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Open-source research software has proven indispensable in modern biomedical image
analysis. A multitude of open-source platforms drive image analysis pipelines and help
disseminate novel analytical approaches and algorithms. Recent advances in machine
learning allow for unprecedented improvement in these approaches. However, these novel
algorithms come with new requirements in order to remain open source. To understand
how these requirements are met, we have collected 50 biomedical image analysis models
and performed a meta-analysis of their respective papers, source code, dataset, and
trained model parameters. We concluded that while there are many positive trends in
openness, only a fraction of all publications makes all necessary elements available to the
research community.
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INTRODUCTION

The source code of data analysis algorithms made freely available for possible redistribution and
modification (i.e. open source) has been beyond any doubt driving the ongoing revolution in Data
Science (DS), Machine Learning (ML), and Artificial Intelligence (AI) (Sonnenburg et al., 2007;
Landset et al., 2015; Abadi et al., 2016; Paszke et al., 2019). Encouraging open collaboration, the open-
source model of code redistribution allows researchers to build upon their peers’ work on a global
scale fueling the rapid iterative improvement in the respective fields (Sonnenburg et al., 2007).
Conversely, “closed-source” publications not only hamper the development of the field but also make
it hard for the researchers to reproduce the results disseminated in the research articles. While de jure
all published work resides in the public domain, reverse engineering of an advanced algorithm
implementation may often take weeks or months, making such works hard to reproduce.

Needless to say, open source comes in a great variety of shapes and kinds. Remarkably, just
making the source code of your research software available publicly or upon request does not per
se make it open source. Usage and redistribution of any original creation, be it a research article
or source code, lies within the legal boundaries of copyright laws, which differ significantly from
country to country. Therefore, for example, publicly available code without an explicit
attribution of a respective open-source license cannot be counted or treated as open source.
Due to the sheer diversity, it may be difficult to judge which specific license is right for one’s
project. Yet the choice of the license must always be dictated by the project and the intent of its
authors. Consulting the licenses list approved by the Open Source Initiative is generally
considered to be a good starting point.
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The importance of open source software for computational
biomedical image analysis has become self-evident in the past
3 decades. Packages like ImageJ/Fiji (Schindelin et al., 2012;
Schneider et al., 2012), CellProfiler (Carpenter et al., 2006),
KNIME (Tiwari and Sekhar, 2007), and Icy (de Chaumont et al.,
2011) not only perform the bulk of quantification tasks in the wetlabs
but also serve as platforms for distribution of modules containing
cutting-edge algorithms. The ability to install and use these modules
and algorithms by researchers from various fields via a point-and-
click interface made it possible for the research groups without image
analysis specialists to obtain a qualitatively new level of biomedical
insights from their data. Yet, as we transition into the data-driven and
representation learning paradigm of biomedical image analysis, the
availability of datasets and trained model parameters becomes as
important as the open-source code.

The ability to download training parametersmay allow researchers
to skip the initial model training and focus on gradual model
improvement through a technique known as transfer learning
(West et al., 2007; Pan and Yang, 2010). Transfer learning has
proven effective in Computer Vision (Deng et al., 2009) and
Natural Language Processing (Wolf et al., 2020) domains (further
reviewed in (Yakimovich et al., 2021)). However, the complexity of
sharing the trained parameters of amodel differs significantly between
ML algorithms. For example, while model parameters of a
conventional ML algorithm like linear regression may be
conveniently shared in the text of the article, this is impossible for
DL models with millions of parameters. This, in turn, requires
rethinking conventional approaches to ML/DL models sharing
under an open-source license.

In this review, we collateMLmodels for biomedical image analysis
recently published in the peer-reviewed literature and available as
open-source.We describe open-source licenses used, code availability,
data availability, biomedical andML tasks, as well as the availability of
model parameters.Wemake the collated collection of the open-source
model available via a GitHub repository and call on the research
community to contribute their models to it via pull requests.
Furthermore, we provide descriptive statistics of our observations
and discuss the pros and cons of the status quo in the field of
biomedical image analysis as well as perspectives in the general DS
context. Several efforts to create biomedical MLmodel repositories or
so-called “zoos” (e.g. bioimage. io) and web-based task consolidators
(Hollandi et al., 2020; Stringer et al., 2021) have been undertaken.
Here, rather than proposing a competing effort, we propose a
continuous survey of the field “as is”. We achieve this through
collating metadata of published papers and their respective source
code, data, and model parameters (also known as weights and
checkpoints).

