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Calprotectin-g the Lung during Type 2 Allergic Airway Inflammation

Asthma is a chronic, complex pulmonary disease that affects z300
million people worldwide. This multifactorial, heterogeneous
disorder is characterized by airflow obstruction and airway
inflammation, and encompasses various phenotypes (observable
characteristics) and endotypes (biological mechanisms of disease).
Generally, asthma is classified as eosinophilic or noneosinophilic
based on airway or peripheral blood cellular profiles, but marked
heterogeneity exists throughout the entire spectrum of the disease
and is most pronounced in the subset of severe disease (1).
Understanding the complex immune pathways and other disease-
modulating factors (i.e., microbiome, metabolome, and genetics) is
necessary to refine asthma endotypes and to improve treatment
strategies for patients with this disease.

Eosinophilic, atopic asthma is driven by T-helper cell type 2
(Th2) responses (IL-4, IL-5, and IL-3) to inhaled allergens. However,
eosinophilic airway inflammation is also present in nonatopic
asthma (1). Although allergic asthma and eosinophil-dominant
asthma are the most frequent and often effectively managed
subgroups, z10–15% of individuals with asthma have severe
corticosteroid-refractory disease with a noneosinophilic
inflammatory response and experience persistent symptoms and
frequent exacerbations. Noneosinophilic or type 2 low asthma
is diverse and consists of disease with neutrophil-dominant
inflammation resulting from type 1 and type 17 cytokines, mixed
granulocytic inflammation with concurrent allergic and nonallergic
mechanisms, or paucigranulocytic inflammation (2). We have made
progress in understanding the heterogeneity of the immunological
responses in asthma, but our knowledge of the underlying
mechanisms of severe, noneosinophilic asthma is still limited.
Experimental models to mimic noneosinophilic or mixed disease
phenotypes have emerged and are likely to be essential for developing
a better understanding of this heterogeneous disease (3–5).

Calprotectin is a heterodimeric complex of S100A8 (MRP8
[myeloid-related protein 8]) and S100A9 (MRP14) and is associated
with a number of inflammatory diseases, including inflammatory
bowel disease, arthritis, psoriasis, and pulmonary infection (6). These
innate immune proteins are both bacteriostatic and proinflammatory
in nature (7). Specifically, S100 proteins, like these, comprise a group
of damage-associated molecular pattern molecules that bind to and
activate TLR4 (Toll-like receptor 4) and RAGE (receptor for
advanced glycation end products), which has been implicated in type
2 allergic airway disease in mice (8, 9). It is known that S100A8 and
S100A9 are secreted in a disease-specific manner mainly from
neutrophils and macrophages, but few mechanistic studies have
focused on defining the role of these proteins during inflammation.

In the lung, both clinical and animal findings have linked
calprotectin with asthma. S100A8 and S100A9 are upregulated in
individuals with asthma compared with those without asthma and
are associated with more severe, uncontrolled disease phenotypes

(10–13). Specifically, Lee and colleagues found that S100A9 levels
were higher in sputum from patients with severe asthma and
neutrophil-dominant inflammation compared than in sputum
from eosinophil-dominant and paucigranulocytic groups (12, 13).
Furthermore, S100A9 levels significantly correlated with the
percentage of neutrophils in the sputum (13). These data suggest
that S100A9 may initiate and amplify neutrophilic inflammation in
patients with uncontrolled, severe asthma. In experimental animal
models of asthma, the role of calprotectin is more ambiguous.
Some studies demonstrated that exogenous treatment of S100A8
and S100A9 reduced Th2-mediated responses after ovalbumin-
induced allergic airway inflammation (14, 15), whereas others
using neutralizing antibodies for S100A8 and S100A9 showed that
calprotectin promoted disease in a mixed allergen model (16).
Together, these studies show that the role of calprotectin may differ
based on the inflammatory context in the asthmatic lung.

