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Abstract. Colorectal cancer (CRC) is considered to be one 
of the most lethal cancer types globally, and its recurrence is 
a major treatment challenge. Identifying the factors involved 
when determining the risk of CRC recurrence is required to 
improve personalized therapy for patients with CRC. Based 
on the GSE39582 dataset, the present study demonstrated 
that a higher ratio of M1 macrophages and activated memory 
CD4+ T cells indicated a better recurrence-free survival (RFS) 
time for CRC, using CIBERSORT and Pearson's correlation 
analysis. Through weighted correlation network analysis 
(WGCNA), an immune-associated module was identified 
that was significantly positively correlated with the ratio of 
M1 macrophages and activated memory CD4+ T cells. In 
this module, using WGCNA and a protein-protein interaction 
network, interferon regulatory factor 1 (IRF1), chemokine 
ligand 5, ubiquitin/ISG15-conjugating enzyme E2 L6, 
guanylate binding protein 1 and interleukin 2 receptor subunit 
beta were identified as hub genes. Among these genes, univar-
iate Cox and multivariate Cox analysis revealed that IRF1 may 
be a potential diagnostic biomarker for RFS in patients with 
CRC. This was further validated using The Cancer Genome 
Atlas data. Gene set enrichment analysis demonstrated that 
IRF1 influenced the genes and pathways that are associated 

with immune cell recruitment and activation. Additionally, the 
DNA methylation of cg27587780 and cg15375424 CpG sites in 
the IRF1 gene region was indicated to be negatively correlated 
with IRF1 mRNA expression and positively correlated with 
the recurrence of CRC. Collectively, the results of the present 
study demonstrated that IRF1 may be a potential diagnostic 
biomarker for RFS in patients with CRC.

Introduction

Colorectal cancer (CRC) is one of the most common cancer 
types and the leading cause of cancer-associated mortality 
globally (1,2). The current standard treatment for colon cancer 
is surgery combined with chemotherapy. However, a propor-
tion of patients still suffer from local recurrence and remote 
metastasis following surgery (3). Furthermore, patients with 
similar clinical or pathological conditions may exhibit unpre-
dictable and diversified clinical outcomes, even when treated 
in the same way. This phenomenon reveals the limitation of 
the classic tumor-node-metastasis (TNM) staging system (4). 
Reliable and robust molecular markers, in addition to the 
current clinical and pathological factors used for determining 
the risk of CRC recurrence, are required to improve personal-
ized therapy for patients (5).

The development of bioinformatics and gene expression 
profiling technologies provides additional opportunities to 
characterize the molecular features of cancer. Gene-expression 
profiling has been used to develop genomic tests that may 
provide better predictions of clinical outcomes in combina-
tion with traditional clinicopathologic factors (6). Although a 
number of studies have used this method in CRC, to the best 
of our knowledge, this has not been applied clinically (7). 
Therefore, establishing a novel and more effective signature 
for assessing CRC recurrence is urgently required.

Previously, emerging evidence has suggested that tumor 
progression and recurrence are not only regulated by the 
abnormal gene expression of cancer cells but also by the tumor 
microenvironment (TME) factors, including the infiltration 
of a number of immune cell subsets (8). The expression of 
TME‑associated genes, including chemokine and inflamma-
tory factors, affects the infiltration of immune cells in TME, 
and is associated with the recurrence and survival of patients 
with cancer (9).
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In the present study, the association between immune 
cell subtypes in CRC tumor microenvironment and recur-
rence-free survival (RFS) time was evaluated. Subsequently, 
to explore the hub genes that are associated with the immune 
cell subtypes in the TME, weighted correlation network 
analysis, protein-protein interaction network, univariate Cox 
and multivariate Cox analyses were sequentially performed. 
Eventually, the influence of the degree of DNA methylation 
of hub genes-associated CpG sites on their expression was 
evaluated.

