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Summary

The fate and persistence of chlorinated organics in
the environment have been a concern for the past
50 years. Industrialization and extensive agricultural
activities have led to the accumulation of these pol-
lutants in the environment, while their adverse impact
on various ecosystems and human health also
became evident. This review provides an update on
the current knowledge of specialized anaerobic bac-
teria, namely ‘Dehalococcoides’ spp., which are dedi-
cated to the transformation of various chlorinated
organic compounds via reductive dechlorination.
Advances in microbiology and molecular techniques
shed light into the diversity and functioning of Deha-
lococcoides spp. in several different locations.
Recent genome sequencing projects revealed a
large number of genes that are potentially involved
in reductive dechlorination. Molecular approaches
towards analysis of diversity and expression espe-
cially of reductive dehalogenase-encoding genes are
providing a growing body of knowledge on biodegra-
dative pathways active in defined pure and mixed
cultures as well as directly in the environment. More-
over, several successful field cases of bioremediation
strengthen the notion of dedicated degraders such as

Dehalococcoides spp. as key players in the restora-
tion of contaminated environments.

Chlorine-containing chemicals like hexachlorobenzene
(HCB), tetra- and trichloroethenes (PCE and TCE), dichlo-
rodiphenyltrichloroethane (DDT), dioxins, polychlorinated
biphenyls (PCBs), chlorophenols (CPs) and chlorofluoro-
carbons (CFCs) are persistent pollutants in our environ-
ment. Recognition of the ability of microorganisms to
degrade these hazardous compounds opened up a new
vista for the microbially mediated remediation of polluted
environments. In addition, it also triggered the scientific
community to undertake continued efforts towards the
discovery, isolation and characterization of new microbial
species. Among these, ‘Dehalococcoides’ spp. represent
dedicated degraders, which are specialized in the anaero-
bic transformation of chlorinated organic contaminants
that may otherwise persist in the environment for
decades. In 1997, Maymó-Gatell and co-authors isolated
the first anaerobic bacterium, ‘Dehalococcoides etheno-
genes’ strain 195 (Maymo-Gatell et al., 1997), that can
transform toxic PCE completely to non-toxic ethene via
the process of reductive dechlorination. Since then, Deha-
lococcoides spp. were found to be dechlorinating a variety
of hazardous chlorinated pollutants like CPs, polychlori-
nated dibenzo-p-dioxins (Fennell et al., 2004), PCB con-
geners (Bedard et al., 2007), chloroethanes (Grostern
and Edwards, 2006; Duhamel and Edwards, 2007) and
chlorinated benzenes (Adrian et al., 2000; Fennell et al.,
2004). Dehalococcoides is a taxon of many irregularities.
Even though the genomes of several representatives of
this genus are among the smallest found in free-living
bacteria (Kube et al., 2005; Seshadri et al., 2005), they
also contain the highest number of putative reductive
dehalogenase (rdh) genes that code for the key enzymes
mediating reductive dechlorination, within all known
dechlorinating genera. Regardless of their general spe-
cialization to reductive dechlorination, every strain iso-
lated so far has its own choice of favourite chlorinated
compound(s). The unusual dependence of Dehalococ-
coides spp. on chlorinated organic compounds for their
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growth made them interesting research subjects to study
their application in bioremediation. Yet our knowledge
about presence, activity and capabilities of members of
this genus in the environment is rather limited, including
their response to changes in environmental conditions.
This review provides a summary of the present knowl-
edge on the role of Dehalococcoides spp. in degradation
of chlorinated organic contaminants and the traits of this
interesting group of microorganisms.

