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Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect
drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the
Pharmacogenomics Research Network, began eMERGE-PGx, a targeted sequencing study to assess genetic variation in 82
pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE-PGx data release includes
sequence-derived data from ~5,000 clinical subjects. We present the variant frequency spectrum categorized by variant
type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation-
Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementa-
tion Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant
pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader
level, underscoring the importance for multifaceted research in the execution of precision medicine.

It is widely accepted that genetic variation impacts drug metabo-
lism, efficacy, and adverse event risk.1–3 Several medical centers
have begun to routinely offer genetic testing and clinical decision
support for common variants in a small number of genes associ-
ated with drug dosing or adverse events.4–7 As whole exome and
whole genome sequencing are increasingly used in the clinical set-
ting, the number of variants in these genes (and the number of
genes) that can be considered for patient care will undoubtedly
increase. However, mechanisms to understand the relationship
between these variants and drug response have not yet been put
into global clinical practice.
The impact and interpretation of this potential deluge variants

is currently unclear. While efforts such as the Pharmacogenomics
Research Network (PGRN), the Pharmacogenomics Knowledge
Base (PharmGKB), and the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC) have led the discovery and sys-
tematic documentation of some findings,8–10 it is clear that the
bulk of variation in pharmacological response and metabolism
currently remains unexplained.11–13 Low-frequency variants that
affect gene function may account for some unexplained differen-

ces in pharmacological response and metabolism. As a result, new
studies of pharmacogenomic traits and novel initiatives that
implement pharmacogenomics in clinical care are transitioning
from intensity-based genotyping arrays14,15 to next-generation
sequencing technologies.16,17 While there is much enthusiasm for
sequencing-based studies for precision medicine and pharmacoge-
nomics,18–20 and for the potential to discover low-frequency var-
iants that influence drug-related traits,21 little is known about the
location and distribution of genetic variation over genes with
established pharmacological impact, much less their relationship
to variable drug responses.
The documentation of observed variation within genes known

to influence drug response and metabolism is essential to enable
new molecular studies of potentially functional variants and to
improve the understanding of how key pharmacogenes tolerate
genetic changes. To document rare and common variation in key
genes of pharmacogenomic relevance, the electronic Medical
Records and Genomics (eMERGE) Network22–24 sequenced 84
genes across ~9000 individuals from nine participating bioreposito-
ries linked to electronic health records (EHRs). We describe here
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the first iteration of the resulting dataset from the project, known
as eMERGE-PGx,25 including processes for variant calling, annota-
tion, and aggregate data access in the Sequence and Phenotype Inte-
gration Exchange (SPHINX), a web-based tool for exploring
eMERGE-PGx data for hypothesis generation with an emphasis on
drug response implications of genetic variation (www.emerge-
sphinx.org). We describe sequence variation within the key pharma-
cogenes captured by PGRNseq,26 explore the potential therapeutic
impact of established pharmacogenomic variants, catalog the poten-
tial for ongoing pharmacogenomic discovery relative to frequently
prescribed drugs,25 and provide example uses for the SPHINX
resource. eMERGE-PGx data indicate that the vast majority of
patients sequenced will harbor many genetic variants likely to
impact currently prescribed drugs, highlighting the opportunities
for improving drug response and the need for downstream func-
tional studies, clinical application guidelines, and continued drug
development to ensure a diversity of treatment options given the
genetic diversity of the patient population.

RESULTS
Allelic discovery in 82 pharmacogenes
As of February 2015, a total of 5,639 samples have been sequenced
from nine eMERGE sites (Table 1) using the PGRNseq targeted
exome platform26 (see Methods). The PGRNseq platform was
developed by the Pharmacogenomics Research Network (PGRN) to
maximize their ability to assay important pharmacogenes across the
PGRN. The gene selection was through nomination by PGRN sites
and vetted through the network. For the design of each of the 82

genes, PGRNseq included all exons (based on all transcript models)
as well as 2 kb upstream and 1 kb downstream of their untranslated
regions (UTRs) to allow for discovery and assessment of nearby
potential regulatory variation. Details of this assay can be found else-
where.26 In eMERGE-PGx, the PGRNseq platform generated a
total of 968,004 bp of sequence per individual. Variant sites were
well-sequenced, with an average read depth of 200 reads per site
(25th percentile 5 152.64, median 5 211.09, 75th percentile 5

257.31). Sequencing PGx samples revealed 42,010 single nucleotide
variants (SNVs), with 149 dropped due to allelic imbalance (ABFil-
ter), 137 dropped due to insufficient quality by depth, 22 dropped
due to poor genotype call quality, and 696 failing two or more of
these criteria; 41,006 SNVs passed all quality control filters. We fur-
ther removed 447 variants having a genotype call rate less than 95%,
and 10 variants were removed due to mismatches with the reference
sequence. After all filtering, 40,549 SNVs remained, and of these, 78
showed the reference allele at low frequency (<0.5%).

