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We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally
based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles.
However, we use the fundamental equation of thermodynamics dU~TdS{

P
kFkdxk on differential

forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal
the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics.
From this approach, a topological torsion current emerges of the form ijkAjvk, where Aj and vk denote the
components of the vector potential (gravitational and/or electromagnetic) and where v denotes the angular
velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating
gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism
of particular devices.

F
rom 1893-96, the Norwegian explorer Fridtjof Nansen, while traveling in the Arctic region, noticed ice
drifting across the polar sea, at an angle of 20 to 40 degrees relative to the direction of the wind. Nansen
speculated that, in addition to the force of the wind, the Coriolis Effect could be used to explain his

observation. In 1905, Vagn Walfrid Ekman1 introduced a theory of wind currents in open seas, explaining that
sea currents change direction based on their depth as a result of the Coriolis force that exists according to the
rotating coordinate system associated with the Earth. In addition to atracting considerable interest in geophysical
flow problems2, these discoveries stimulated further investigations in fields such as magnetic geodynamics, binary
stars and new-born planetary systems as well as furthering work in the important problem of angular momentum
transport.

The problem of enhanced angular moment transport in accretion disks3 and the break-down of Keplerian
rotation as well as the removal of angular momentum from a vortex due to moving spiral waves, which is an
important aspect of the total angular momentum balance of the core and the intensification of a tropical cyclone4,
are all examples of problems that demand a clear understanding of the dynamics of gravito-electromagnetic
rotating systems. Furthermore, special attention must be dedicated to the role of flux of angular momentum flux
and its conservation. Building on the previous attempts to generate an accurate account of angular momentum
transport5, an additional equation of conservation (besides continuity, momentum and energy equations) is
required, which relates both the local angular momentum density and flux. To develop a consistent theory, the
equation for the angular momentum balance must be included and, to the best of our knowledge, these problems
were treated by Curtiss6 and Livingston and Curtiss7. These problems are also addressed in the present work using
a variational method.

The first attempt to obtain the general equations of motion of an isolated thermodynamic system K, from the
equilibrium condition dS 5 0, was generated by Landau and Lifshitz8. Buchdahl and Simpson9 obtained an
explicit form of the nonrelativistic motion of an isolated system in equilibrium and showed that the temperature
of K is nonuniform when the system is accelerated. Diu et al.10 went a step further, but they did not attempt to
build a framework to investigate the dynamics of K with an integrated procedure.

In this article, we develop a standard technique for treating a physical system that is based on a previously
developed information-theoretic framework11–13. The proposed technique starts with the total entropy of the
system composed of N particles (or bodies). The method of the Lagrange multipliers is then applied for the
entropy differential (0-form) d�S~+k�Sdxk (k 5 x, y, z). Finally, the total entropy is inserted into the fundamental
equation of entropy written using the differential form, +kU~T+k�S{Fk, which is summed over the ensemble of
N particles.

This method leads to a set of two first order differential equations, revealing the same formal symplectic
structure shared by classical mechanics and thermodynamics14,15. When the maximization of entropy is sought,
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the well-known equations of (electro)dynamics (if electromagnetic
entities enter into the system) result. Our method bears a resemb-
lance to the isoentropic but non-energy-nonconserving variational
principle proposed by R. Jackiw et al.17, which allows one to study
non-equilibrium evolution in the context of quantum field theory
but with various classical analogous, such as the Schrödinger equa-
tion, giving rise to reflectionless transmission.

This article is organized as follows. In Sec. II, we extend this
mathematical formalism to non-equilibrium information theory.
In Sec. III, we analyze the equilibrium and stability of a rotating
plasma. In Sec. IV, we apply our formalism to angular momentum
transport, obtaining, in particular, the Umov-Poynting theorem for
rotating gravito-electromagnetic systems (e.g., rotating plasmas,
magnetic geodynamics, vortex motion and accretion disks in astro-
physics), the applications of which may contribute to the clarification
of still poorly understood phenomena.

Results
The information-theoretic method proposed in this paper constitutes
an alternative approach by applying the concept of maximizing
entropy to the problem of out-of-equilibrium physical systems. It
bears some resemblance to the Hamiltonian formulation of dynamics,
which expresses the first order constraints of the Hamiltonian, H, in a
2n-dimensional phase space, revealing the same formal symplectic
structure shared by classical mechanics and thermodynamics.