Pollution of chlorinated compounds and their
bioremediation

Chlorine-containing organics (Table 1) are often believed
to originate exclusively from industrial pollution. However,
many living organisms (e.g. marine sponges or terrestrial
antagonistic microorganisms as a part of their defence
mechanisms) produce them naturally whereas chlori-
nated compounds are also released as a result of, for
example, eruptions of volcanoes, forest fires and geother-
mal processes (Griebler et al., 2004; Bengtson et al.,
2009). Nevertheless, it is their extensive industrial (e.g.
solvent, metal degreasing, rubber production) and agricul-
tural (e.g. pesticide component) application over the past
50 years that resulted in their deposition in various envi-
ronments, especially in soils, groundwater aquifers and
sediments (Bailey, 2001; Meijer et al., 2003; Barber et al.,
2005; Hageman et al., 2006; Weber et al., 2008). Due
to their physicochemical properties (Table 1), exposure
to these compounds can have carcinogenic and lethal
effects on biota. Therefore, the production and application
of most of these compounds is no longer allowed in 90
countries since the Stockholm convention in 2001 (Deci-
sion No. 2455/2001/EC, 2001; UNEP, 2005). Finding the
suitable clean-up techniques for contaminated environ-
ments, however, remains challenging. Remediation of
soils and groundwater can be achieved via physicochemi-
cal methods such as thermal cleaning, chemical oxidation
or adsorption of pollutants on activated carbon (Lai et al.,
2007), whereas there are no in situ remediation technolo-
gies for sediments other than complete removal of the
contaminated sediment (Wenning et al., 2006). Moreover,
the high ecological disturbance that these physicochemi-
cal treatment methods can cause in the environment
makes them unsustainable solutions in the long term
(Wenning et al., 2006). Other than harsh physicochemical
treatments, a far more preferable option is bioremedia-
tion. During bioremediation chlorinated contaminants are
largely transformed by microorganisms although degra-
dation by higher organisms is also reported. Phytoreme-
diation, where plants are employed to assimilate,
degrade, metabolize or detoxify chlorinated compounds,
is an effective bioremediation method (Susarla et al.,
2002). For example, poplar trees were shown to assimi-

late and degrade TCE to 2,2,2-trichloroethanol, trichloro-
acetic acid and dichloroacetic acid (Newman et al., 1997).
Recently, it has also been shown that the presence of
these trees may stimulate the transformation of PCE in
the subsurface (James et al., 2009). In this study, in the
test location populated with hybrid poplar trees PCE pol-
lution was reduced by over 99%, in comparison with 2%
removal in an unplanted control. Moreover, several plant
species, especially varieties of Cucurbita pepo ssp. pepo
(squash), were shown to extract milligrams of PCBs from
soil in approximately 8 weeks time (Zeeb et al., 2006).
Lately the generation of transgenic plants to improve the
phytoremediation of these pollutants resulted in several
promising demonstrations of TCE, 1,2-dichloroethane
(DCA) and chlorophenol removal in several laboratory
scale tests (Wang et al., 2004; Dowling and Doty, 2009;
James and Strand, 2009). In many ecosystems, fungi are
among the major decomposers. Most fungi are robust
organisms and are generally tolerant to high levels of
pollution (Singh, 2006). Fungal lignocellulolytic enzymes
have been related to the degradation of various pollutants
when used in combination with mediators and reactive
radicals. Being the most commonly studied example,
white-rot fungi are able to detoxify a wide range of pollut-
ants including chlorinated organics, with lignin and
manganese peroxidases (Tortella et al., 2005; Field and
Sierra-Alvarez, 2008).

The bacterial degradation of chlorinated pollutants can
be a result of fortuitous co-metabolic conversion, or it may
contribute to the energy metabolism of the degrading
organism. During the latter metabolic processes, chlori-
nated compounds are used either as carbon source or as
electron acceptor (coupled to the oxidation of an electron
donor), depending on the oxidation state of the com-
pound. Although many chlorinated compounds may be
transformed under aerobic conditions, the majority of
polychlorinated compounds, such as those discussed in
this review, are recalcitrant to aerobic degradation. Due to
the electronegative nature of the chlorine atom, oxidation
of the carbon backbone in the chlorinated compound
becomes thermodynamically unfavourable (Wohlfarth and
Diekert, 1997), especially in polychlorinated compounds.
As a result they serve as energetically favourable electron
acceptors in microbial metabolism in anoxic environments
such as sediments, subsurface soils and groundwater
aquifers. Consequently, anaerobic bacteria, which can
use these compounds as electron acceptors in a process
termed organohalide respiration, are good candidates for
bioremediation (van Eekert and Schraa, 2001). Within the
organohalide-respiring bacteria, Dehalococcoides spp.
and related isolates within the Chloroflexi represent a
special case in the anaerobic detoxification of halo-
genated organic contaminants. It has been shown
that several other bacteria belonging to the d- and
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e-Proteobacteria (Anaeromyxobacter, Desulfuromonas,
Desulfomonile, Desulfovibrio, Geobacter, Sulfurospiril-
lum) or to the low-GC Gram-positive bacteria (Desulfito-
bacterium, Dehalobacter) are also able to degrade
chlorinated organic contaminants through organohalide

