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There is strong evidence indicating that the social environment triggers changes to the
psychological stress response and glucocorticoid receptor function. Considerable litera-
ture links the subsequent changes in stress resiliency to physical health. Here, converging
evidence for the modulatory role of chronic psychological stress in the recovery process
following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI
research, we are still unable to identify the causes of variability in patients’ recovery fol-
lowing injury. We propose that individuals’ past and present life experiences (in the form
of stress exposure) may significantly modulate patients’ outcome post-SCI. We propose a
theoretical model to explain the negative impact of chronic psychological stress on phys-
ical and psychological recovery. The stress experienced in life prior to SCI and also as a
result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and
function, and contribute to high levels of inflammation and apoptosis post-SCI, decreas-
ing the tissue remaining at the injury site and undermining recovery of function. Both
stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the
glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory
pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to
the theoretical understanding of the recovery process following injury, but also provides
concrete testable hypotheses for future studies.

Keywords: psychological stress, glucocorticoids, inflammation, glucocorticoid resistance, spinal cord injury, NF-κB,
Bcl-2, apoptosis

In 2001, at the 54th World Health Assembly, the 191 Member States
of the World Health Organization approved the International Clas-
sification of Functioning, Disability, and Health. This classification
called for a shift in the way medicine views health and disability. It
recognized that an injury occurs in a social context, and thus, that
not only physical signs but also environmental elements should be
taken into consideration by doctors and medical researchers in the
quest to better predict and improve patients’ outcome post-injury
(1). Despite this initiative, more than a decade later, outcome
prediction following a spinal cord injury (SCI) remains predom-
inantly based on injury-related factors alone, and its accuracy is
limited at best (2). We posit that psychological stress inherent to
the present and past environments of SCI patients may account,
in part, for the unexplained variance in functional recovery.

The link between a stressful environment and disease recovery
is well recognized in diverse clinical fields (3). Psychological stress
is associated with greater risk of asthma exacerbation (4), increases
in cardiovascular disease (5), and faster progression of HIV/AIDS
(6). However, despite the fact that decreased psychological well-
being post-SCI is strongly documented clinically, understanding
of its role in recovery is lacking. As many as 60% of patients suffer
from depression (7), anxiety (8), and general decreased quality of
life (9). Many patients also experience loneliness; the perception of
few people who understand them and in whom they can confide
(10). Interestingly, however, not only does the psychological health

of SCI patients improve in a positive social environment, but phys-
ical health is also benefited. Conducting a systematic review of the
literature on patients with SCI, Muller et al. (11) found a positive
correlation between social support and physical health, mental
health, and pain management post-injury. Patients with a strong
social support system showed better health and functioning (11).
In 2011, a multilevel modeling, retrospective analysis of cross-
sectional survey data also indicated that individual socioeconomic
status strongly predicts outcome post-SCI (12). Saunders et al.
(13) further found household income to be inversely correlated
with pressure ulcers in patients with SCI, even after controlling for
demographic and injury variables. Finally, a number of epidemi-
ological studies have found that patients with good coping skills
have a more positive experience after SCI, and display a lower
incidence of depression (14). These analyses highlight the poten-
tial impact of a positive environment, and by extension a stressful
environment, on the recovery of patients following SCI.

Both pre and post-SCI environment may influence recovery.
Indeed, both a past and present stressful environment, includ-
ing the traumatic experience of SCI, can alter the function of
the glucocorticoid receptor, which is involved in both the stress
response and the activity of protein complexes involved in inflam-
mation and apoptosis, processes critical in SCI injury and recovery
(Figure 1). Chronic psychological stress can compromise gluco-
corticoid receptor sensitivity and function (15–17), and this may
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FIGURE 1 | A schematic of the overall concept proposed relating the
environment, glucocorticoid receptor function, stress resiliency, and
two major processes following SCI.

contribute to high levels of inflammation and apoptosis, decreas-
ing the tissue remaining at the injury site and undermining recov-
ery of function post-SCI. What is more, who is most susceptible to
stress as a result of the traumatic injury may depend on the stress
experienced in life prior to SCI. While numerous other receptors
and proteins involved in SCI and recovery processes (i.e., exci-
totoxicity, oxidative stress, and glial activation) could be affected
by a chronically stressful environment, this review focuses on the
impact of glucocorticoid receptors. There is strong evidence for the
social environment triggering changes to the psychological stress
response, and glucocorticoid receptor function, with considerable
literature linking the subsequent changes in stress resiliency to
physical health.