Although the simplifying assumption of an isothermal system
rules out its ability to accurately explain such problems as the coher-
ent transport of angular momentum in astrophysics or certain types
of laboratory devices (e.g., the Ranque-Hilsch effect), the present
method attempts to further the understanding of specific trends, in
particular, predicting the forced angular momentum transport that
occurs radially outward from the symmetry axis of the rotation. The
type of Umov-Poynting theorem obtained expresses the interplay
between entropy and energy, where the energy and entropy trend
towards minima and maxima, respectively, while explaining the
formation of physical structures. In particular, it is that compressi-
bility that is an important property in the transport of angular
momentum and a possible driving mechanism for instability. This
development is believed to be advantageous and creates options for
systematic improvements.

Mathematical procedure. Let us consider a simple dynamical
system consisting of a set of N discrete interacting point masses

m(a) (a 5 1, 2, …, N) with x að Þ
i and v að Þ

i i~1, 2, 3; a~1, . . . , Nð Þ
denoting the coordinates and velocities of the mass in a given inertial
reference frame. The Latin subscript refers to the Cartesian
components and the Greek superscript distinguishes between the
different masses.

The gravitational potential w(a) associated with a mass a is given by

w að Þ~G
X
b~1
b=a

m að Þ

x að Þ{x bð Þj j, ð1Þ

with G denoting the gravitational constant and x(a) and x(b) represent-
ing the instantaneous positions of the mass (a), and (b). S denotes
the summation of every particle in the system. The energy,
momentum and angular momentum conservation laws must be
verified for a totally isolated system:

E~
XN

a~1

E að Þ, ð2Þ

P~
XN

a~1

p að Þ, ð3Þ

the particles’ total angular momentum (the sum of the orbital angu-
lar momentum and the intrinsic angular momentum, i.e., spin)

L~
XN

a~1

L að Þ~
XN

a~1

r að Þ|p að Þ
h i

zJ að Þ
� �

: ð4Þ

In the above equations, r(a) is the position vector relative to a fixed
reference frameR, p(a) is the total momentum (particle 1 field) and
L(a) is the total angular momentum of the particle, comprising a
vector sum of the particle’s orbital angular momentum and intrinsic
angular momentum J (e.g., these momentums are contributed by the
electron spin and/or nuclear spin, because the electromagnetic
momentum is already included in the preceding term through
p(a)), see Fig. 1. The maximum entropy principle introduces
Lagrange multipliers from which ponderomotive forces are obtained.

It is necessary to find the conditional extremum; these extremum
are established not for the function S itself, but rather for the changed
function �S. Following the mathematical procedure proposed in Ref.
13 the total entropy of the system �S is thus given by

�S~
XN

a~1

S að Þ E að Þ{
p að Þ� �2

2m að Þ {
J að Þ� �2

2I að Þ {

q að ÞV að Þzq að Þ A að Þ:v að Þ
� �

{U að Þ
mec

zða:p að Þzb: r að Þ|p að Þ
h i

zJ að Þ
� �

~
XN

a~1

að Þ:

ð5Þ

where a and b are Lagrange multipliers (as vectors). It can be shown
that vrel 5 aT and v 5 bT (see also Ref. 8). The conditional
extremum points form the dynamical equations of motion of a gen-
eral physical system (the equality holds whenever the physical system
is in thermodynamic and mechanical equilibrium), which is defined
by two first order differential equations:

L�S

Lp að Þ§0 canonical momentum; ð6aÞ

L�S

Lr að Þ~{
1
T

+r að ÞU að Þ{
1
T

m að Þ Lv að Þ

Lt
§0

fundamental equation of dynamics:

ð6bÞ

Figure 1 | An assortment of particles of mass m(a), in rotational motion
around an axis OZ with angular velocity v, where r(a) denotes the position
vector relative to a fixed reference frame, R, p(a) denotes the total
momentum (particle 1 field) and L(a) denotes the total angular
momentum of the particle.
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Eq. 6b gives the fundamental equation of dynamics and has the
form of a general local balance equation that has an entropy gradient,
=aS . 0, while Eq. 6a gives the canonical momentum (see also Eq.
12). At thermodynamic equilibrium, the total entropy of the body
has a maximum value, constrained through the supplementary con-
ditions 2, 3, and 4, which typically occurs as a result of the minimiza-
tion techniques associated with Lagrange multipliers. In the more
general case of a non-equilibrium process, according to Vander-
linde’s proposition18, a condition required for the gravitational force
to exist is that the entropic gradient in Eq. 6b must be positive.
However, new physics may be developed by the set of two first order
differential equations related to the interplay between the tendencies
of energy and entropy to attain minima and maxima, respectively.