Continuous Biomedical Image Analysis
Model Survey
To understand the availability, reproducibility, and
accessibility of published biomedical image analysis models
we have collected a survey meta-dataset of 50 model articles
and preprints published within the last 10 years. During our
collection effort, we have prioritized publications with
accompanying source code freely available online. In an

attempt to minimize bias, we made sure that no individual
medical imaging modality or biomedical task represents more
than 25% of our dataset. Additionally, we have attempted to
sample models published by both the biomedical community
(e.g. Nature group journals), engineering community (IEEE
group journals and conferences), as well as models published
as preprints. For each publication we have noted the
biomedical imaging modality, biomedical task (e.g. cancer),
the open-source license used, reported model performance
with respective metric, whether the model is dealing with the
supervised task, whether the model parameters can be
downloaded (as well as the respective link), links to code
and dataset. Noteworthy, performance reporting is highly
dependent on a dataset or benchmark. Therefore, to avoid
confusion or bias we have recorded the best-reported
performance for illustrative purposes only. Identical
performance on a different dataset should not be expected.
For the purpose of this review, we have split this meta-dataset
into three tables according to the ML task of the models. The
full dataset is available on GitHub (https://github.com/casus/
bim). To ensure the completeness and correctness of this
meta-dataset we invite the research community to contribute
their additions and corrections to our survey meta-dataset.

First display table obtained from our meta-dataset
contains 14 models aimed at biomedical image
classification (Table 1). The most prevalent imaging
modalities for this ML task are computed tomography
(CT) and digital pathology—both highly clinically relevant
modalities. We noted that most publications had an open-
source license clearly defined in their repositories. The
consensus between the choices of metric is rather low,
making it difficult to compare one model to the other.
Although most models had both source code and datasets
available, only 4 out of 14 models had trained model
parameters available for download.

The second display table contains 25 models (Table 2)
aimed at biomedical image segmentation—a task relevant for
obtaining quantitative insights from the biomedical images
(e.g. size of the tumor). Similarly, to the models for
biomedical image classification, the vast majority of the
segmentation models have a well-defined open-source
license with only a few exceptions. Again, similarly to the
classification models, the consensus between performance
metric choices is rather low, although Dice score reports
clearly dominated. Conversely, the percentage of models
with pre-trained parameters available for download is
slightly higher than in the case of the classification models
(36% vs 29%). However, over half of the models do not
provide pre-trained parameters for the download for both
segmentation and classification tasks.

Finally, we have also examined biomedical image analysis
models aimed at less popular ML tasks including data
generation, object detection or reconstruction (Table 3).
Apart from digital pathology, CT scans this group of
models also contains light and electron microscopy.
Remarkably, only 19% of models in this group had
downloadable model parameters. At the same time, almost
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all the models in this group had well attributed open-source
licenses. This may suggest that parameter sharing is not very
common in highly specialized fields like microscopy.
Interestingly, for this and other groups of ML tasks, we
have found that parameter sharing was more common in
models submitted as a part of a data challenge. This may be
simply a result of data challenge participation conditions.

Trends Meta-Analysis in Biomedical Image
Analysis Model
To understand general trends in the collection of our open-source
models we have computed respective fractions of each descriptive
category we have assigned to each work. The assignment was
performed through careful analysis of the respective research
article, code repository, dataset repository, and the availability of

TABLE 1 | Biomedical Image Classification Models. Here, AUC is Area under curve, CT is computed tomography.

Imaging Modality Biomed Task License Reported Performance Parameters Download References

CT Lung tumor Apache-2.0 0.93 Accuracy No LaLonde et al. (2020)
CT Lung tumor MIT 0.76 AUC No Guo et al. (2020)
CT Pulmonary nodule GPL-3.0 0.90 Accuracy No Zhu et al. (2018a)
CT Pulmonary nodule MIT 0.96 AUC No Al-Shabi et al. (2019)
CT Pulmonary nodule MIT 0.95 AUC No Dey et al. (2018)
Dermatoscopy Skin tumor N/a 0.93 Accuracy No Datta et al. (2021)
Dermatoscopy Skin tumor MIT 0.81 AUC Yes Zunair and Ben Hamza, (2020)
Mammography Breast tumor CC BY-NC-ND 4.0 0.93 AUC Yes Shen et al. (2021)
Digital Pathology Breast tumor CC BY-NC-ND 4.0 0.63 F1 No Pati et al. (2022)
Mammography Breast tumor CC BY-NC-SA 4.0 0.84 Accuracy Yes Shen et al. (2019)
Digital Pathology Breast tumor MIT 0.93 Accuracy Yes Rakhlin et al. (2018)
Digital Pathology Lung tumor GPL-3.0 0.53 Kappa No Wei et al. (2019)
Digital Pathology Lung tumor MIT 0.97 AUC No Coudray et al. (2018)
Fluorescence microscopy Host-pathogen interactions N/a 0.92 Accuracy No Fisch et al. (2019)