respiration (Fig. 1) (Smidt and de Vos, 2004). However,
with the exception of Dehalobacter spp., none of these
species are as specialized as Dehalococcoides, and they
are reported to grow as well, for example, by metal reduc-
tion, denitrification or fermentation.

Fig. 1. Phylogenetic tree of dechlorinating bacteria based on bacterial 16S rRNA sequences. Alignment and phylogenetic analysis were
performed with the ARB software using the most recent release of the ARB-SILVA project (SILVA 96) (Ludwig et al., 2004; Pruesse et al.,
2007), and the tree was constructed using the neighbour joining method. The reference bar indicates the branch length that represents 10%
sequence divergence. Boldface lettering indicates completed or ongoing genome sequencing.
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The little bacteria that can: the genus
Dehalococcoides

Dehalococcoides is a genus of strictly anaerobic Gram-
negative bacteria that to the best of our knowledge are
restricted to gaining energy from the reduction of chlori-
nated compounds by organohalide respiration. Cultured
Dehalococcoides spp. isolates have an irregular, spheri-
cal shape (approximately 0.5 mm) often referred to as
coccoid. These mesophilic (25–40°C) bacteria prefer
neutral pH environments. Their growth on alternative elec-
tron acceptors such as oxygen, nitrate or sulfate has
never been reported (Kube et al., 2005; Seshadri et al.,
2005). Reductive dechlorination by Dehalococcoides spp.
occurs via the replacement of a chlorine atom in the
chlorinated compound by hydrogen (reductive hydro-
genolysis) and results in a net input of one proton and two
electrons (Fig. 2) (Holliger et al., 1998). Gibbs free energy
(DG0′) generated with reductive dechlorination of chlori-
nated compounds could range from -130 to -180 kJ mol-1

per chlorine removed. The redox potential thus generated
is comparable to the redox potential of denitrification and
higher than that generated by sulfate reduction. As a
result it was suggested that reductively dechlorinating
bacteria could out-compete sulfate reducers and metha-
nogens for reducing equivalents when the formation of
reducing equivalents is rate limiting (Dolfing, 2003). Deha-
lococcoides spp. are also capable of degrading chlori-
nated aliphatic compounds, i.e. 1,2-DCA, via so-called
dihaloelimination. In this process two neighbouring chlo-
rine atoms are concurrently replaced via the formation of
a double bond between the two carbon atoms. Dihaloe-
limination requires less H2 for the removal of chlorine
atoms than reductive hydrogenolysis, thus its energy
balance is more favourable under H2-limited conditions
(Smidt and de Vos, 2004).

As the ecologists’ quest prevails to delve Becking and
Beijerinck’s long running argument: ‘Everything is every-
where, but the environment selects’ (Beijerinck, 1913;
Becking, 1934), the application of biomolecular tools,
including the PCR amplification and sequencing of
16S ribosomal RNA (rRNA) genes from environmental
samples, enables to study the full extent of microbial
diversity and describe the biogeographical patterns exhib-
ited by microorganisms at large spatial scales (Fierer and