In non-equilibrium processes the gradient of the total entropy in
momentum space multiplied by factor T is given by

T
L�S

Lp að Þ~ {
paÞ

m að Þz
q að Þ

m að Þ Azvez v|r að Þ
h i� �

, ð7Þ

so that maximizing the entropy change in Eq. 6a leads to the well-
known total (canonical) momentum:

p að Þ~m að Þvezm að Þ v|r að Þ
h i

zq að ÞA: ð8Þ

The above formulation bears some resemblance to the Hamiltonian
formulation of dynamics which expresses the first order constraints
of the Hamiltonian H in a 2n dimensional phase space, _p~{LH=Lq
and _q~LH=Lp. This can be solved along trajectories, such as quasi-
static processes, revealing the same formal symplectic structure
shared by classical mechanics and thermodynamics14–16.

The internal mechanical energy term, U að Þ
mec, appearing in Eq. 5 may

be defined by:

U að Þ
mec~m að Þw að Þ rð Þzm að Þ

XN

b~1
b=a

w a,bð Þ: ð9Þ

Considering this equation, by the definition of thermodynamic tem-
perature, hS(a)/hU(a) ; 1/T(a), it follows that

+r að ÞU að Þ~{m að Þ+w að Þ
{

p að Þ

m að Þ
:+p að Þ{

+r að Þ
J að Þ2

2I að Þ

� 	
{q að Þ+V að Þzq að Þ+ Aa:v að Þ

� �
:

ð10Þ

Eq. 10 contains the particle’s self-energy and the particle interaction
energy for the gravitational and electromagnetic fields, but it may
also include other terms, such as terms included in Eq. 9, represent-
ing different occurring phenomena (exemplifying energy as a book-
keeping concept). We may recall that the entropic flux in space is a
type of generalized force Xa

19,20; therefore, it can be shown that the
following equation holds:

T+r að Þ
að Þ~{q að Þ+r að ÞV að Þzq að Þ+r að Þ A að Þ:v að Þ

� �

zm að Þv að Þ:+v að Þ{+r að Þ
J að Þ� �2

2I að Þ {v:J að Þ

 !
,

ð11Þ

We can now write the fundamental equation of thermodynamics
using the form of a space-time differential equation:

T+�Sz
X

a

m að Þ Lv að Þ

Lt
~
X

a

+U að Þ: ð12Þ

Taking into account the convective derivative, dv(a)/dt ; hv(a)/ht 1

v(a)?=v(a), we obtain:

m að Þ dv að Þ

dt
~{T+r að Þ

a{m að Þ+w að Þ
{q að Þ+V að Þ

zq að Þ+ A að Þ:v að Þ
� �

{+r að Þ
J að Þ� �2

2I að Þ {v:J að Þ

 !
zF að Þ

ext :

ð13Þ

For conciseness, the term U(a) now includes all forms of energy
inserted into the above Eq. 5. On the right-hand side (r.h.s.), the first
term must be present whenever the mechanical and thermodynami-
cal equilibrium conditions are not fulfilled, the second term is the
gravitational force, the third and fourth terms constitute the Lorentz
force, the fifth term is a new term that represents the transport of
angular momentum, and the last term represents other external
forces that are not explicitly included but still act on the particle (a).

The present formalism was applied in a previous article13, and
therein we obtained the ponderomotive forces acting on a charged
particle. For a neutral particle or body in a gravitational field, Eq. 13
points to a type of extended fundamental equation of dynamics for a
given species (a) at equilibrium and at a given point of space-time
(Eulerian description):

m að Þ Lv að Þ

Lt
~{m að Þ+w að Þ

{+r að Þ
J að Þ2

2I að Þ{v:J að Þ
� 	

: ð14Þ

Eq. 14 gains a new term because the body possesses an intrinsic
angular momentum. In a non-rotating frame of reference, we set v
5 0, wherein we use the work-energy theorem to obtain the total
mechanical energy of the system: Emec~KzUzJ2

c



2Ic. This is a

common approach in classical mechanics. We are interested in the
effect of a given force at a given space-time coordinate, not in its effect
along the particle trajectory. It is worth noting that Eq. 14 was
obtained through a variational procedure in contrast to the usual
conservation theorem used, for example, in Ref. 21, 22.

Included in the internal energy term is the interpressure term (see
Eq. 9; note that here we consider a homogeneous and isotropic fluid).
The above described framework (see also Ref. 13 for additional
information) leads us to the well-known hydrodynamic equation
for a given species (a):

m að Þ dv að Þ

dt
~{+r að Þ m að Þw að Þ

� �
{m að Þ+r að Þ

XN

b~1
b=a

w a,bð Þ

{+r að Þ
J að Þ2

2I að Þ{v:J að ÞzT að Þ
� 	

:

ð15Þ

In the r.h.s. of Eq. 15, we explicitly introduce external force terms,
eventually present in open systems.