Materials and methods

Collection of gene expression datasets. GSE39582 were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE39582) (10). GSE39582 includes 585 colorectal 
cancer samples and 19 non-tumoral tissue samples, which 
were from a French cohort (11). GSE71187 data were down-
loaded from the GEO database (https://www.ncbi.nlm.nih. 
gov/geo/query/acc.cgi?acc=GSE71187), which included a 
Chinese cohort with the mRNA expression profiles of 52 
human biopsy samples of CRC, and included overall survival 
time information (12). The DNA methylation profile, RNA-seq 
raw counts and clinical information of 234 patients with CRC 
was retrieved from The Cancer Genome Atlas (TCGA) data 
portal using R package TCGAbiolinks (13).

Immune cell infiltration analysis. CIBERSORT (https://ciber-
sort.stanford.edu/) (14) is an online analytical tool that is used to 
provide an estimation of the abundance of a number of immune 
cell sub-types in a mixed cell population using gene expression 
data. LM22 (downloaded from https://media.nature.com/orig-
inal/nature-assets/nmeth/journal/v12/n5/extref/nmeth.3337-S2.
xls) was used as the signature gene file for distinguishing 22 
immune cell types in CIBERSORT (14,15). The GSE39582 
expression mixture file was uploaded to the CIBERSORT 
website. CIBERSORT was subsequently run online to calculate 
the ratio of the 22 immune cell subsets, due to the mRNA expres-
sion of immune signature genes in the cancer tissue of patients 
with CRC, and non-tumoral tissue samples. Permutations was 
set to 1,000, quantile normalization was used for GSE39582 
gene chip data and disable quantile normalization was used for 
TCGA CRC RNA-seq data (14).

Recurrence‑associated genes screening. The genes combined 
with recurrence clinical traits, which were significant in univar-
iate Cox analysis, were identified as recurrence‑associated 
genes based on GSE39582. R package survival (version 2.42-6; 
https://cran.r-project.org/web/packages/survival/index.html) 
was used for univariate Cox analysis (16). P<0.05 was consid-
ered to indicate a statistically significant difference. Hazard 
ratios (HRs) were used to identify protective (HR<1) and risk 
genes (HR>1) (17).

Weighted correlation network analysis (WGCNA). The WGCNA 
package (version 1.63), in R, was used to assess correlation 
patterns among genes, and identify modules of highly correlated 
genes (18). WGCNA was used in the present study to construct 
the co-expression network for the recurrence-associated genes 

that were identified using univariate Cox analysis, as described 
previously (17). β was a soft-thresholding parameter that was 
able to emphasize strong correlations between genes and 
penalize weak correlations (18,19). The power of β=4 (scale 
free R2=0.8) was selected as the soft-threshold to ensure a 
scale-free network. A cut height of 0.25 and minimum size 
of 50 were used to identify modules. Pearson's correlation 
matrices were subsequently calculated between each module 
and immune cell subset.

Enrichment analysis. R package clusterProfiler (version 3.9.1; 
http://www.bioconductor.org/packages/release/bioc/html/clus-
terProfiler.html) was used for Gene Ontology (GO) Biological 
Process and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the genes in modules 
that were identified using WGCNA (20). P<0.05 was consid-
ered to indicate a statistically significant difference.

Protein‑protein interaction (PPI) network construction. 
STRING (https://string-db.org/) (21) was used to construct 
the PPI networks for distance-associated genes using 
the genes from modules identified by WGCNA. The PPI 
networks were then exported from STRING and imported 
into Cytoscape (22).

Hub gene identification. To identify the hub genes, all the 
listed genes were ranked based on their degrees calculated 
in the PPI network and co-expression network. The sum rank 
(Nsum rank=Nppi rank+Nco-expression rank) was then used to identify hub 
genes.

Gene set enrichment analysis (GSEA). Patients in GSE39582 
and TCGA Colon Adenocarcinoma (COAD) were divided 
into two groups (an IRF1 high-expression group and an IRF1 
low-expression group) based on the median of IRF1 expression 
in each dataset. The median of IRF1 expression was of 11.6 and 
7.23 for TCGA COAD and GSE39582 dataset, respectively. 
R package clusterProfiler was then used for GSEA to compare 
the different KEGG pathways between the two groups (23).