Comparison of annotation methods (VEP vs. SNPeff)
Of the 40,549 high-quality SNVs, 27,965 were annotated by
VEP to the canonical transcript for one of the PGRNseq targeted
genes (Table 2). Of these annotated variants, 8,126 were coding
(4,858 missense, 3,169 synonymous, 99 stop gained) and 19,923
were noncoding (5,231 intronic, 5,981 upstream variants, 3,444
downstream variants, 4,165 30UTR variants, 903 50UTR var-
iants, and 199 other).
Compared to dbSNP (build 141), 415 variants were previously

observed (52 missense, 26 synonymous, 58 intronic). We also

Table 1 Demographics of the eMERGE-PGx project

Female (N52958) Male (N52674) Combined (N55632)b

AGEa 57/61/71 57/64/71 57/63/71

RACE

American Indian or Alaska Native 1% (15) 0% (7) 0% (22)

Asian 2% (72) 2% (41) 2% (113)

Black or African American 14% (414) 9% (246) 12% (660)

Native Hawaiian or other Pacific Islander 0% (4) 0% (1) 0% (5)

Other 0% (2) 0% (3) 0% (5)

Unknown 8% (227) 6% (152) 7% (379)

White 75% (2224) 83% (2224) 79% (4448)

ETHNICITY

Hispanic or Latino 7% (195) 4% (113) 5% (308)

Not Hispanic or Latino 89% (2639) 91% (2433) 90% (5072)

Unknown 4% (124) 5% (128) 5% (252)

CLINICAL ATTRIBUTES

Avg Record Length in years (s.d.) 17.1 (9.14) 16.21 (9.36) 16.66 (9.25)

Avg Distinct ICD9 Codes (s.d.) 106.7 (69.99) 83.93 (58.54) 95.5 (65.60)

Avg Medication Count (s.d.)c 9.0 (8.09) 9.20 (8.49) 9.09 (8.27)

abirth year was collected, so age is an approximation. Ages are given as lower quartile range, median, and upper quartile range. bdemographic information missing on
some samples cMedications were restricted to a list of most prescribed medications (see methods).
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performed comparisons with other large-scale sequencing proj-
ects; 15,163 variants were previously observed by the 1000
Genomes Phase 3 project (1,446 missense, 1,315 synonymous,
and 2,075 intronic), and 10,998 variants were reported in the
ExAC dataset (3,009 missense, 2,137 synonymous, 773 intronic).
Across all three reference sets, 20,886 (51.5% of the total 40,549
SNVs identified) variants from the eMERGE-PGx dataset were
observed previously, and 19,663 (48.5%) are novel, including
1,445 missense, 769 synonymous, and 2,848 intronic variants.
Relative to the Ensembl canonical transcript, VEP annotates

27,434 with SNPEff annotating 19,895 variants, a complete subset
of the VEP annotation calls. Comparing these 19,895 variant
annotations, the results are highly concordant, with 99.25% of var-
iant consequence calls concordant between SNPEff and VEP. Of
the 150 discordant annotations, 105 were considered “stop gained”
by SNPEff, but “50UTR variant” by VEP. There were only 44
other discordant annotations, 35 downstream—30UTR, 9
intron—splice region between SNPEff and VEP, respectively.
More critically, 7,901 annotations spanning 21 genes were made
by VEP but not by SNPEff. These included 2,050 intron variants,
1,288 upstream variants, 1,212 downstream variants, 1,138 30UTR
variants, 1,097 missense variants, 864 synonymous variants, 253
50UTR variants, and 134 others. These discordant annotations are
likely due to subtle differences in the definitions of the canonical
transcript used by the two software programs. Discordant annota-
tions of predicted variant function is a known issue in the field.27

Because of this issue, we have chosen to provide a single annota-
tion, specifically SNPEff annotations, in SPHINX.