Using the following correspondence from particle to fluid descrip-
tions X

a

m að Þ?
ð
V

d3x’rv x’ð Þ, ð16Þ

and an analogous relation for the electric charge

X
a

q að Þ?
ð
V

d3x’r x’ð Þ, ð17Þ

we can rewrite Eq. 15 using the form of the Euler (governing) equa-
tion:

rv
dv
dt

~{rv+rw{+rp{+rWJ{+rf : ð18Þ

Here, as usual, the total interparticle pressure term (e.g., Ref. 23) is
given by:

www.nature.com/scientificreports
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p rð Þ~
X

a

m að Þ
XN

b~1
b=a

w a,bð Þ rð Þ: ð19Þ

To simplify, we introduce a functional integral of the form of an
intrinsic angular momentum energy density (comprising the ‘‘inter-
action energy term’’, v ? J), WJ:X

a

J að Þ2

2I að Þ{v:J að Þ{ DFð Þ að Þ
� �

?
ð
WJ x’ð Þzf x’ð Þ½ �d3x’, ð20Þ

considering that the intrinsic angular momentum density refers to a
given blob of fluid (with inertial momentum I, a measure of the local
rotation, (i.e., spin, of the fluid element), and its associated free
energy (per unit volume), f 5 f0 2 Ts. Eq. 18 also suggests that the
function S(a) (the field integral of r(a)) is constant along the integral
curves of the space field r(a). The gradient of the free energy, f, of the
out-of-equilibrium state is the source of the spontaneous change
from an unstable state to a more stable state while performing work.
For example, a common source of free energy in a collisionless
plasma is an electric current24; in a magnetically confined plasma,
several classes of free energy sources are available to drive instabil-
ities, e.g., the relaxation of a non-Maxwellian, non-isotropic velocity
distribution25. At this stage, it is worth noting that our procedure
includes the treatment of the effect of angular momentum (through
Eq. 5), a necessary inclusion in a consistent theory, according to
Curtiss6.

Furthermore, using the mathematical identity

+ A að Þ:v að Þ
� �

~ A að Þ:+
� �

v að Þz v að Þ:+
� �

A að Þz

A að Þ| +|v að Þ
h ih i

z v að Þ| +|A að Þ
h ih i

,

ð21Þ

we obtain, thorugh the use of algebra, the following expression:

+ A að Þ:v að Þ
� �

~{
LA að Þ

Lt
{ v|A að Þ
h i

z v að Þ|B að Þ
h i

: ð22Þ

Here, B 5 [= 3 A]. In addition, we notice that the following equality
holds:

A að Þ:+
� �

v að Þ~ v|A að Þ
h i

, ð23Þ

where

A að Þ~
X
b~1
b=a

q bð Þ v bð Þ

rab
, ð24Þ

denotes the vector potential actuating on the particle (a) due to every
other particle, and the vorticity is defined by

V að Þ~ +r að Þ|v að Þ
h i

~2v að Þ: ð25Þ

Therefore, the general equation of dynamics for a physical system
(Lagrangian description) follows:

r
dv
dt

~rEz J|B½ �{+w{+pzr A|v½ �: ð26Þ

The last term in the r.h.s. of the Eq. 26 is a new term that represents a
type of topological spin vector26, an artifact of non-equilibrium pro-
cess. We will show that the topological spin vector plays a role in
plasma arcs, as well as in magnetocumulative generators27, and sug-
gests a new method for obtaining the helicity transport equation28.

Discussion
We verify Eq. 14 using a standard example from classical mechanics:
a rigid body of mass, M, rolling down an inclined plane of angle h

with the horizontal (see, e.g., p. 97 of Ref. 29). Eq. 15 can be used to
solve this problem, where v 5 0 (the reference frame is non-rotating)
and considering that only the gravitational force acts on the rolling
body with an inertial moment relative to its own center of mass given
by Ic 5 bMR2. Hence, we obtain:

M€x~Mg sin h{Lxw: ð27Þ

Here, w:
Jcð Þ2

2Ic
. Assuming that the x-axis is directed along the

inclined plane and considering that the angular momentum relative
to the rigid body center of mass is given by Jc 5 Icv9. We find that

M€x~Max~Mg sin h{Icv’
dv’
vxdt

~Mg sin h{bM R2 v’
v’R

a, ð28Þ

where v9 5 dh/dt, while noting that dx 5 vxdt (holonomic con-
straint). Because a 5 a/R, we find the well-known result

ax~
g sin h

1zbð Þ : ð29Þ

Extremum conditions imposed on the entropy or internal energy not
only constraint the evolution of the system, but determine the
stability of thermodynamic systems at equilibrium. Furthermore, it
has been shown30 that a state of mechanical equilibrium can be
reached, if the entropy increases with distance:

TLr�Sw0, ð30Þ

where Lr is the Lie derivative along the vector field r acting on a scalar
�S. Therefore, we can find another extreme condition through the
general expression

T
L að Þ

Lr að Þ ~{q að Þ+r að ÞV að Þzq að Þ+r að Þ v að Þ:A að Þ
� �

{m að Þ Lv að Þ

Lt
{+r að Þ

J að Þ� �2

2I að Þ {v:J að Þ

 !
:

ð31Þ

According to Noether’s theorem, the total canonical momentum is
conserved in a closed system. We can thus state the closure relation:

XN

a~1

p að Þzq að ÞA að Þ
h i

~0: ð32Þ

It can be shown (see Ref. 12, 13 for details) that the relation that
prevails in equilibrium for a rotating plasma is given by

q að ÞE að Þzq að Þ v|B að Þ
h i

~m að Þ+r að Þw
að Þz

m að Þ
X
b~1
b=a

+r að Þw
a,bð Þ{q að Þ A að Þ|v að Þ

h i
:

ð33Þ

We may further develop the correspondence drawn from Eqs. 16–17
to obtain the general condition of equilibrium of a rotating plasma in
the presence of gravitational and electromagnetic interactions (e.g.,
Ref. 31):

rEz J|B½ �~+Wz+p{r A|v½ �: ð34Þ

Here, to simplify the algebra, we took the averaged angular frequency
v, for the entire system. We find in Eq. 34 that the vector potential A
is presented on the same footing as the E and B-fields. The relative
importance of the vector potential depends on the characteristics of
the B-field prevalent in the system; for instance, if the B-field is
homogeneous, the vector potential field predominates in the region
near the axis because rvA/JB , 1/r2. The topological spin vector
term is fundamental because it produces work that is responsible
for the system angular momentum modification, producing a
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rocket-like rotation effect on the plasma. The theoretical frame-
work delineated here may help to clarify problems related to rotat-
ing-plasma systems32–34 and controlled thermonuclear plasma
confinement35.

The compression of an electric current by a magnetic field, the z-
pinch effect, can be studied on the basis of Eq. 34, which gives the
condition for dynamic equilibria. Let us assume a typical geometry
for an infinitely long axisymmetric cylindrical arc (Fig. 2) with axial
current density Jz 5 Jz(r). Because the current density is assumed to
be constant, Maxwell’s equations in the steady state yield the azi-
muthal component Bh 5 m0Jzr/2 for r # R with R the outer boundary
of the cylindrical arc. The vector potential is purely radial and is given
by Az(r) 5 2m0R2Jz/4, for r , R, where the Coriolis term plays no
role. We can write Eq. 34 in the form:

{JzBh~
dp
dr
: ð35Þ

where it follows that

p rð Þ~
ð
r

Rdp
dr

dr~
1
4

m0J2
z R2{r2
� �

, ð36Þ

which is a well-known result.
The interaction between vacuum arcs and transverse magnetic

fields is used in switching devices (see e.g. Refs. 36, 37). We can
instead consider a coaxial configuration with a cathode on-axis with
a stabilizing magnetic induction field B directed along the axis of
symmetry and an arc current density J flowing radially (and assum-
ing a ‘‘filamentary’’ current with radius R9, Ar 5 2m0R92Jr/4, with m0

representing the permeability of the vacuum). In this case, we may
apply Eq. 34 and obtain the pressure differential, from the axis to the
wall (at R):

Dp r~Rð Þ~2pR {JrBzz rcj j pR2 m0

4p
Jrv

h i
Dh: ð37Þ

rcj jw m0

4p

Bz

S
v, retrograde rotation ð38aÞ

rcj jv m0

4p

Bz

S
v, amperian rotation: ð38bÞ

Here, S denotes the filamentary current cross-section, with r 5 rc.
For negative charge carriers (rc 5 2jrcj5 2ene), we obtain an
Amperian (clockwise) rotation for high magnetic fields and relatively
weak arc currents. We also find a retrograde rotation for higher
intensity arcs (higher S) and small transverse magnetic fields, which
is in agreement with experimental evidence (e.g., Ref. 36). Here, we
see the interplay between the tendencies of the energy to attain a
minimum value, while the entropy attempts to attain a maximum
value. From Eq. 37, we obtain an expression for the spot velocity in a
transverse magnetic field:

v~vR~
4p

m0

1
rcj j

0i
2psc

z
BzR

S

� 	
: ð39Þ

Here, we have made use of the Bernoulli relation, Dp~ 0E2



2, and
the constitutive equation, Jr 5 scE, where sc denotes the electrical
conductivity of the plasma. Although Eq. 39 is not self-consistent, it
shows that the force term [J 3 B], is not the only important term and
that the spot velocity depends linearly on the arc current (see, e.g.,
Ref. 44). In out-of-equilibrium systems, a new force term is present
that can suppress the Amperian force under certain conditions (see
also Ref. 40).