Methylation analysis. As the GSE39582 dataset lacked meth-
ylation data, the TCGA CRC Level 3 450K DNA methylation 
dataset was used for the further analysis of DNA methylation. 
The acquired methylated sites were annotated based on the 
GPL13534 (Illumina HumanMethylation450 BeadChip; 
Illumina, Inc.) annotation information. Pearson's correlation 
coefficient was used to evaluate the relevance between gene 
expression and the degree of methylated CpG sites (24). A 
Wilcoxon's test was used to select the differentially methylated 
CpG sites between the two groups (25). P<0.05 was considered 
to indicate a statistically significant difference.

Statistical analysis. Statistical analysis was performed using 
R (version 3.5.3). The rank-sum t-test was used to test the 
differences between two groups. A one-way analysis of vari-
ance was used to test the differences among multiple groups, 
using the Tukey-honestly significant difference test as the 
post-hoc test (26). R package survival (version 2.42-6) was 
used for Kaplan-Meier survival analysis and the log-rank test. 
R package corrplot (version 0.84) was used to calculate the 
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Figure 1. Function of immune cell infiltration in TME for recurrence. (A and B) Kaplan‑Meier survival plots of RFS. According to the median infiltration level 
of (A) M1 macrophages and (B) activated CD4+ memory T cells, the patients were stratified into a high‑level group and a low‑level group. (C) A violin plot of 
the ratio of M1 macrophages and activated CD4+ memory T cells in no-recurrence/recurrence patients. (D-F) Box plots indicated the ratio of M1 macrophages 
and activated CD4+ memory T cells (green) in the cohorts of (D) wild-type or mutated TP53, (E) K-ras and (F) BRAF. (G) A box plot demonstrated the ratio 
of M1 macrophages (left) and activated CD4+ memory T cells (right) among different TNM stages. The vertical axes indicated the lower quartile and upper 
quartile of the ratio of M1 macrophages (red) or activated CD4+ memory T cells (green); and the line inside each box indicates the median ratio of M1 macro-
phages or activated CD4+ memory T cells in each group (D-G). *P<0.05, **P<0.01 and ***P<0.001 with comparisons shown by lines. Log-rank test for (A) t-test 
for (B‑F) and one‑way analysis of variance followed by Tukey‑honestly significant difference tests as post‑hoc tests for (G). TME, tumor microenvironment; 
RFS, recurrence free survival; TNM, tumor-node-metastasis; BRAF, B-Raf proto-oncogene, serine/threonine kinase.
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Figure 2. Immune cell infiltration associated modules identified in CRC. (A) Gene clustering and module identification by WGCNA analysis based on the 
recurrence‑associated genes from GSE39582. The gene modules were signified by different colors and the grey modules indicated the genes that were unable to 
be merged. (B) Heat map of the correlation between modules and the ratio of M1 macrophages and activated CD4+ memory T cells. (C) KEGG and (D) GO BP 
analysis of the yellow module identified by WGCNA. The size and the color intensity of a circle represent the gene number and ‑log10 (P value), respectively. 
CRC, colorectal cancer; WGCNA, weighted correlation network analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology; BP, 
biological process.
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Pearson's correlation coefficient between genes and the ratio 
of immune cells (27). P<0.05 was considered to indicate a 
statistically significant difference (28). Data are presented as 
median ± quartile for boxplot.

Results

Influence of immune cell infiltration on the recurrence of 
patients with CRC. A previous study demonstrated that the 

Figure 3. Co-expression network and PPI network from the yellow module. The construction of the (A) co-expression network and the (B) PPI network for 
genes in the yellow module. The filled color indicates the HRs of each gene and the border color reflects the P‑value of each gene. The size of genes indicated 
the degree, which was able to reflect the number of links between the gene and others. Solid lines represent a positive correlation and dotted lines represent a 
negative correlation. PPI, protein-protein interaction; HR, hazard ratio.
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mRNA expression of immune signature genes may predict 
the ratio of a number of immune cell subsets (15). To investi-
gate the function of each TME immune cell subset infiltration 
in recurrence, CIBERSORT was used to calculate the ratio of 
22 immune cell subsets in TME, for each patient with CRC, 

based on the mRNA expression data of immune signature 
genes. M1 macrophages and activated memory CD4+ T cells 
were indicated to be protective factors and indicative of 
improved RFS time (P<0.01; Fig. 1A and B). Due to the LM22, 
the molecular pattern of M1 macrophages identification 