TABLE 2 | Biomedical Image Segmentation Models. Here, CT is computed tomography, DSC is Dice similarity coefficient, AP is Average Precision, IoU is Intersection over
Union, DOF is Depth of field, AUC is Area under curve, SHG is Second harmonic generation microscopy.

Imaging Modality Biomed Task License Reported Performance Parameters
Download

References

3D microscopy Nuclei detection MIT 0.937 AP No Hirsch and Kainmueller,
(2020)

CT Kidney tumor GPL-3.0 0.95 Dice No Müller and Kramer, (2021)
CT Pulmonary nodule BSD-3-Clause N/a No Hancock and Magnan, (2019)
CT Pulmonary nodule CC BY-NC-SA 4.0 0.55 IoU Yes Aresta et al. (2019)
CT Pulmonary nodule MIT 0.83 DSC No Keetha et al. (2020)
CT Pancreas & Brain tumor MIT 0.84 Dice No Oktay et al. (2018)
CT, Dermatoscopy Lung tumor and Skin tumor N/a 0.9965 Jaccard No Kaul et al. (2019)
CT Brain tumor Apache 2.0 0.89 Dice No Isensee et al. (2018)
MRI Brain tumor Apache 2.0 0.79 Dice No Wang et al. (2021)
MRI Brain tumor CC BY-NC-

ND 4.0
0.76 Dice No Baek et al. (2019)

Digital Pathology Breast tumor CC BY-NC-
ND 4.0

0.893 F1 Yes Le et al. (2020)

Digital Pathology Lung tumor CC-BY 0.83 Accuracy No Tomita et al. (2019)
Digital Pathology Multiple pathologies MIT N/a No Khened et al. (2021)
Electron microscopy Multiple pathologies MIT 0.5 VI Yes Lee et al. (2017)
Fluorescence
microscopy

Cellular structures
reconstruction

N/a 20 x Enhancement in DOF Yes Wu et al. (2019)

Fluorescence
microscopy

Nuclei detection BSD-3-Clause 0.94 Accuracy Yes Weigert et al. (2020)

Microscopy Cellular reconstruction N/a 0.69 AP No Hirsch et al. (2020)
MRI Brain tumor BSD-3-Clause 0.87 Dice Yes Wang et al. (2018)
MRI Brain tumor MIT 0.85 Dice Yes Havaei et al. (2017)
MRI Brain tumor MIT 0.90 Dice No Isensee et al. (2018)
MRI Brain tumor MIT 0.91 Dice No Myronenko, (2019)
SHG Bone disease GPL-3.0 0.78 Accuracy No Schmarje et al. (2019)
Time-lapse microscopy Nuclei detection N/a 0.92 Accuracy Yes Shailja et al. (2021)
Ultrasound imaging Intraventricular hemorrhage MIT 0.89 Dice No Valanarasu et al. (2020)
MRI Brain tumor N/a 0.81 Dice Yes Larrazabal et al. (2021)
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the trained model parameters (Figure 1). While admittedly 50
papers constitute a relatively small sample size, we have made the
best reasonable effort to ensure the sampling was unbiased.
Specifically, the set of models we have reviewed addresses the
following biomedical tasks (from most to least frequent):
pulmonary nodule, brain tumor, breast tumor, cellular
structures reconstruction, lung tumor, cell nuclei detection,
multiple pathologies, skin tumor, protein structures
reconstruction, kidney tumor, pancreas and brain tumor, lung
tumor and skin tumor, host-pathogen interactions, bone disease,
image acquisition, intraventricular hemorrhage (Figure 1A).