STRESS RESILIENCY MODULATES INFLAMMATION AND
APOPTOSIS
Psychological stress is defined as an “emotional experience accom-
panied by predictable biochemical, physiological, and behavioral
changes” (18). Examples include experiences of social isolation,
rape, verbal and physical abuse, traumatic injury, or war. A home-
ostatic challenge triggers a stress response, via both a fast route
(neural), involving the autonomic nervous system (often referred
to as the fight-or-flight response), and a slower route (endocrine),
involving the hypothalamic–pituitary–adrenal axis. When we are
exposed to a homeostatic challenge, such as a sign of danger,
the brain first reacts via the neural route. It activates the sym-
pathetic nervous system, which prompts the adrenal glands to
release catecholamines, namely epinephrine and norepinephrine.
Also activated more slowly is the hypothalamic–pituitary–adrenal
axis, the endocrine route. An outside challenge will lead the hypo-
thalamus to secrete corticotropin-releasing hormone (CRH) into
the pituitary portal circulation. This, in turn, stimulates the pitu-
itary glands to release the adrenocorticotropic hormone (ACTH),
which triggers glucocorticoid release by the adrenal glands (19).
Glucocorticoids function in a negative neuroendocrine feedback
loop; high plasma levels signal the hypothalamus to stop producing

CRH, and signal the anterior pituitary to stop producing ACTH.
The effects of stress on glucocorticoid receptor signaling and the
downstream processes of inflammation and apoptosis, however,
depend on whether such stress is acute or chronic.

ACUTE STRESS RESPONSE
In response to acute stress, glucocorticoids and their recep-
tors enhance cellular resiliency and plasticity through inhibition
of inflammation and apoptosis. Glucocorticoids are found in
the bloodstream, where 90% of these molecules are bound to
glucocorticoid-binding globulin. Only unbound glucocorticoids,
the remaining 10%, can cross the blood–brain barrier and cell
membranes (19). The molecules that do cross the membrane of
cells, and reach the cytoplasm, bind to two types of receptors:
mineralocorticoid receptors and glucocorticoid receptors. Min-
eralocorticoid receptors have an affinity to glucocorticoids 10
times greater than that of glucocorticoid receptors (20). Thus, of
the percentage of glucocorticoid molecules that are able to cross
cell membranes, only a fraction actually bind to glucocorticoid
receptors (19).

Glucocorticoid receptors are found in virtually all cells of
the body, including, importantly, in the microglia of the spinal
cord (21, 22). In normal circumstances, glucocorticoids are anti-
inflammatory. In the cytoplasm, they can bind to glucocorticoid
receptors, and trigger conformational changes, which allow the
glucocorticoid receptors to translocate to the cell nucleus via
microtubular highways (23). Once in the nucleus, the glucocor-
ticoid receptors can act as ligand-binding transcription factors
(24). Nuclear glucocorticoid receptors regulate transcription in
conjunction with a number of transcription factors, among them
the activator protein 1 (AP-1) and nuclear factor-kappa B (NF-
κB), which are major initiators of inflammation (see Figure 2). In
the spinal cord, ligand-bound glucocorticoid receptors inhibit the
activity of NF-κB, thereby impeding immune cells from expressing
certain pro-inflammatory cytokines such as interleukin-6 (IL-6),
tumor necrosis factor alpha (TNF-α),or IL-1β (25,26). This occurs
in microglia, but also neurons, as they can both express NF-κB
(27). The inverse is also true; transcription factors involved in
inflammation, such as NF-κB, can regulate the expression of the
glucocorticoid receptor gene, by repressing certain promoters of
this gene (26). This is referred to as reciprocal repression.