Figure 4. Kaplan Meier survival plots of RFS for hub genes in the yellow module and its correlation analysis with the ratio of M1 macrophages and ratio of 
activated CD4 memory T cells. (A) According to the median expression of each gene, the patients were stratified into a high‑level group and a low‑level group 
for Kaplan Meier survival plot analysis of RFS. (B) Association between the hub genes and the two recurrence-associated immune cells. RFS, recurrence free 
survival; GBP1, guanylate binding protein 1; IL2RB, interleukin 2 receptor subunit β; IRF1, interferon regulatory factor 1; UBE2L6, ubiquitin conjugating 
enzyme E2 L6.
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included ADAMDEC1, AIF1, ALOX15, CCL13, CCL14, 
CCL18, CCL23, CCL8, CD209, CD4, CD68, CFP, CHI3L1, 
CLEC10A, CLEC4A, CLIC2, CRYBB1, EBI3, FAM198B, 
FES, FRMD4A, FZD2, GGT5, GSTT1, HRH1, HTR2B, 
MS4A6A, NME8, NPL, P2RY13, PDCD1LG2, RENBP, 
SIGLEC1, SLC15A3, TLR8, TREM2 and WNT5B. The 
molecular pattern of activated memory CD4+ T cells included 
CCL20, CD2, CD247, CD28, CD3D, CD3G, CD40LG, CD6, 
CD7, CDC25A, CSF2, CTLA4, CXCL13, DPP4, GPR171, 
GPR19, GZMB, ICOS, IFNG, IL12RB2, IL17A, IL26, 
IL2RA, IL3, IL4, IL9, LAG3, LCK, LTA, NKG7, ORC1, 
PMCH, RRP9, SH2D1A, SKA1, TNFRSF4, TNIP3, TRAC, 
TRAT1 and UBASH3A. The ratio of M1 macrophages and 
activated CD4+ memory T cells was significantly lower in 
patients with recurrence compared with patients with no 
recurrence (P<0.001; Fig. 1C). Further analysis revealed that 
the ratio of M1 macrophages and activated CD4+ memory T 
cells demonstrated no significant difference between patients 
with a TP53 mutation and wild-type (WT) patients, but 
was significantly reduced in patients with the K‑ras muta-
tion compared with WT patients (P<0.01; Fig. 1D and E). 
Additionally, the ratio of M1 macrophages and activated 
CD4+ memory T cells was significantly increased in patients 
with the B-Raf proto-oncogene, serine/threonine kinase 
mutation compared with WT patients (P<0.001; Fig. 1F). In 
comparison with patients with advanced CRC, early-stage 
patients exhibited a significantly higher ratio of M1 macro-
phages and activated memory CD4+ T cells (P<0.05; Fig. 1G). 
These results revealed that the ratio of M1 macrophages and 
activated memory CD4+ T cells in TME serve a vital func-
tion in the recurrence of patients with CRC.

Identification of key modules associated with immune cell 
infiltration. To investigate the factors that influenced the ratio 
of M1 macrophages and activated memory CD4+ T cells, 
and the response of recurrence in patients with CRC, 3,530 
recurrence‑associated genes were identified using univariate 
Cox analysis, which may be used as independent factors 
for CRC. Subsequently, based on the mRNA expression of 
recurrence-associated genes, a co-expression network was 
constructed and key modules were identified using WGCNA, 
which were used to aggregate genes with the same expression 
pattern. The results revealed that the recurrence-associated 
genes may be grouped into 4 major modules, which were 

identified as blue, brown, turquoise and yellow modules 
(Fig. 2A). The association between the infiltration of every 
immune cell subset and the modules was then assessed. The 
data revealed that the yellow module exhibited a positive 
correlation with the ratio of M1 macrophages and the ratio of 
activated memory CD4+ T cells (Fig. 2B). KEGG pathway and 
GO enrichment analysis were then performed for the yellow 
module. KEGG pathway enrichment analysis revealed that 
influenza A, Epstein‑Bar virus infection, NOD‑like receptor 
signaling pathway and cytokine-cytokine receptor interaction 
were enriched in the yellow module (Fig. 2C). The results of 
the GO enrichment analysis revealed that the yellow module 
was mainly enriched in the cellular response to type I inter-
feron, regulation of innate immune response, T cell activation, 
defense response to virus and response to virus (Fig. 2D). These 
data indicated that recurrence-associated genes enriched in the 
yellow module may be involved in regulating the infiltration or 
function of immune cells in TME.