Jackson, 2006; Martiny et al., 2006). With the growing
interest in Dehalococcoides’ presence and functioning
in the environment, several studies were conducted
using Dehalococcoides-specific 16S rRNA gene-based
approaches in uncontaminated and chlorinated ethene
contaminated sediments, soils and groundwater aquifers
(Löffler et al., 2000; Hendrickson et al., 2002; Kittelmann
and Friedrich, 2008). Currently, more than 100 16S rRNA
gene sequences of cultured and uncultured Dehalococ-
coides spp. have been deposited to the database of the
National Center for Biotechnology Information (NCBI).
The 16S rRNA gene in Dehalococcoides spp. is highly
conserved throughout the entire genus (Fig. 1); however,
various studies showed that this group is functionally very
diverse (Maymo-Gatell et al., 1997; Adrian et al., 2000;
Hendrickson et al., 2002; He et al., 2003; Duhamel et al.,
2004; Krajmalnik-Brown et al., 2004). Eight Dehalococ-
coides strains have been isolated, mainly for their ability
to degrade chlorinated ethenes (Table 2). Functional
differences in these isolates can be observed in the
chlorinated compound transformed and in the transfor-
mation end-products. For example, the first isolate of the
genus Dehalococcoides ethenogenes strain 195 can
completely dechlorinate PCE to ethene, although degra-
dation of vinyl chloride (VC) to ethene is co-metabolic
(Maymo-Gatell et al., 1997). Dehalococcoides etheno-
genes strain 195 can also dechlorinate HCB to 1,3-DCB
(dichlorobenzene), 1,4-DCB, 1,2-DCB and 1,3,5-TCB
(trichlorobenzene). In contrast to D. ethenogenes strain
195, Dehalococcoides sp. CBDB1 dechlorinates HCB to
1,3-DCB, 1,4-DCB and 1,3,5-TCB, and recently also trans-
formation of PCE and TCE to trans-DCE was observed
(Adrian et al., 2007b). Dehalococcoides spp. are difficult
to maintain in pure culture (Maymo-Gatell et al., 1997;
Adrian et al., 2000; He et al., 2003); they are more easily
maintained in a microbial community, on which they
depend for H2 supply, as long as ideal growth conditions
are provided (Duhamel et al., 2004; Holmes et al., 2006).
Examples include chlorinated ethene transforming
Cornell (Maymo-Gatell et al., 1997), Victoria (Hendrickson
et al., 2002), Pinellas (Harkness et al., 1999), KB-1
(Duhamel et al., 2002) and ANAS cultures (Richardson
et al., 2002). In addition to Dehalococcoides spp., two
other distantly related isolates within the Chloroflexi have
recently been obtained (Fig. 2). The marine ‘Dehalobium
chlorocoercia’ DF-1 is able to dechlorinate a variety of
PCBs (May et al., 2008). Most recently, ‘Dehalogenimo-
nas lykanthroporepellens’ BL-DC-9 has been isolated
from contaminated groundwater. This microorganism
dechlorinates polychlorinated alkanes (Yan et al., 2009).
Like Dehalococcoides spp., both isolates are strictly
hydrogenotrophic.

Several enrichment studies showed the presence of
Dehalococcoides spp. in different locations and environ-