Glucocorticoid receptors, in addition to being involved in rec-
iprocal repression with inflammation-related transcription fac-
tors, regulate the activity and expression of kinases and phos-
phatases such as mitogen-activated protein kinases (MAPKs),
cyclin-dependent kinases (Cdks), dual-specificity phosphatases
(DUSPs), and protein Y phosphatases (26). Kinases and phos-
phatases are essential in inflammation. They transfer and remove
phosphate groups from specific substrates involved in inflam-
mation signaling pathways, and play an important role in ini-
tiating the expression of pro-inflammatory genes. For example,
in order for the IKK-NF-κB (inhibitors of kappa B kinase-NF-
κB) pathway to be activated, a pathway which triggers tissue
inflammation, the inhibitor of NF-κB must be dissociated (28).
This is done by NF-κB-specific kinases which phosphorylate this
inhibitor, thus freeing NF-κB from inhibition (26). Glucocor-
ticoid receptors inhibit inflammatory signals by inhibiting the
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FIGURE 2 |The molecular mechanisms explaining the regulatory role
of the ligand-bound glucocorticoid receptors in inflammation and
apoptosis. GC, glucocorticoids; GR, glucocorticoid receptor.

activity of transcription factors that initiate the expression of pro-
inflammatory cytokine genes, and by inhibiting the expression
of kinases and phosphatases that initiate inflammation signaling
pathways.

In addition to anti-inflammatory effects, glucocorticoid recep-
tors also possess anti-apoptotic properties. It is well-known and
regular medical practice, to administer one high dose of pred-
nisone (a corticosteroid) to patients who are extremely ill and
at-risk of dying, as in the case of severe SCI (29, 30). This treat-
ment has a dramatic effect on the patient, stabilizing his condition
within minutes. This is partly because glucocorticoid receptors
not only travel to the cell nucleus to inhibit pro-inflammatory
cytokine gene expression, but also travel to the mitochondria to
inhibit apoptosis. Specifically, ligand-bound glucocorticoid recep-
tors in the cytoplasm can bind to B-cell CLL/lymphoma 2 (Bcl-2),
which is an anti-apoptotic regulator inhibited by the gene Bad
post-SCI. The ligand-bound glucocorticoid receptor-Bcl-2 com-
plex travels to the mitochondria and halts the apoptosis cascade
consisting of cytochrome c release and caspase activation (31) (see
Figure 2). Studies have also shown that low doses of glucocorti-
coids increase mitochondrial oxidation (necessary for ATP syn-
thesis), mitochondrial membrane potential, and mitochondrial
calcium holding capacity (32). In short, glucocorticoid receptors
inhibit inflammation and apoptosis in response to acute stress.

This modulatory role of glucocorticoids, for inflammation
and apoptosis, has been utilized in the clinical treatment of SCI.
Methylprednisolone remains the only option for therapeutic inter-
vention in the emergency management of SCI (33), despite con-
flicting results both in laboratory experiments and clinical trials
(34–36). Indeed, some researchers have questioned clinical trial
results (37–39), while others have criticized such evaluations for

focusing solely on statistical details and theoretical safety concerns
(33, 40). A major concern is that the side effects of methylpred-
nisolone outweigh its modest functional benefits. Dose curve and
timing studies may be necessary to evaluate other possibly bene-
ficial treatment regimens, such as a low methylprednisolone dose
administration over an extended time period. At present, however,
the clinical use of methylprednisolone remains controversial, and
while a full discussion of this controversy is beyond the scope of
this review [for both sides of the issue, the reader is referred to Ref.
(33, 40)] empirical data does support the idea that glucocorticoids
reduce apoptosis (41).