From the perspective of imaging modalities, the models we
reviewed span the following: computed tomography (CT), digital
pathology, magnetic resonance imaging (MRI), mammography,
fluorescence microscopy, 3D microscopy, cryo-electron
microscopy, dermatoscopy, electron microscopy, confocal
microscopy, CT and dermatoscopy, light and electron
microscopy, second harmonic generation microscopy, time-
lapse microscopy, ultrasound imaging (Figure 1B). From the
perspective of ML tasks these models covered the following:
segmentation, reconstruction classification, object detection,
imagine inpainting and data generation, graph embedding,
classification, and detection (Figure 1C). 86% of the models
we have reviewed were addressing supervised tasks and 14%
unsupervised tasks (Figure 1D).

Within our collection of open-source models, we have noted that
32% of the authors have selected the MIT license, 18% have selected
Apache-2.0, 12%—GPL-3.0, 10%—BSD-3-Clause license, 8%—CC
BY-NC-SA 4.0 license. Remarkably, another 8% have published their
code without license attribution, arguably making it harder for the
field to understand the freedom to operate with the code made
available with the paper (Figure 1E). Within these papers, 84% of the
authors made the dataset used to train the model available and clearly
indicatedwithin the paper or the code repository (Figure 1F). Overall,
this amounted to the vast majority of the works which we have
selected to have a clear open-source license designation, as well as a
dataset available.

Remarkably, while providing the model’s source code, as well
as, in most cases, the model’s dataset, an impressive 68% of the
contributions we have reviewed did not provide trained model
parameters (Figure 1G). Breaking down by the publishers or
repositories, 43% and 31% of papers published by Nature group
and Springer respectively provided model parameters. However,
only 25% of IEEE papers and 14% of arXiv preprints provided
parameters. Altogether, the low percentage of shared parameters
are suggesting that the efforts to reproduce these papers came
with the caveat of provisioning a hardware setup capable of
wielding the computational load required by the respective
model. In some cases that requiresaccess to the high-capacity
computing. Furthermore, this way, instead of simply building
upon the models trained, the efforts of the authors would have to
be first reproduced. Needless to say, should any of the papers
become seminal these high-performance computations would
have to be repeated time and time again, possibly taking days
of GPU computation.

Interestingly, of the authors who have chosen to make the
trained parameters available to the readers around 25% have
chosen to deposit the parameters on GitHub, while 19% and 6%
have opted for Google drive and Dropbox services respectively.
The rest deposited their parameters on the proprietary and other
services (Figure 1H).

DISCUSSION

The advent of ML and specifically representation learning is
opening a new horizon for biomedical image analysis. Yet, the
success of these new advanced ML approaches brings about new
requirements and standards to ensure quality and reproducibility
(Hernandez-Boussard et al., 2020; Mongan et al., 2020; Norgeot
et al., 2020; Heil et al., 2021; Laine et al., 2021). Several
minimalistic quality standards applicable to the clinical setting
have been proposed (Hernandez-Boussard et al., 2020; Mongan
et al., 2020; Norgeot et al., 2020), and while coming from slightly

TABLE 3 | Other Biomedical Image Models. Here, CT is computed tomography.

Imaging Modality Biomed Task ML Task License Parameters
Download

References

Mammography Breast tumor Classification & Detection N/a Yes Ribli et al. (2018)
Fluorescence
microscopy

Cellular structures
reconstruction

Data generation Apache-2.0 No Eschweiler et al. (2021)

CT Pulmonary nodule Detection Apache-2.0 No Zhu et al. (2018b)
CT Pulmonary nodule Detection MIT No Li and Fan, (2020)
Digital Pathology Multiple pathologies Graph embedding AGPL 3.0 No Jaume et al. (2021)
Mammography Breast tumor Image Inpainting & Data

generation
CC BY-NC-
ND 4.0

Yes Wu et al. (2018)

Confocal microscopy Cellular structures
reconstruction

Reconstruction Apache-2.0 No Vizcaíno et al. (2021)

Cryo-electron
microscopy

Cellular structures
reconstruction

Reconstruction GPL-3.0 No Zhong et al. (2019)

Cryo-electron
microscopy

Protein structures
reconstruction

Reconstruction GPL-3.0 No Ullrich et al. (2019)

Electron microscopy Cellular structures
reconstruction

Reconstruction N/a No Guay et al. (2021)

3D microscopy Image acquisition Reconstruction BSD-3-Clause No Saha et al. (2020)
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different perspectives they demonstrate an overlap on essential
topics like the dataset description, comparison to baseline and
hyperparameters sharing. For example, CLAIM (Mongan et al.,