A better understanding of this phenomenon is crucial, because arc
discharges are powerful generators of non-equilibrium atmospheric
pressure plasmas. We compare the results predicted by Eq. 39
with experimental data available in the literature in Table 1. The
calculations were done using the expression for the electrical con-
ductivity in terms of the microscopic parameters of the plasma,

s0~enem~e0v2
pe

.
nc, with the electronic mobility given by m 5 e/

mnc (nuc denotes the electron collision frequency) because, for the
majority of the data, the transverse magnetic field was below 0.1 T
and is not expected to greatly influence the plasma arc electrical
conductivity41.

We now address the transport of angular momentum, a phenom-
enon of great importance in several fields, such as in the working
mechanism of an accretion disk, the formation of a tornado, and the
planetary-atmospheric circulation.

Angular momentum conservation can be obtained using the fol-
lowing equation:

m að Þ dv að Þ

dt
~{T

L að Þ

Lr að Þ {+r að Þ m að ÞW að Þ
� �

{q að Þ+r að ÞV að Þ

zq að Þ+r að Þ v að Þ:A að Þ
� �

{+r að Þ
J að Þ� �2

2I að Þ {v að Þ:J að Þ

 !
:

ð40Þ

Multiplying Eq. 40 by the particle velocity v að Þ
i i~x,y,zð Þ, and after

rearranging the terms, we obtain:

1
2

X
a

m að Þ d
dt

v að Þ
i

 2~{
1
2

G
X

a

X
b=a

m að Þm bð Þ
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Eq. 41 can be written in a more comprehensive form if we separate
the terms from their different contributions. For this purpose, we
define the total kinetic energy by the expression

Figure 2 | Geometry and vectorial fields in the Bennett pinch generated
by an axial current Jz creating a toroidal field Bw. If, instead, we consider a

vacuum arc discharge with radial current Jr and magnetic field Bz, we find a

rotating arc with an angular velocity v.
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and we denote
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to be the overall gravitational energy. Similarly, the total electrostatic
energy is given by:
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Following the Umov-Poynting theorem, it is observed that Eq. 40
reduces to the following:
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As before, it is convenient to introduce a new physical quantity that
represents the rotational energy:

rot~{
3
2

X
a

qa v að Þ| A að Þ|v
h ih i

: ð46Þ

Eq. 45 can then be written using the more general form:

d
dt

z gz vz rot

� �
~
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2

v:+r
Jj j2

2I
{ v:Jð Þ{DF

� �
: ð47Þ

Here, v represents the velocity of an ‘‘element of fluid’’, and the last
term in brackets is an average local value. A simple analysis of Eq.47
shows that the system is rotationally stable provided the following
condition is satisfied:

+r
Jj j2

2I
{ v:Jð Þ{DF

� �
v0: ð48Þ

The last term is the free energy per unit volume, F 5 F0 2 TS. It is
worth noting that Eq. 48 is consistent with the Gibbs distribution in a
rotating body (see, e.g., Ref. 8), which means that the radial energy
flux must be positive (flowing out radially from the system’s bound-
ary). In addition, we note that the equilibrium of a gravito-electro-
magnetic system depends on its mechanical rotational properties as
well as on the free energy available for intrinsically linking any mech-
anical process to thermodynamic variables and revealing options for
possible unconventional mechanisms for the control of instabilities.
In the domain of astrophysical plasmas, gravitational and rotational

forces usually dominate the magnetic forces involved, which is a
crucial aspect in the development of instabilities.

From Eq. 47, we see that equilibrium ensues (neglecting thermal
and configurational effects) when the rotational velocity of the fluid
satisfies the local condition (see, e.g., Ref. 45):

dV rð Þ2

dr
§0, ð49Þ

where we identify v with the bulk angular velocity. Eq. 49 is related to
the conservation of energy. However, when condition 48 is not ful-
filled, a magneto-rotational instability (MIR)45,46 occurs, which
appears as the result of the interplay between three different terms:
i) the angular momentum acquired by the fluid (or particles), ii) an
interaction term due to the coupling between the fluid angular
momentum with the driven angular velocity, and iii) the fluid ther-
mal energy and configurational entropy.