Indeed, early animal studies on the use of glucocorticoids fol-
lowing SCI posited that methylprednisolone improved recovery
by reducing secondary processes of injury, such as secondary
ischemia (42), lipid peroxidation, (42, 43) and apoptosis (44).
Because the methylprednisolone dose demonstrating some suc-
cess in the multicenter, double-blind randomized clinical trial
NASCIS II was much higher (30 mg/kg bolus, 5.4 mg/kg main-
tenance per hour) than that required for glucocorticoid receptor
activation, it has also been suggested that the beneficial properties
of methylprednisolone treatment following SCI may not involve
the glucocorticoid receptors, or at least not only involve gluco-
corticoid receptor related mechanisms (30). Bracken et al. (30)
suggested that instead, methylprednisolone at such a high dose
may work through its facilitation of blood flow through the injured
cord and inhibition of lipid peroxidation. In any case, based on the
modulation of inflammation and apoptosis discussed above, there
should be potential for the use of glucocorticoids from a theoretical
perspective.

The timing of a therapeutic intervention, in regulating the
glucocorticoid response, would be critical for efficacy. Interest-
ingly, the efficacy of methylprednisolone is also contingent on
the timing of the therapeutic intervention (30, 34). Various pro-
inflammatory genes are up-regulated immediately following SCI.
For example, the NF-κB gene, which acts as a transcription fac-
tor to initiate the transcription of various gene types, including
genes encoding for pro-inflammatory cytokines such as IL-6 and
TNF-α (45, 46), is up-regulated as early as 30 min post-injury
in a rodent model of contusion injury (47). This up-regulation
continues for at least 72 h, and occurs in neurons, macrophages
(microglia), and endothelial cells of the injured spinal cord (47).
Methylprednisolone, which is generally considered to have the
greatest therapeutic impact when administered in the 8-h follow-
ing SCI (30), has been found to inhibit the activation of NF-κB
and downstream production of pro-inflammatory cytokines such
as TNF-α (48). Indeed, in one early rodent study, methylpred-
nisolone administered at 30 mg/kg intravenously inhibited IL-6
expression and NF-κB activity by 55% (48).

Recently, it has been suggested that inhibiting the inhibitor
of κB kinase (IKK) might also be useful for post-SCI therapy.
IKK, by phosphorylating the IkB, leads to its ubiquitination and
degradation by proteases, thus activating the NF-κB complex (49).
In a rodent study of SCI, inhibiting IKK was found to prevent
neutrophil infiltration as well as inhibiting the activity of caspase-
3 (by modulating Bcl-2 expression), thus reducing apoptosis in
the injured spinal cord (50). These studies support the potential
of methylprednisolone treatment, modulating NF-κB and Bcl-2
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activity in the acute phase of SCI. However, methylprednisolone
is not always an efficient line of treatment (36). The past and
present environment experienced by the patient may critically
modulate the molecular cascades activated with glucocorticoid
administration. Indeed, exposure to a chronic stressor is linked to
glucocorticoid resistance and epigenetic changes that may result
in increased unbound glucocorticoid expression and exacerbation
of inflammation and apoptosis.

CHRONIC STRESS: GLUCOCORTICOID RESISTANCE AND EPIGENETIC
MODIFICATIONS
Glucocorticoid resistance
While the acute stress response has been linked to reduced inflam-
mation, chronic psychological stress can result in systemic inflam-
mation (15, 51) and the development of glucocorticoid resistance.
Chronic stress-induced inflammation has been suggested to play
a central role in autoimmune diseases (52), infectious diseases
(51, 53), and cardiovascular conditions (54), among others. Glu-
cocorticoid receptors play an integral role in the transition from
the protective effects of acute stress to the negative consequences
of chronic stress. Chronic stress causes extended activation of
the hypothalamic–pituitary–adrenal axis and the autonomic ner-
vous system. This extended exposure to glucocorticoid (55), epi-
nephrine, and norepinephrine hormones (56) results in a dimin-
ished expression and function of the glucocorticoid receptor (15).
Indeed, chronic exposure to elevated levels of glucocorticoids due
to protracted steroid treatment (57), chronic inflammation (58,
59), early-life trauma (60, 61), or chronic psychological stress
(15, 51), can lead to the development of glucocorticoid resis-
tance: a decreased glucocorticoid receptor sensitivity. As a result
of glucocorticoid resistance, immune cells lose sensitivity to glu-
cocorticoids, the hormone which usually serves to put a stop to
inflammatory responses (62).