2020) and MINIMAR (Hernandez-Boussard et al., 2020)
approaches aim to adhere to a clinical tradition. Authors
define a checklist including a structure of an academic

FIGURE 1 |Meta-analysis of trends in open-source biomedical image analysis models (A) Biomedical tasks overview and breakdown in our collection (B) Variety of
imaging modalities (C)Machine learning tasks the models are aimed at (D) Are the ML algorithms used for supervised or unsupervised learning tasks (E) Prevalence of
open source licenses used (F) Availability of datasets (G) Availability of trained model parameters (H) Prevalence of platforms used for trained model parameters sharing.
Here, CT is computed tomography, MRI is magnetic resonance imaging.
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biomedical paper, requiring either a lengthy biomedical problem
description (CLAIM) or descriptive statistics of the dataset’s
internal structure (MINIMAR). At the same time, MI-CLAIM
(Norgeot et al., 2020) aims to adhere to the Data Science tradition,
focusing specifically on data preprocessing and baseline
comparison. Remarkably, even though item 24 of the CLAIM
checklist explicitly mentions the importance of specifying the
source of the starting weights (parameters) if transfer learning is
employed, all three approaches fail to explicitly encourage sharing
of the trained model parameters. Instead of proposing yet another
checklist, the current survey aims to understand to extend to
which the model parameters are shared in the biomedical image
analysis field and emphasize the importance of parameters
sharing to foster reproducibility in the field.

The past 3 decades have successfully demonstrated the
viability of the open-source model for the research software in
this field, as well as the role of open-source software in fostering
scientific progress. However, the change of modeling paradigm to
DL requires new checks and balances to ensure the results are
reproducible and the efforts are not doubled. Furthermore, major
computational efforts inevitably come with an environmental
footprint (Strubell et al., 2020). Making parameters of the trained
models available to the research community not only could
minimize this footprint, but also open new prospects for the
researcher wishing to fine-tune the pre-trained models to their
task of choice. Such an approach proved incredibly fruitful in the
field of natural language processing (Zhang et al., 2020).

Remarkably, in the current survey, we have found that only
32% of the biomedical models we have reviewed made the train
model parameters available for download. On one hand, such a
low number of trained models available for download may be
explained by the fact that many journals and conferences do not
require trained models to warrant publication. On another hand,
with parameters of some models requiring hundreds of
megabytes of storage, there are not many opportunities to
share these files. Interestingly, while some researchers shared
their trained model parameters via platforms like GitHub, Google
drive, and Dropbox, the vast majority opted for often proprietary
sites to share these parameters (Figure 1H). In our opinion, this
indicates the necessity of hubs and platforms for sharing trained
biomedical image analysis models.

It is worth noting that most cloud storage services like Google
drive or Dropbox are more suited for instant file sharing rather
than archival deposition of model parameters. These storage
solutions don’t offer data immutability or digital object
identifiers attached to them, and hence can simply be
overwritten or disappear leaving crucial content inaccessible.
Authors opting for self-hosting of model parameters also likely
underestimate the workload of the long-term serving of archival
data. Instead of the aforementioned approaches to model sharing,
one should take advantage of efforts like BioImage.io, Tensorflow
Hub (Paper, 2021), PyTorch Hub, DLHub (Chard et al., 2019), or
similar in order to foster consistency and reproducibility of their

results. Arguably, one of the most intuitive experiences of model
parameters sharing for the end-users is currently offered by the
HuggingFace platform in the domain of natural language
processing. This has largely been possible through the
platform’s own ML library allowing for improved
compatibility (Wolf et al., 2020).

Interestingly, the vast majority of authors have chosen MIT
and Apache-2.0 as their open-source licenses. Both Apache-2.0
and MIT are known for being permissive, rather than copyleft
licenses. Furthermore, both licenses are very clearly
formulated and easy to use. It is tempting to speculate that
their popularity is a result of the simplicity and openness that
these licenses offer.

However, noteworthy, our survey is limited to the papers we
reviewed. To improve the representativeness of our meta-
analysis, as well as encourage the dissemination of the open-
source models in biomedical image analysis we call on our peers
to contribute to our collection via the GitHub repository.
Specifically, we invite the researchers to fork our repository,
make additions to the content of the list following the
contribution guidelines and merge them in via pull request.
This way we hope to not only obtain an up-to-date state of
the field but also ensure the code, datasets and trained model
parameters are easier to find.
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