Molecular characteristics of variants in pharmacogenes
As expected, the majority of these variants were diallelic (39,778,
98.1%), although 759 (1.9%) were triallelic, and 12 sites showed

all four alleles. Of the diallelic SNVs, there were 2,102 common,
1,230 low-frequency, 9,465 rare, 4,606 doubleton, and 22,124
singleton variants identified; the full spectrum of allele frequen-
cies for diallelic SNVs annotated to PGRNseq genes is shown in
Figure 1.
There was a significant linear relationship between gene length

and the number of discovered low-frequency variants (minor
allele frequency (MAF) <5%) (P < 0.0001), with an average
increase of 0.35 variants per kilobase of gene length (Supplemen-
tary Table S1). Nevertheless, there was variability in this rela-
tionship: RYR1, the gene with the second largest canonical
transcript coding region (15,011 bp), has the largest number of
variants, 667, with 409 of them (61%) singletons. SLC22A6 con-
tains the fewest variants, 144, despite having a transcript length
of 2,141 bp, three times larger than the smallest captured. We
also see a significant and somewhat stronger association between
the genic intolerance scores for these genes (based on the ExAC
data) and the number of low-frequency variants, with an esti-
mated decrease of 46.3 variants per intolerance score unit (P <
0.0001).

Variants in multiple ethnic groups
We recalculated this frequency spectrum within administratively
reported African-American (n 5 650), European (n 5 4373),
Asian (n 5 112), and Hispanic/Latino (n 5 310) groups
(Figure S1). Black or African-American samples show the largest
number of variants per person. European-American samples (the
largest sample set) show a much lower median number of variants
per person, although this sample set has great variability in both
high and low variant counts. Cumulative minor allele frequencies
over all variants are shown in Figure S2. In European-descent
samples, cumulative MAF (CMAF) range from 2.88% for

Figure 1 Allelic spectrum of eMERGE-PGx variants. Counts of genomic variants mapping to the canonical transcript of PGRNseq captured genes are plot-
ted by frequency class (over all samples) by gene (x-axis) in ascending order. Gold horizontal lines indicate the size of the canonical transcript in base-
pairs. The inset line plot is a percentile rank of genic intolerance (RVIS) scores computed using the ExAC dataset.
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SLC22A6 to 26.11% for NTRK2. African-American samples had
a much lower and narrower CMAF range from 1.55% for
CYP2R1 to 4.95% for ABCA1.

Potential therapeutic impact
Nearly every captured gene (95.12%) has one or more variants
with a scaled Combined Annotation-Dependent Depletion
(CADD) score above 20 (Figure 2). The RYR2 gene had the
highest CADD scoring variant (56), while BDNF variants had
the highest median scaled CADD Score (�10), with the calcium
channels RYR1 and CACNA1S also harboring variants with high
scaled CADD scores, with 24 variants in these genes scoring

above 30. Importantly, 96.19% (5,424) of all samples had one or
more CPIC Level A actionable variants, with the median being
two actionable variants per individual over the entire sample
(2,318 individuals), and 1,273 individuals having variants with
only one. Notably, 1,517 individuals had actionable variants
within three genes, and 316 had actionable variants within four
or more genes (293 with variants within four genes, 22 with five
genes, and one with six genes). We also note other low-frequency
variants (<5%) within the CPIC actionable genes; 1,932 individ-
uals (34.2%) have one or more missense variants in at least one
of the seven CPIC genes examined, with the majority (1,616
individuals) having only one gene with missense variation. No
individual had missense variants in more than four CPIC genes
(six individuals had four missense variable CPIC genes, 52 had
three, and 258 had two).
Using two sources of drug prescription activity in the US in

2013, 38 genes were found to have some level of evidence from
PharmGKB implicating them in the metabolism of one of 31
drugs. Within these 38 genes, 12,637 variants were identified,
including 2,208 missense variants, of which 458 were potentially
damaging by CADD score. Selecting only these 458 missense
variants, we then calculated the CMAF (the frequency of having
one or more nonsynonymous variants) by potentially impacted
drug. Using this frequency as an estimate of the general US
population CMAF, and assuming that the reported prescription
counts are distinct individuals, we then estimated the propor-
tion of prescriptions potentially affected for each drug (Figure
3). For example, roughly 4 million of the 27 million prescrip-
tions for rosuvastatin may be affected by one of 407 missense
variants within eight genes (ABCB11, ABCG2, CYP2C9,
CYP3A5, HMGCR, SLCO1B1, SLCO1B3, SLCO2B1), which
occurred in 17.8% of the eMERGE-PGx sample. When
restricted to predicted damaging missense variants, there were
64 variants within genes for rosuvastatin with a CMAF of
9.84%, potentially influencing nearly 600,000 prescriptions in
2013, although their clinical impact is unknown and could
range from no effect to severe myopathy. When we examine
genes for drugs with a low therapeutic index like digoxin and
warfarin, we observe very different results. CYP2C9 (a drug-
metabolizing enzyme) has 54 CADD-damaging missense var-
iants with a CMAF of 0.84%, VKORC1 (a drug target) has
11 variants with a CMAF of 0.03%, or ABCB1 (a transporter
in the case of digoxin), has 85 variants with a CMAF of
0.35%.
Similarly, the 25 most dispensed medications encompass over