Glucocorticoid resistance due to chronic psychological stress
not only hinders the inhibition of pro-inflammatory gene expres-
sion in the cell nucleus by impeding ligand-bound glucocorticoid
receptors from inhibiting NF-κB activity, but can also impair
the anti-apoptotic role of glucocorticoid receptors in the mito-
chondria. Recent in vitro and in vivo studies have indicated that
whereas low doses or one single high dose of glucocorticoids
enable the anti-apoptotic effects of the glucocorticoid receptors,
chronically high glucocorticoid levels, due to chronic stress, lead
to decreased levels of glucocorticoid receptors and anti-apoptotic
protein chaperone Bcl-2 in the mitochondria (32,63). These mech-
anisms are of high relevance to SCI patients, as chronic inflamma-
tion and apoptosis contribute to neural loss, motor impairment
(64), the development of chronic pain (65, 66), anxiety (67), and
depression (68, 69).

Although the exact mechanism through which chronic stress
leads to glucocorticoid resistance is not fully understood, stud-
ies of glucocorticoid resistant animal species point to the role
of FK506-binding protein 51 (FKBP51) overexpression and heat
shock protein 90 (70). FKBP51 is an immunophilin protein that
is part of the heterocomplex of the mature glucocorticoid recep-
tor, and regulates its sensitivity. The FKBP5 gene, which encodes
for FKBP51, is up-regulated in response to chronic psychological

stress or psychological trauma (71). Recent studies have uncov-
ered an association between FKBP5 dysregulation and individuals’
attention to threats as a result of racial discrimination (71). It also
seems that FKBP5 dysregulation could play a role in the vulner-
ability to post-traumatic stress disorder in war veterans (72) and
stress-related psychiatric illness in individuals having experienced
childhood trauma (73). Specifically, the ligand-bound glucocor-
ticoid receptors have been shown to up-regulate the expression
of FKBP51 (74, 75). When the FKBP51 chaperone interacts with
heat shock protein 90, it lowers the affinity of the glucocorticoid
receptor heterocomplex to glucocorticoids (76). In other words,
chronic psychological stress increases levels of glucocorticoids;
ligand-bound glucocorticoid receptors increase levels of FKBP51,
and FKBP51 (bound to heat shock protein 90) in turn decreases
the affinity of the glucocorticoid receptor to glucocorticoids, fur-
ther increasing levels of unbound glucocorticoids. Notably in SCI,
the expression of heat shock protein 90 is increased (77).

Epigenetic changes
A stressful environment can affect the sensitivity of the glucocor-
ticoid receptors (51), but, critically, it can also alter its expression
(60, 61, 78) via epigenetic mechanisms. Epigenetics is the study of
changes in gene expression that can be triggered by environmental
factors and which do not result in alterations to the DNA itself (79,
80). Environmental factors, such as diet, infections, and drugs, but
also present and past psychosocial environmental factors, such
as social support, psychotherapy, loneliness, as well as exposure
to physical and mental abuse, may trigger epigenetic changes in
SCI patients which either promote, or impede their recovery. In a
pioneering study, Meaney and colleagues demonstrated that high
levels of early-life licking and grooming behavior from a foster-
ing rat mother leads to a specific tableau of stress resilience in
the pups as adults (61). They showed that a positive social envi-
ronment increased expression of the glucocorticoid receptor in
the hippocampus, strengthened glucocorticoid feedback sensitiv-
ity, reduced the expression of the hypothalamic corticotrophin-
releasing hormone, and culminated in a milder hypothalamic–
pituitary–adrenal stress response (61, 81–83). At the molecular
level, a rich early-life social environment (high maternal care)
increases levels of 5-HT, and through a 5-HT signaling cascade,
leads to high levels of nerve growth factor-inducible protein A
(NGFI-A) (82). Rodent studies have shown that NGFI-A is a tran-
scription factor that binds to the promoter of the glucocorticoid
receptor gene NR3C1 at exon 17. NGFI-A recruits histone acetyl-
transferases (i.e., CREB-binding protein) and together they enable
the demethylation of the glucocorticoid receptor promoter region
(81). By acetylating the promoter region, and demethylating it, a
rich early-life environment thus triggers an epigenetic change at
the promoter region of the glucocorticoid receptor gene, which
results in its up-regulation. The resulting increase in glucocorti-
coid receptor concentration in turn translates into a healthier stress
response (less circulating glucocorticoids following stress) (84).