Fig. 2. Reductive dechlorination of hexachlorobenzene (HCB) to
pentachlorobenzene (QCB).
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ments in the Northern Hemisphere (mainly concentrated
in North America, Europe and Japan). Dehalococcoides-
containing enrichment cultures originating from river sedi-
ments have been shown to dechlorinate PCB and dioxin
congeners, PCE, TCE and a number of chlorinated
benzenes (Ballerstedt et al., 2004; Yoshida et al., 2005;
Bedard et al., 2007; Bunge et al., 2007; Futamata et al.,
2007). Besides sediment enrichments, dechlorination by
Dehalococcoides was also reported in groundwater aqui-
fers (Bowman et al., 2006; Bürgmann et al., 2008; Imfeld
et al., 2008; Lee et al., 2008; Himmelheber et al., 2009)
and a denitrifying membrane-biofilm reactor (Chung et al.,
2008). Few studies have demonstrated that the bioaug-
mentation with reductively dehalogenating cultures can
result in complete dechlorination of PCE and TCE to
ethene (Ellis et al., 2000; Major et al., 2002; Lendvay
et al., 2003; Scheutz et al., 2008). The maximum reported
growth rates of Dehalococcoides spp. in pure and enrich-
ment cultures are in the range of 0.2–0.4 day-1 under
laboratory conditions (Maymo-Gatell et al., 1997; Cupples
et al., 2003; Adrian et al., 2007b; Duhamel and Edwards,
2007). Additionally, quantitative analyses of the Dehalo-
coccoides spp. 16S rRNA gene at chlorinated ethene
bioremediation sites (soil and groundwater) revealed
abundances of 102–107 copies per gram material
(Lendvay et al., 2003; Sleep et al., 2006). Recently, a
groundwater bioremediation simulation study showed that
growth rates obtained in laboratory conditions could also
be replicated in large-scale experiments, which resulted in
up to 1012 16S rRNA gene copies l-1 (Vainberg et al.,
2009). Hence, these pilot- as well as field-scale bioreme-
diation tests with Dehalococcoides-containing cultures
offer promising results for the further use of these micro-
organisms.

In spite of all the information obtained in physiological
studies very little is known about the diversity, distribution
and functioning of Dehalococcoides in different environ-
ments although they were detected at several con-
taminated locations. Hendrickson and co-authors have
demonstrated the presence of Dehalococcoides spp. in
soil and groundwater samples from 24 sites scattered
throughout North America and Europe (Hendrickson
et al., 2002). Up to 200 mM PCE could be dechlorinated,
and complete dechlorination to ethene could be corre-
lated to the presence of Dehalococcoides spp. in the
sampling locations. Recently, we conducted a large-scale
survey focusing on presence, activity and dechlorination
potential of Dehalococcoides spp. in river sediments and
floodplain soils from different polluted locations in Europe
(Fig. 3) (Taş, 2009). Almost all of the tested sediment and
soil samples showed the capacity to dechlorinate HCB
and/or chlorinated ethenes irrespective of the in situ con-
taminant levels. Nevertheless, the HCB transformation
rates observed in the laboratory-scale microcosms and
the number of 16S rRNA gene copies of Dehalococcoides
spp. in the environmental samples did not show a strong
correlation. In these river systems, Dehalococcoides spp.
relative abundance was furthermore shown to change
significantly along temporal and spatial gradients, but was
also found to be influenced by other environmental factors
such as water temperature (Taş et al., 2009).

As non-fermentative microorganisms Dehalococcoides
spp. and their organohalide-respiring relatives Dehalo-
bium chlorocoercia DF-1 and Dehalogenimonas lykan-
throporepellens DC-9 depend on the H2 supply from other
microorganisms for their growth (Smidt and de Vos, 2004;
May et al., 2008; Yan et al., 2009). Recently, it has also
been suggested that the activity of Dehalococcoides spp.

Table 2. Isolated strains of ‘Dehalococcoides’ spp. and the chlorinated substrates they transform.

Chlorinated compound reduced End-products References

‘Dehalococcoides ethenogenes’
strain 195

PCE and TCE Ethene Maymo-Gatell et al. (1997)
HCB 1,3-DCB, 1,4-DCB, 1,2-DCB and

1,3,5-TCB
Fennell et al. (2004)

2,3-DCP and 2,3,4-TCP 3-MCP Adrian et al. (2007b)
1,2 DCA Ethene Maymo-Gatell et al. (1999)

Dehalococcoides sp. BAV1 VC Ethene He et al. (2003)
Dehalococcoides sp. CBDB1 HCB 1,3-DCB, 1,4-DCB and 1,3,5-TCB Adrian et al. (2000)

PCE and TCE Trans-1,2-dichloroethene Adrian et al. (2007b)
2,3-DCP and 2,3,4-TCP 3-MCP Adrian et al. (2007b)
Polychlorinated dioxins Dichloro-dioxins Bunge et al. (2003)
Polychlorinated biphenyls

(Aroclor1260)
Various Adrian et al. (2009)