Identified hub genes in the yellow module influenced the 
RFS time of patients with CRC. Hub genes, which exhibited 
the highest degree and greatest number of associations with 
other genes, serve a key function in the yellow module (29). 
To further investigate the biological functions of the yellow 
module, co-expression networks that were based on the 
WGCNA and PPI network were constructed to identify 
hub genes in the yellow module (Fig. 3A and B; Table SI). 
By ranking the degree of these networks, IRF1, C-C motif 
chemokine ligand 5 (CCL5), ubiquitin conjugating enzyme 
E2 L6 (UBE2L6), guanylate binding protein 1 (GBP1) and 
interleukin 2 receptor subunit beta (IL2RB) were identified 
as the hub genes in the yellow module. Kaplan-Meier curve 
and Log-rank analysis revealed that the expression of IRF1, 
UBE2L6, GBP1 and IL2RB significantly influenced the RFS 
time of patients with CRC (P<0.05; Fig. 4A). All 4 hub genes 
indicated a significant positive correlation with each other, in 
addition to the ratio of M1 macrophages and activated memory 
CD4+ T cells (Fig. 4B).

IRF1 was able to predict the RFS time of patients with CRC. 
Although all hub genes exhibited the potential to be inde-
pendent diagnostic biomarkers for the RFS time of patients 
with CRC, IRF1 most significantly influenced this and was 
indicated to be a potential diagnostic biomarker for RFS in 

Table I. Univariate Cox analyses and multivariate Cox analysis of 4 hub genes.

 Univariate Cox analysis Multivariate Cox analysis
 ---------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------
Gene 95% CI P-value HR 95% CI P-value HR

GBP1 0.821 0.683-0.987 0.035a   >0.05
IL2RB 0.741 0.59-0.93 0.01a   >0.05
UBE2L6 0.73 0.604-0.881 0.001a   >0.05
IRF1 0.618 0.497-0.769 <0.001a 0.527 0.359-0.772 0.001a

HR, hazard ratio; CI, confidence interval; GBP1, guanylate binding protein 1; IL2RB, interleukin 2 receptor subunit β; IRF1, interferon regula-
tory factor 1; UBE2L6, ubiquitin conjugating enzyme E2 L6. aP<0.05.



WU et al:  IRF1 AS A DIAGNOSTIC BIOMARKER FOR CRC1766

patients with CRC (P=0.001; Table I). TCGA data was then 
used for further validation, and the results revealed that 
patients with CRC and a lower expression of IRF1 exhibited a 
worse prognosis compared with those with a higher expression 
of IRF1, which is consistent with the results of the GSE39582 
dataset (P<0.01; Fig. 5A). Based on TCGA data, IRF1 expres-
sion was also significantly positively correlated with the ratio 
of M1 macrophages and activated memory CD4+ T cells 
(P<0.01; Fig. 5B and C). An additional dataset from a Chinese 
cohort was also used, which contained the mRNA expression 
profiles of 52 human biopsy samples of CRC, and included 
overall survival time information (12). The data revealed that 
IRF1 expression in Chinese patients with CRC exhibited 
similar results compared with those identified in the French 
CRC cohort. Overall survival analysis indicated that Chinese 
patients with CRC and high IRF1 expression exhibited a high 

survival probability, although this was not significant. Patients 
with CRC and higher IRF1 expression exhibited better survival 
time compared with patients with lower IRF1 expression, and 
IRF1 expression demonstrated a positive association with 
the ratio of M1 macrophages and activated memory CD4+ T 
cells, though this was not statistically significant as it was a 
smaller sample size (Fig. S1). Although age exhibited a signifi-
cant difference, there was no difference of all other clinical 
variables between these two cohorts, including sex, TNM 
stage, overall survival time and survival state (Table SII). This 
indicated that the expression of IRF1 may predict the RFS of 
patients with CRC in different cohorts, including Europeans, 
Americans and Asians.