Critically, the reverse is also true. A stressful early-life envi-
ronment such as that caused by poverty, abuse, rape, or war
can induce powerful epigenetic changes. For example, epigenetic
modifications to the glucocorticoid receptor have been found
in individuals that have suffered childhood abuse, and these
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modifications dramatically increased their risk of suicide (60).
Stressful environments lead to a decrease in glucocorticoid recep-
tor expression, since the signaling cascade described above cannot
be initiated, and the promoter of the glucocorticoid receptor
gene is therefore not demethylated (81, 82). This epigenetic alter-
ation remains until adulthood. The resulting down-regulation of
the glucocorticoid receptor leads to chronically increased levels
of circulating glucocorticoids, reduced glucocorticoid feedback
sensitivity, and increased anxiety among other effects (61, 84,
85). The implications of this tableau are higher susceptibility
to stress-related health problems, such as autoimmune diseases,
cardiovascular diseases, anxiety, and depression – all observed
following SCI.

Epigenetics is already used in the development of anti-cancer
therapeutic drugs in oncology (86), and neuropsychiatry (87, 88).
Proposals have also been presented highlighting the potential of
epigenetics in controlling chronic pain (89–91). Even in injury
recovery research, scientists have begun to recognize the potential
of epigenetics, namely, in traumatic brain injury and stroke (92–
94). Yet, little is currently known about the role of environmentally
triggered epigenetic changes in SCI and recovery.

CHRONIC STRESS AND SCI
Glucocorticoid resistance and epigenetics explain two different
modifications of glucocorticoid receptor function, but one can
safely argue that both may occur in synergy. When individuals
suffer an SCI, for example, placing them at high-risk of suffer-
ing from chronic psychological stress (95, 96), past exposure to a
stressful environment resulting in epigenetic changes that compro-
mise glucocorticoid receptor sensitivity and function would lead
to high levels of inflammation and apoptosis post-SCI, decreasing
the tissue remaining at the injury site and undermining recovery
of function.

Figure 3 illustrates the proposed glucocorticoid receptor mech-
anism through which changes triggered by the early-life and
adult life environment could affect patients’ psychological stress
response, and it in turn could influence processes of inflammation
and apoptosis important to SCI injury and recovery. In early-life,
a non-stressful environment (indicated by the happy face icon
in Figure 3), can promote stress resilience. This in turn leads to
decreased levels of circulating glucocorticoids, and a decreased
psychological stress response. Conversely, a stressful environment
(indicated by the sad face icon in Figure 3) caused, for example,
by physical or emotional abuse, poverty, or racism can decrease
stress resilience. As a result, there are increased levels of circulating
glucocorticoids, and an increased psychological stress response.
Likewise, following SCI in adult life, a“non-stressful”environment
(i.e., strong social support and good coping skills) may contribute
to decreased psychological stress response. Again, in this case too,
a stressful environment (for example due to lack of social sup-
port, perceived loneliness, or discrimination) may contribute to
an increased psychological stress response. Importantly, the glu-
cocorticoid receptors are not only involved in the stress response,
but also in the inflammation and apoptosis processes. Therefore, as
shown in Figure 3, these mechanisms do not only impact the psy-
chological stress response, but also the processes of inflammation
and apoptosis.