A typical experiment consists of a fluid rotating of a fluid between
two concentric cylinders - related to the so called Taylor-Couette
instability - driven by velocity gradients. In the presence of an axial
magnetic field, the Taylor-Couette instability develops when Eq. 49 is
not satisfied. We may also expect that, owing to the fact that for two
different particle species with different inertial moment, Ia ? Ib, it can
be expected that at some point, (given r 5 rc of the radial axis), an
inversion of the sign of the inequality of Eq. 48 must take place, and
instability occurs. In particular, in the presence of two different spe-
cies with different inertial moments, the fluid may be intrinsically
unstable at higher angular speeds. MIR instabilities threaten the
stability of plasma configurations. In the 1960’s, when MHD power
plants were considered to be an efficient process for the conversion
thermal energy into electrical energy, E. Velikhov, discovered this
electrothermal instability, which is the cause of strong magneto-
hydrodynamic turbulence45,47,48.

Eq. 47 can be written in the form of an energy conservative equa-
tion:
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ð50Þ

Finally, we can transform Eq. 50 into a version of Poynting’s Theorem
for rotating fluids:

{
L
Lt
Uð Þ~+:SzP’, ð51Þ

on which we define a type of Poynting vector for rotational fluids,
which gives the rate of rotational energy flow:

Table 1 | Comparing Eq. 39 with experimental data. Electric current i 5 60 A

Low pressure DC discharge Atmospheric pressure DC discharge

Te(eV) 1.0a 0.87a

Electron density (cm23) ne 5 2.5 3 1012 f ne 5 2 3 1016 b

Collision frequency (s21) nc 5 6.98 3 107 nc 5 7.2 3 1011 c

Plasma frequency (s21) vpe 5 8.94 3 1010 vpe 5 8 3 1012 d

Average Speed (m/s) 3.0 (, 2)e 1023(5 3 1023)e

aFor laboratory discharges, the Coulomb logarithm is ln L , 10, see Ref. 38, for electron temperatures of the order of Te < 10000 K39.
bRef. 39.
cThe frequency of collision was calculated using the standard expression nc~2:91|10{6ne lnLT{3=2

e , Ref. 38.
dWe use vpe~5:65|104 ffiffiffiffiffi

ne
p

, (see Ref. 38).
eIn parenthesis are the experimental data collected for atmospheric pressure, from Ref. 40; for low pressure, see Ref. 42.
fData interpolated from Ref. 43, assuming Te 5 0.8 eV.
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The power input driving the process (source/sink term) is given by:

P’: 1
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X
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+:v að Þ
� � J að Þ 2

2I að Þ { v:J að Þ
� �

zT að Þ

" #
, ð53Þ

The total energy is defined by summing up the different
contributions:

U~ z gz vz rot : ð54Þ

Here, the term T að Þ represents the thermal energy associated with
the species (a) that is equal to 2DF, the free energy of the physical
system. For a system in contact with a reservoir at constant temper-
ature this is the maximum amount of work extractable from the
system; the free energy tends to decrease for a system in thermal
contact with a heat reservoir. In particular, notice that when the
angular velocity, v, is multiplied by Eq. 40, the driving power is
obtained. It is worth noting that the presence of the term v ? J, which
plays an analogous role to the slip in electrical induction motors, that
is, the lag between the rotor speed and the magnetic field’s speed, is
provided by the stator’s rotational speed. Furthermore, we see that
the power input depends on the fluid compressibility = ? v. This
means that compressibility is a factor that determines the amount
of transported angular momentum through the stress-tensor tij and
may be responsible for a new driving mechanism in addition to the
well-known MRI. The driving energy of the rotating system can be
expressed in the form:

Edriv~
J2

2Ip
{ v:Jð Þ{DF: ð55Þ

Next, we will discuss several examples illustrating the application of
the variational method.

A hurricane is a natural airborne structure that converts its kinetic
and potential energy by means of the transport of angular
momentum from the inner core to the outer regions, conveyed either
directly by moving matter, or by non-material stresses such as those
exerted by electric or magnetic fields49. We may apply Eq. 53 to this
specific problem, assuming that all of the mechanical and thermal
energy is converted into electromagnetic energy Ue, to obtain:

P’~v
J2

2Ip
{v:J{DF

� 	
~{

LUe

Lt
ð56Þ

or

P’~vEdriv: ð57Þ

Let us consider the case of a hurricane in an axisymmetric configura-
tion, with J 5 vI. We can safely assume that v2I2



Ip ? v2IzDF.