Patients from GSE39582 and TCGA were divided 
into two groups according to the median IRF1 expression. 
GSEA was used to investigate the different KEGG pathways 

Figure 5. Verification of IRF1 prognostic signature using TCGA datasets and the GSEA of the DEGs between the high‑ and low‑expression IRF1 groups. 
(A) Kaplan Meier survival plots of the association between recurrence-free survival and IRF1 expression in TCGA datasets. The association between IRF1 
expression and the ratio of (B) M1 macrophages and (C) activated CD4+ memory T cells in TCGA datasets. The histogram exhibited the frequency in the 
value. The violet dotted line represents the median value of log2 (IRF1 expression) and the green dotted line represents the median value of the ratio of 
(B) M1 macrophages or (C) activated CD4+ memory T cells. The blue line revealed the line of best fit of the association between the log2 (IRF1 expression) 
and cell ratio of (B) M1 macrophages or (C) activated CD4+ memory T cells. GSEA of the DEGs between the high- and low-expression IRF1 groups using 
(D) GSE39582 and (E) TCGA datasets. The P-value and NES of different pathways were indicated by different colors, respectively. IRF1, interferon regulatory 
factor 1; TCGA, The Cancer Genome Atlas; GSEA, Gene set enrichment analysis; PD-1, programmed cell death 1; PD-L1, programmed death ligand 1; CXCL, 
C-X-C motif chemokine ligand; IFNG, interferon γ; CCL5, C-C motif chemokine ligand 5; DEG, differentially expressed gene; NES, normalized enrichment 
score; COAD, colon adenocarcinoma.
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between these groups, and the results demonstrated that 
pathways associated with immune cell recruitment and 
activation, including the chemokine signaling pathway, 
cytokine-cytokine receptor interaction and programmed 
death ligand 1 expression and programmed cell death 1 
checkpoint pathways in cancer, were upregulated in the IRF1 
high-expression group. A number of chemokines, including 
C-X-C motif chemokine ligand (CXCL) 9-11 and CCL5, were 
highly expressed in the IRF1 high-expression group. These 
results indicated that a higher expression of IRF may reduce 
the risk of recurrence through influencing the recruitment 
and activation of immune cells, particularly M1 macrophages 
and activated memory CD4+ T cells.

DNA methylation levels of two CpG sites (cg27587780 and 
cg15375424) are negatively correlated with the expression 
of IRF1 and positively correlated with the recurrence of 
patients with CRC. To investigate the aberrant expression of 
IRF1, the association between the degree of DNA methylation 
of IRF1-associated methylated CpG sites and the expression 
of IRF1 were analyzed based on TCGA dataset. The results 
indicated that two CpG sites, cg27587780 and cg15375424, 
were significant negatively correlated with IRF1 expres-
sion (P<0.001; Fig. 6A and B). These two methylated CpG 
sites were hypermethylated in patients with CRC recurrence 
compared with patients with CRC without recurrence (P<0.05; 
Fig. 6C and D).

Figure 6. Relevance of IRF1-associated methylated CpG sites to IRF1 expression and patient CRC recurrence. Correlation diagrams of IRF1 expression 
and the degree of DNA methylation of (A) cg27587780 and (B) cg15375424. A boxplot exhibited the degree of DNA methylation of (C) cg27587780 and 
(D) cg15375424 in patients with no-recurrence and recurrence. *P<0.05 and ***P<0.001 (t-test), with comparisons shown by lines. The vertical axes demonstrate 
the lower quartile and upper quartile of the methylation level of the indicated site for no-recurrence (white) or recurrence (red) cohorts; and the line inside each 
box indicates the median of the methylation of the indicated sites in each group. IRF1, interferon regulatory factor 1; CRC, colorectal cancer.
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Discussion

Colorectal cancer is the third leading cause of cancer-associated 
mortality globally (1,2). Although the majority of patients with 
CRC are treated using surgery combined with chemotherapy, 
local recurrence and remote metastases following therapy 
often influence their survival rate (30). At present, there is 
a lack of effective biomarkers for CRC recurrence. TME, 
particularly immune cell infiltration, serves an important 
function in affecting the metastasis and recurrence of patients 
with CRC (31). Therefore, investigating the mechanisms of 
TME and TME-associated factors may be useful to identify 
novel biomarkers for CRC prognosis and may provide more 
effective, target‑specific or personalized therapeutic strategies 
for patients with CRC.