FIGURE 3 |The glucocorticoid receptor mechanism proposed for how
environment-triggered epigenetic changes affect SCI recovery. The bold
black lines indicate a negative process and the light gray lines indicate a
positive process in our model. Arrows (→) indicate that a process is
enabled, and bars (–|) indicate that a process is inhibited. The dotted line
indicates a feedback loop. GR, glucocorticoid receptor; SCI, spinal cord
injury.

In addition to the increase in inflammation due to chronically
elevated glucocorticoids levels and the glucocorticoid resistance
that ensues, protracted exposure to cytokines, as a result of ill-
ness (i.e., SCI) or chronic stress, can also affect glucocorticoid
receptor function and lead to increased inflammation. The sig-
naling pathways of pro-inflammatory cytokines, such as NF-κB,
MAPKs, and cyclooxygenase can affect the translocation of gluco-
corticoid receptors from the cytoplasm of the cell to the nucleus,
or the ability of the glucocorticoid receptor to function as a tran-
scription factor (97, 98). The result is increased production of
pro-inflammatory cytokines.

This is paramount to SCI research, as chronic elevated pro-
inflammatory cytokine levels can harm functional recovery, and
contribute to the development of chronic pain (64, 99). Indeed,
chronic inflammation resulting from the injury leads to a wide
range of clinical conditions such as decreased pulmonary func-
tion (100), neuropathic pain (101–103), compromised physical
recovery (104, 105), and exacerbated depressive symptoms (106).
Moreover, SCI-induced chronic inflammation can result in infec-
tions and cardiovascular diseases, two leading causes of death after
SCI (107).

CLINICAL SIGNIFICANCE
We have illustrated one mechanism through which environmen-
tally triggered changes in stress resilience can affect the health
of patients with SCI. We have reviewed how the environment
can affect the function of the glucocorticoid receptor, which in
turn will affect anti-inflammatory and anti-apoptotic cellular
processes in the injured spinal cord. When the glucocorticoid
receptors’ function is compromised by environment-triggered
changes in stress resiliency, the protective effects of glucocorticoids
is diminished, resulting in increased inflammation and apoptosis.
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Critically, these mechanisms involving both pre- and post-SCI
environments may work in synergy to influence the function of
the glucocorticoid receptor. It can be predicted, for example, that a
stressful pre-SCI environment combined with a stressful post-SCI
environment may both increase the psychological stress response,
triggering changes in stress resilience,which will result in decreased
glucocorticoid receptor function. Glucocorticoid receptors’ func-
tion to inhibit inflammation and apoptosis by inhibiting NF-κB
and aiding Bcl-2, respectively, will therefore be compromised.
This may increase inflammation and apoptosis, both processes
harmful to SCI recovery, as they can contribute to chronic pain,
depression, neural loss, and motor impairment. In sum, given
the modulatory role of the glucocorticoid receptor in the NF-κB
and Bcl-2 pathways, patients’ environment and their psychological
stress response are likely to play a role in their recovery after SCI.
Indeed, these factors may partially explain individual differences
in functional gain.

Given the modulatory role of the glucocorticoid receptor in
the NF-κB and Bcl-2 pathways of inflammation and apoptosis,
respectively, the environment-triggered epigenetic activation of
the glucocorticoid receptor gene by acetylation and demethyla-
tion may also hold the potential to reduce inflammation and
apoptosis post-SCI. The potential of this approach is under-
scored by findings of neuroprotective properties of valproic acid
after SCI. Valproic acid up-regulates the expression of the anti-
apoptotic regulator Bcl-2 (108, 109). By inhibiting deacetylation,
it increases the expression of the brain-derived neurotrophic fac-
tor (BDNF) and glial cell-derived neurotrophic factor (GDNF),
among others, thus helping regenerate damaged neurons (110).
Abdanipour et al. (109) recently found that intraperitoneal admin-
istration of valproic acid to spinally contused rats reduced mRNA
expression of cytokines that regulate inflammation. Administra-
tion of this HDACi thus helped to reduce secondary damage.
Subjects who received a dose of 400 mg/kg showed higher loco-
motor recovery scores (Basso, Beattie, and Bresnahan rating scale)
than non-treated contused subjects by day 28 post-injury (109).
Research on the epigenetic changes induced by a stressful environ-
ment could help develop psychosocial therapies targeted to at-risk
patients so that they may cope better with the stress post-SCI and
consequently have a more successful recovery.