In this issue of the Journal, Palmer and colleagues (pp. 459–468)
examine the role of S100A9/calprotectin in allergic airway
inflammation in mice (17). Although calprotectin is implicated in
the pathogenesis of inflammatory diseases by functioning as a ligand
for TLR4 and RAGE, this study elucidates an alternative and
antiinflammatory mechanism by which S100A9 influences innate
and adaptive immune responses (Figure 1). Using the Alternaria
alternata model of type 2 high allergic airway inflammation, the
authors found that calprotectin-deficient mice (S100A92/2) had
worsened disease as evidenced by increased airway eosinophilia, type
2 helper T cell (Th2) activation, and airway resistance and elastance
responses to methacholine challenge. Specifically, calprotectin
restricted the number of IL-13/IL-5–producing CD41 T cells in the
lung, but not by altering the amount of group 2 innate lymphoid cells
in response to A. alternata. Furthermore, the authors demonstrate
that increased allergic airway inflammation in calprotectin-deficient
mice results from the inability of T regulatory cells to control Th2
responses, identifying a novel role for S100A9 in regulating CD41

T-cell responses in the context of asthma. These data also support
a central role for antigen-specific Th2 cells in promoting airway
hyperresponsiveness. Although their data are consistent with
previous findings suggesting that calprotectin protects against allergic
airway inflammation (14, 15), their work significantly advances the
field by providing mechanistic insight into a physiological and
immunological role for calprotectin in asthma.

S100A8/S100A9 currently serves as a candidate biomarker and
predictive indicator of therapeutic responsiveness in various
inflammatory diseases (6). However, the localization and timing
of calprotectin induction during disease are still unclear. In the lung,
S100A8 was found to be expressed by neutrophils and macrophages
and upregulated during acute allergic inflammation (16). Similarly,
S100A9 was shown to be localized to neutrophils and bronchial
epithelial cells in the airway during neutrophil-dominant allergic
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airway disease (13). Even though S100A9 is one of the most abundant
proteins in the peripheral blood eosinophil proteome (18), eosinophils
recruited to the lungs during allergic airway disease have not been
shown to express calprotectin. Here, Palmer and colleagues show that
S100A9 is not basally present in the respiratory epithelium but is
strongly expressed in type 2 pneumocytes. After A. alternata exposure,
S100A9 expression is increased in the alveolar and airway epithelium.
Together with S100A9’s protective role in allergic airway disease, this
observation suggests that proper levels of S100A9/calprotectin may be
needed for both immune defense and homeostasis. Although it was
demonstrated that calprotectin modulates T regulatory cell activation
by directly suppressing Th2 cell function, changes in CCL11 and
CCL24 that promote eosinophilia could also indicate direct or indirect
effects of calprotectin on the airway epithelium. Similarly, the
localization of TLR4 and RAGE within the lung during A. alternata
exposure could also influence calprotectin-mediated protection. In
addition, previous work demonstrated that S100A8 attenuated airway
hyperresponsiveness by suppressing airway smooth muscle cell
contractility in an experimental model of type 2 allergic airway disease
in rats (19). Given the complexity of the immune system and cross-
talk among resident and circulating immune cells, it is likely that
multiple cell types are directly or indirectly influenced by calprotectin
to confer protection in the lung upon A. alternata challenge. Defining
the cellular sources of this protein and its receptors will help to clarify
its direct and indirect effects within the lung, and will provide insight
into the utility of calprotectin as a personalized therapy for asthma.
Furthermore, the studies performed by Palmer and colleagues
delineate the role of calprotectin in a type 2–dominant immune setting
(17); its biological function in other immunophenotypes of severe
asthma is still unknown. Because calprotectin is highly expressed by
neutrophils and contributes to severe, uncontrolled, and type 2 low,
neutrophil-like asthma (12, 13), further investigations are warranted to
extend this important work, focusing on more diverse immune
environments and type 2 low or type 17–associated asthma. n
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Figure 1. Effects of calprotectin on Alternaria alternata–induced type 2 allergic airway inflammation. A. alternata challenge results in a robust type 2–driven
inflammation (T-helper cell type 2 [Th2] and group 2 innate lymphoid cells [ILC2], type 2–associated cytokines [IL-4, IL-5, and IL-13], and chemokines
[eotaxins, such as CCL11 and CCL24]) and recruits eosinophils to the lungs. Type 2 cytokines mediate class switching of B cells to secrete IgE upon
exposure to antigen. These type 2 responses contribute to the hallmarks of asthma pathogenesis, including mucus production, subepithelial fibrosis,
bronchial remodeling, and airway hyperresponsiveness. Calprotectin significantly limits allergic airway inflammation by limiting the production of IL-13,
CCL11, CCL24, serum IgE, eosinophil recruitment, and airway hyperresponsiveness. Furthermore, calprotectin enhances T regulatory cell (Treg)
activation, which suppresses Th2-mediated hyperinflammation.
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