Dehalococcoides sp. VS VC Ethene Cupples et al. (2003)
Dehalococcoides sp. FL2 TCE Cis-1,2-dichloroethene and

trans-1,2-dichloroethene
He et al. (2005)

Dehalococcoides sp. GT TCE Ethene Sung et al. (2006)
Dehalococcoides sp. DCMB5 1,2,4-Trichlorodibenzo-p-dioxin 2-Monochlorodibenzo-p-dioxin Bunge et al. (2008)

1,2,3-TCB 1,3-DCB
Dehalococcoides sp. Strain MB PCE and TCE Trans-1, 2-dichloroethene Cheng and He (2009)
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in in situ conditions is linked to the performance of fer-
mentative communities (Röling et al., 2007). Therefore, it
is crucial to have insight in factors affecting nutrient fluxes
and microbial communities involved in carbon, nitrogen
and sulfur (C, N, S) cycling in the river basins to be able
to understand the survival and functioning of Dehalococ-
coides spp. in different geographical locations. Because
there are considerable differences between dechlorina-
tion capabilities of the known Dehalococcoides strains
despite 16S rRNA identities of > 99%, their sole presence
based on the detection of the 16S rRNA gene in an
environment does not guarantee successful in situ
dechlorination of a specific pollutant. Consequently,
molecular tools that target metabolic activities of the entire
microbial communities in the environment are needed to
have a canonical assessment of the conditions.

Discoveries from Dehalococcoides spp. genomes

Our knowledge gap concerning the properties of Dehalo-
coccoides spp. is closing rapidly with the developments in
high-throughput sequencing technologies. Full-genome
sequence analyses revealed that D. ethenogenes strain
195 (GenBank Accession No. NC_002936) and strain
CBDB1 (NC_007356) genomes are approximately 1.47
and 1.39 million base pairs (Mbp) respectively. Both
genomes comprise single circular chromosomes with
1591 predicted protein coding sequences (CDs) in strain

195 (Seshadri et al., 2005) and 1458 CDs in strain
CBDB1 (Table 3). Up to 1217 of the CDs from strain
CBDB1 have orthologous genes in D. ethenogenes
strain 195 (83.5%) (Kube et al., 2005). Strain BAV1
(NC_009455) has a genome of 1.34 Mbp with 1385 CDs
based on information provided in the Integrated Microbial
Genomes (IMG) database, release March 2009 (Mar-
kowitz et al., 2008). All of these genomes are among the
smallest for free-living bacteria. Different Dehalococ-
coides spp. genomes share many common properties.
For example, one copy of each rRNA gene is present in all
Dehalococcoides genomes (Kube et al., 2005; Seshadri
et al., 2005). In strains 195, CBDB1 and BAV1 the 16S
rRNA gene is spatially separated from 5S and 23S rRNA
genes. Comparative analysis of available Dehalococ-
coides genomes showed that 70% of all genes in these
genomes have a high sequence and contextual conser-
vation (McMurdie et al., 2008). Interestingly, D. etheno-
genes strain 195 possesses a nitrogenase-encoding
operon, which is missing in strain CBDB1. Even though
this finding suggests that D. ethenogenes strain 195 can
fix nitrogen, diazotropic growth of the Dehalococcoides
strains has not yet been reported.

Different Dehalococcoides strains contain different
numbers of rdh genes that encode protein, which have
been proven or predicted to catalyse the dechlorina-
tion reaction. When compared with the genomes of
other dechlorinating bacteria, Dehalococcoides have the