In the present study, based on the data from GSE39582, 
M1 macrophages and activated memory CD4+ T cells were 
indicated to be protective factors for the survival of patients 
with CRC. Patients with a high score of M1 macrophages and 
activated memory CD4+ T cells exhibited a lower risk of recur-
rence. M1 macrophages and activated memory CD4+ T cells 
have been confirmed as tumor‑preventing cells in CRC, but 
factors affecting the distribution of these cells in TME remain 
unclear (32,33). The results of the present study revealed that 
a module, which contained 120 genes from recurrence-asso-
ciated genes in CRC, was positively correlated with these two 
immune cell subsets in TME. In this module, the top 5 hub 
genes were identified to be IRF1, CCL5, UBE2L6, GBP1 and 
IL2RB.

Further analysis using a Kaplan-Meier curve and Log-rank 
test revealed that all top 5 hub genes, except CCL5, influenced 
the RFS of patients with CRC. IRF1, which belongs to the 
IRF family (34), is weakly expressed in resting dendritic cells 
and macrophages, but is induced by interferon-γ (IFN-γ) in 
M1 polarized macrophages (35,36). Previous studies have 
revealed that IRF1 inhibited the proliferation and metastasis 
of CRC (37,38). UBE2L6, which is also known as UBCH8, 
promotes apoptosis in cervical cancer cells (39). In the present 
study, the low expression of UBE2L6 was associated with a 
poor prognosis in patients with CRC. GBP-1 is highly induced 
by IFN-γ in a number of different cell types, and functions as a 
tumor suppressor, which arrests tumor evasion in CRC (40,41). 
IL2RB, which is a receptor on numerous different effector 
immune cells of interleukin-2, promotes antitumor immu-
nity (42). All aforementioned reported results are consistent 
with the results of the present study, which indicated that 
patients with CRC and a higher expression of IRF1, UBE2L6, 
GBP1 or IL2RB exhibited better RFS time.

Multivariate Cox analysis revealed that IRF1 may be a 
diagnostic biomarker for RFS in patients with CRC among 
these genes, which was also validated using TCGA datasets 
and a Chinese cohort. In aggressive neuroblastoma, a previous 
study revealed that IRF1 and nuclear factor-κB restored MHC 
class I-restricted tumor antigen processing and presentation to 
cytotoxic T cells (43). A tumor-derived exosome, which was 
induced by IRF-1 overexpression, enhanced the anti-tumor 
immune response (44). IRF1 expression in tumor cells 
was also reported to be critical for the immune response to 
adoptive T cell therapy (45) and the antitumor immunity of 
cyclophosphamide (46). Consistently, the results of the present 

study revealed that IRF1 expression was correlated with the 
expression of CXCL9, CXCL10, CXCL11 and IFNG, which 
have been demonstrated to influence macrophage infiltration 
and memory CD4+ T cell activation (47,48). The increased 
predictive ability of IRF1 mRNA expression may be due to the 
fact IRF1 is able to regulate immune subsets infiltration into 
the TME of CRC. Epigenetic gene silencing that is caused by 
DNA methylation has been widely accepted as a major mecha-
nism of tumor recurrence (49). IRF4, IRF5 and IRF8 have 
been reported to be frequently suppressed in gastric cancer 
due to DNA methylation (50). In the present study, two CpG 
sites, cg27587780 and cg15375424, in the IRF1 DNA region, 
were demonstrated to be significantly negatively correlated 
with IRF1 expression. This result may explain the abnormal 
IRF1 expression.

Collectively, the expression of IRF1 may predict the RFS 
of patients with CRC in different cohorts, which may be 
due to IRF1 serving a function in regulating the ratio of M1 
macrophages and activated memory CD4+ T cells. This result 
may be considered useful information for use in treatment or 
immunotherapy in clinical practice.
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