. Shamshirband S. Clustering project management for drought regions determination: a case study in

Serbia. Agricultural and Forest Meteorology 2015; 200(200):57–64.
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