We can now envision a simple model of a hurricane with a total mass,
M, and radius, R, approximated as a solid cylinder with I 5 M R2/2.
Hence, the total power driving the hurricane is given by

P’~ 1
8

v3

2
M2R4

Ip
!v3 M2R4

Ip
, ð58Þ

or, as a function of the fluid density r:

P’~ p2

4
v3 R6L2

Ip
r2: ð59Þ

Figure 3 | A group of particles spinning about their axes and revolving around a common axis, Oz, subject to a centripetal force. Three situations

typically occur. (a) An outward transport of angular momentum occurs with a larger gradient, while free energy flows to the center of the field. (b) If the

inward free energy gradient is dominant relative to the angular momentum gradient, a reversal of the particle’ angular momentum may occur. (c) If the

angular momentum gradient is of the same order of magnitude as in case (b) but still dominant relative to the inward free energy gradient, the particles

may continue spinning in the same direction.
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Our result shows the same type of dependency that was demonstrated
by Chow & Chey50, and, in particular, it shows that the intrinsic
inertial momentum of the particles constituting the fluid plays a
substantial role.

It has been experimentally shown51 that periodic radiative heating
of the Earth’s atmosphere transmits angular momentum to it as a
result of the Earth-atmosphere coupling through frictional interac-
tions52. The images sent by the ESA’s Venus Express confirms this
fact on Venus (Earth’s planetary twin) based on the presence of a
‘‘double-eye’’ atmospheric vortex at the planet’s south pole and the
presence of high velocity winds whirling westwards around the pla-
net, which is characterized by a four-day period.

Schubert and Withehead’s51 conducted an experiment with the
purpose of providing an explanation for the high wind velocities
during apparent cloud formation in the upper atmosphere of
Venus. In this experiment, a Bunsen flame rotating below a cylin-
drical annulus filled with liquid mercury induced the rotation of the
liquid mercury in a direction counter to that of the rotating flame.
The speed of the flame was 1 mm/s and the temperature of the
mercury increased from room temperature at a rate of approximately
3uC per minute. After 5 minutes, a steady-state flow was established,
with the mercury rotating in the counter-direction of the flame, with
a speed of approximately 4 mm/s. If we consider the liquid to be a
spinning body, we can use Eq. 49 to estimate that

d
dr

Ipv’2

2
{

Ipv2

2
zT

� 	
w0[IpD v’zvð Þ v’{vð ÞzD Tð Þw0:

ð60Þ

Hence, the following result is obtained:

v’ *> +v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

DF
2Ipv2

,

s
ð61Þ

and, in the limit v < v9,

v’Dv *> {
1
2
DT

Ip
: ð62Þ

Here, v is the angular speed imposed on the system (heat source), v9

is the mass flow induced angular speed due to a sustained source of
energy; Dv ; v9 2 v. We use the following tabulated data:
~16:6 J:K{1mol{1 for mercury at temperature of the experiment

and r < 13.6 3 1023 kg/m3. We also consider that the volume of
mercury is contained in the channel of the experimental apparatus
forming a rim with an average radius of R 5 30 cm. Using Eq. 62, we
estimate that after one minute, the speed must be approximately
3.7 mm/s. It is clear that the sense of rotation and the speed of the
wind depend on the latent heat stored in the planetary atmosphere
and the temperature difference between the boundaries (through
DT). Eq. 61 is consistent with the results reported by53, where a
maximum mean surface flow is observed corresponding to the angu-
lar velocity of the heat source when the convective velocity (in our

example, vstam~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF



2Mm

q
, with Mm denoting the molar mass) is

attained. Note that, in fact, our vstam represents the limiting speed for
the transport of angular momentum. For mercury, this velocity is
vstam < 24 m/s, with Mm 5 200.59 g/mol in the conditions of the
moving flame experiment. The existence of a limit to the amplifica-
tion of the angular speed was also suggested in Ref. 54, which demon-
strated the effect of a heating or cooling source in the momentum
equilibration. Three possible cases for the clockwise or counter-
clockwise motion of a fluid in a rotation frame are observed in Fig. 3.

Although the initial assumptions taken in the present formulation
require further research and considering that the interactive terms
with the medium, conveyed, for example, through the thermal dif-
fusion coefficient, are not taken into account by Eq. 49, the agree-
ment is reasonable and offers a possible explanation for this effect.

Once again, the problem of radiative atmospheric heating reveals an
interesting interplay between energy and entropy, with each attempt-
ing to achieve a different equilibrium condition.
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17. Éboli, O., Jackiw, R. & Pi, So-Young Quantum fields out of thermal equilibrium.

Phys. Rev. D 37, 3557–3581 (1988).
18. Verlinde, E. On the Origin of Gravity and the Laws of Newton. JHEP 2011, 29

(2011).
19. Glansdorff, P. & Prigogine, I. Structure, Stabilité et Fluctuations (Masson Éditeurs,
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