Fig. 3. Summary of results from the locations studied by Taş (2009) with cultivation-dependent and -independent molecular methods. �:
‘Dehalococcoides’ spp. detection with 16S rRNA and/or 16S rRNA gene-targeted methods; : HCB transformation; : chlorinated ethene
transformation; (-) no detection or no transformation; (+/++/+++) low to high rRNA copies or long to short lag phases in HCB and chlorinated ethene
transformation; na: not available; (a) soil and (b) river sediment sample from Schönberg, Germany. Map was redrawn from OpenStreetMap
(http://www.openstreetmap.org).
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highest number of rdh genes in their genomes (Table 3).
Genomes of strains 195, CBDB1 and BAV1 have 17, 32
and 10 rdh genes, respectively, whereas only seven rdh
genes were identified in the genome of Desulfitobacte-
rium hafniense DCB-2, four rdh genes in D. hafniense Y51
and two rdh genes in Geobacter lovleyi SZ and Anaer-
omyxobacter dehalogenans (Thomas et al., 2008). The
draft genome of strain VS contains the highest number of
rdh genes (36 full-length genes) ever found in a single
bacterial genome (McMurdie et al., 2008). Similarly, 14
and 19 rdh genes were detected via PCR amplification in
Dehalococcoides sp. strains FL2 and DCMB5 respec-
tively (Holscher et al., 2004; Bunge et al., 2008). Twelve
rdh genes from strain CBDB1 have orthologues in
D. ethenogenes strain 195 genome with 86.4–95.4%
sequence identity. In D. ethenogenes strain 195 and strain
CBDB1 genomes almost all of the rdh genes (except
DET0079, TCE reductive dehalogenase tceA in D. ethe-
nogenes strain 195 and cbdbA1583 in strain CBDB1)
were found to be located in close proximity to genes for
transcription regulators, and were predicted to be tran-
scribed in the direction of DNA synthesis, which suggests
tight regulation of rdh activity (Kube et al., 2005; Seshadri
et al., 2005). However, the function of only a small number
of these genes is known. Only two rdh genes from strain
195, DET0079 and DET0318, have been characterized
as TCE (tceA) and PCE (pceA) reductive dehalogenases
respectively (Fung et al., 2007). Another tceA gene was
identified in Dehalococcoides sp. strain FL2 (GenBank
Accession No. AY165309) (He et al., 2005). The cbdbA84
gene from strain CBDB1 was recently designated as a
chlorobenzene reductive dehalogenase (cbrA), which is
involved in dechlorination of 1,2,3,4-TeCB and 1,2,3-TCB
(Adrian et al., 2007a). Additionally, two VC reductase
genes were identified from strain BAV1 (bvcrA, Deha-
BAV1_0847) (Krajmalnik-Brown et al., 2004) and strain
VS (vcrA, GenBank Accession No. AY322364) (Muller
et al., 2004). Since metabolic function cannot be inferred
from Dehalococcoides phylogeny, detection methods
based on process-specific biomarkers are necessary to
describe the bioremediation capacity and activity of Deha-
lococcoides in the environment. Therefore, genes like
rdhs and the corresponding gene products that are spe-
cific to functions of interest can serve as useful biomark-
ers in monitoring of different Dehalococcoides activities.
In the past years microarrays were shown to be useful
tools for such monitoring activities and characterization of
microbial communities (Zhou, 2003; Wang et al., 2009).
Furthermore, functional gene arrays (FGAs), which target
functional genes such as nitrogenases, cellulases etc.,
allow fast and comprehensive analysis of metabolic
potential and activity of microbial communities in the envi-
ronment by targeting a large number of genes or their
transcripts in one single experiment (Wu et al., 2001;Ta
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Taroncher-Oldenburg et al., 2003; Steward et al., 2004;
Zhou et al., 2008). Up to date the most extensive FGA
platform is the GeoChip (He et al., 2007), which targets
approximately 10 000 catabolic genes involved in major
biogeochemical cycles, including those of carbon, nitro-
gen and sulfur, as well as organic pollutant degradation.
Analysis of HCB-contaminated sediments in the Ebro
river basin (Spain) using the GeoChip amended with
probes targeting 153 rdh genes showed that rdh gene
diversity changed significantly between different sampling
locations (Taş et al., 2009). More specifically, sediment
samples taken at a site with high HCB pollution (Lacorte
et al., 2006) were dominated by rdh genes of Dehalococ-
coides spp. strain CBDB1 and D. ethenogenes strain 195.
In contrast samples, which were characterized by more
diffuse pollution with a broader range of contaminants, a
wide spectrum of rdh genes was detected including those
from various other organohalide-respiring microorgan-
isms (Fig. 4). However, it should be noted that microar-
rays can only detect known sequences, which can cause
an underestimation of functional gene diversity and abun-
dance in environments for which limited sequence infor-
mation is available. Application of FGAs in combination
with newly developed techniques such as high-throughput
non-gel-based proteomics (Maron et al., 2007) and
sequencing of the metatranscriptome offers a remarkable