Indeed, a combination of epigenetic-based pharmacotherapy
with psychosocial therapy may be optimal given their possible
synergistic effects. In a mouse traumatic brain injury model, an
enriched environment post-injury was recently shown to improve
memory function. The enriched environment, consisting of hous-
ing four mice together in a cage with a running wheel and toys,
increased general acetylation and methylation of histone 3 and
4 in the hippocampus and cortex, thus facilitating synaptic plas-
ticity (111). Based on this work, Dash et al. (112) then showed
that behavioral training also improves spatial learning and mem-
ory post-traumatic brain injury. Furthermore, they found that an
HDACi, sodium butyrate, potentiated the level of improvements
observed in traumatic brain injured mice, when, and only when,
combined with concurrent behavioral training. In other words,
histone deacetylase inhibitor treatment alone did not improve
memory post-traumatic brain injury, and receiving behavioral
training prior to HDACi treatment did not improve outcome

either; it is the combination of both behavioral therapy and phar-
macotherapy that promoted recovery. Given that the spinal cord
is capable of learning (113, 114), it is possible that SCI recovery
too may benefit from HDACi treatment administered concurrent
with physical training.

Overall, these epigenetic and psychological stress findings
underscore the importance of including psychological evaluations
and treatments in the post-SCI intervention. Greater collabora-
tion between the various types of health care providers involved
in the post-SCI treatment plan, including physicians, psychiatrists,
nurses, psychologists, physical therapists, occupational therapists,
and speech therapists, will be essential in providing more suc-
cessful treatment. For example, if a psychologist and psychiatrist,
with the help of the patient and his family, can determine whether
the patient has experienced traumatic events prior to the injury,
or has any history of anxiety or depression, a treatment plan
including more immediate and elaborate psychological therapy
could be provided to minimize the negative consequences of SCI-
associated stress. Likewise, nurses could be informed to encourage
a social support team for the patient, composed of family mem-
bers, friends, and even hospital volunteers, in order to promote the
patient’s psychological well-being. These seemingly small changes,
in addition to formal psychosocial therapy and drug treatment
could be favorable to the patients’ recovery.

CONCLUSION
We have reviewed one mechanism, via the function of the glu-
cocorticoid receptor and the psychological stress response to the
environment, which may account for a part of the unexplained
variance found in patients’ recovery following SCI. Based on the
current literature, two potential mechanisms involved are the
processes of inflammation and apoptosis: the NF-κB and the Bcl-2
pathway, respectively. It must be noted that the action of gluco-
corticoid receptors is only one pathway that may explain the effect
of the environment on spinal cord. Certainly, other relevant path-
ways involve the reaction of immune cells such as lymphocytes,
macrophages, monocytes, natural killer cells, and T cells to the
glucocorticoids and catecholamines released by the brain follow-
ing a stressor. For instance, glucocorticoids and catecholamines
inhibit the expression of Substance P (115), a neuropeptide, and its
receptor (116). This neuropeptide induces macrophages to release
pro-inflammatory cytokines, such as IL-1, IL-6, and TNF-α, as well
as prostaglandin and thromboxane, also involved in inflamma-
tion (117). Likewise, in the central nervous system, stress-triggered
release of glucocorticoids activates microglia, and sensitizes them
to future inflammatory insults (118). The potential synergistic
effects of these various glucocorticoid–immune interactions are
likely to attenuate physical recovery after SCI.

Regulation of these substrates through epigenetic mechanisms
may significantly improve SCI recovery, not only by opening a win-
dow of opportunities for new targeted and personalized treatments
combining both psychosocial therapies and epigenetic therapies,
but also by allowing physicians to identify SCI patients at higher
risk for a more difficult recovery – both physical and psychological.
Future research will be essential in determining the main epige-
netic modifications that positively or negatively affect the recovery
from SCI.
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