promise. Recent studies on D. ethenogenes strain 195
and Dehalococcoides spp. strain CBDB1 transcriptomes
suggested continuous transcription of rdh genes such as
tceA (Johnson et al., 2008) and cbrA (Wagner et al.,
2009) during different growth phases. As a result gene
transcripts of such genes can be studied using transcrip-
tomic techniques with FGAs, in combination with pro-
teomics methods (Morris et al., 2006; Morris et al., 2007)
to identify the proteins with significant functional impact.

Future perspectives: reductive dechlorination,
systems microbiology and microbial networks

The broad aim of systems microbiology is to define and
understand the relationships between the individual com-
ponents that build a cellular organism, a community and
an ecological niche (Vieites et al., 2009). As a result, in the
past, the focus of systems microbiology was on microbial
isolates or enrichments (McHardy and Rigoutsos, 2007).
To date, the majority of the research conducted in the field
of reductive dechlorination has been predominantly
focused on the identification of genes and proteins directly
responsible for the dechlorination process (Cupples et al.,
2003; Muller et al., 2004; Holmes et al., 2006; Adrian
et al., 2007a; McMurdie et al., 2007; West et al., 2008;
Wagner et al., 2009). These experimental studies, so far,

Fig. 4. Hierarchical cluster analysis of rdh gene profiles based on GeoChip functional gene array hybridization signals for samples from Flix
and Rice Fields (RF, river delta) in the Ebro River. HCB is reported to be the dominant chlorinated contaminant in Ebro’s basin where location
Flix bares the highest HCB pollution (Lacorte et al., 2006). White represents no hybridization above background level and grey represents
positive hybridization. The grey-scale intensity indicates differences in hybridization signal intensity, with black representing the strongest
signals. Samples are represented according to sampling month, year and sampling depth (i.e. F06D5: February 2006 depth 0–5 cm; J04D15:
June 2004 depth 10–15 cm). For accession numbers of rdh gene targets, see Taş and colleagues (2009).
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allowed the analysis and characterization of several key
genes. However, it is becoming evident that to understand
microbial functions or functioning of microbial communi-
ties one must study the entire system (Vieites et al.,
2009). The body of research summarized in this review
also supports this idea and suggests that with biomole-
cular assays targeting ribosomal and process-specific
functional genes such as those encoding reductive
dehalogenases, it will remain difficult to understand the
full extent of the process, since the dechlorination process
comprises an integral part of a complex web of metabolic
and regulatory interactions (Rahm et al., 2006; West
et al., 2008; Wagner et al., 2009). The application of
novel, more comprehensive methods like whole genome
shotgun (WGS) sequencing of environmental DNA and
mRNA (functional metagenomics) (Tringe et al., 2005;
Kalyuzhnaya et al., 2008), the establishment of large-
scale databases which contain metagenomic data from
different environments (Seshadri et al., 2007; Pignatelli
et al., 2009; Vogel et al., 2009) as well as the develop-
ment of new computational resources for comparative
(meta)genomic analyses (Peterson et al., 2001; Alm
et al., 2005; Markowitz et al., 2006) enable us to develop
and analyse data sets (and microbial networks) which so
far are believed to be the closest to the actual environ-
mental situations. Thus, today, it can be proposed to leave
reductionist approaches that are limited to only one or a
few selected biomarkers, and to study reductive dechlo-
rination and the function of Dehalococcoides spp. in larger
communities and in the environments in which they
belong. As the functional properties of such communities
are elucidated, we will be able to assess the true role and
importance of Dehalococcoides spp. in the environment.
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