1.5 billion prescriptions in the US over 2013, of which seven
drugs (fluticasone, albuterol, omeprazole, metoprolol, atorvasta-
tin, and simvastatin) account for roughly 410 million prescrip-
tions. These drugs are influenced by genes captured by
PGRNseq according to PharmGKB. When computing CMAF
of low-frequency missense variants by drug, an estimated 4%
(fluticasone) to 34.6% (simvastatin) of individuals taking these
prescriptions harbor one or more variants within genes that
potentially influence their action, with an estimated impact on
nearly 75 million prescriptions in 2013.

Figure 2 Boxplot of scaled (Phred) CADD score annotations for alleles by
gene. Genes are ranked from top to bottom by ascending median CADD
score.
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Accessing eMERGE-PGx data
As described, all of the summary data in eMERGE-PGx are being
made publicly available in SPHINX (www.emergesphinx.org).
This web-based portal to query information by gene, by pathway,
or by drug can be used to generate descriptive data and/or
hypotheses for future research based on these 82 pharmacogenes.
Figure 4 shows an annotated home page for SPHINX. Queries
can be made by entering a gene name/symbol, pathway name, or
a drug name (full list of available genes, pathways, and drugs are
available using the links on the top left corner of the home page).
The resulting information is displayed on subsequent webpages
organized based on the nature of the search. Searching SPHINX
by gene will result in a table of all available variants identified in
the eMERGE-PGx dataset, including chromosome and basepair
location, rsID if available, type of variant according to SNPEff,
global allele frequency in the complete eMERGE-PGx dataset,
and allele frequency stratified by self-reported ancestry. This type
of query would be useful for individuals who have interest in par-
ticular genes or specific variants from these genes to obtain esti-
mates of allele frequency in a large clinical population: for
example, the situation where someone had identified a rare vari-
ant in their study in the gene ABCA1 and wondered if this rare
variant was observed in other datasets. In considering all of the
variants in ABCA1 shown in Figure S3, only four of these var-
iants are cataloged in PharmGKB (as denoted by the rsIDs) and
all of these have very low frequency in eMERGE-PGx. These
types of queries become most important for variants that are not
yet cataloged by other resources like dbSNP. The result enables a
researcher to know if the variant has been observed and at what
frequency in eMERGE-PGx. Because of the rich, longitudinal
phenotypic data in eMERGE, another possibility for this query
might include searching through the eMERGE-PGx dataset for
all patients who have a particular variant in ABCA1 and then

perform EHR chart review for that small set of patients to deter-
mine if there is any likely clinical significance to that variant.
Consider another use case in which a researcher is interested in

all variations in genes from a particular pathway of interest, such as
ABC transporters (shown in Figure S4). If the research question
involves how much genetic variation exists in these genes and
which genes would be appropriate targets for subsequent genotyp-
ing or sequencing, the pathway query capability may be of great
utility. From this view, an investigator can view information about
the specific gene and variant as shown in Figure S4. Finally,
searching by drug will provide a list of all genes from PharmGKB
linked to that particular drug. Figure S5 shows an example from
1,25 dihydroxyvitamin d3. An investigator who works on a partic-
ular drug/compound can search for variant information for all
genes linked to their drug of interest. These types of queries will
enable researchers in the scientific community to search a public
database resource of summary data cataloging all variations identi-
fied in the eMERGE-PGx project. Individual-level DNA sequence
data from this project with key pharmacologic response pheno-
types available from electronic medical records will also be made
available via dbGaP for the research community.

DISCUSSION
In this study we examined sequence variation within the key phar-
macogenes in an eMERGE-PGx dataset, potential therapeutic
impact of established pharmacogenomic variants, potential for
ongoing pharmacogenomic discovery, and example uses for the
SPHINX resource. By examining a diverse clinical population of
over 5,000 people, we report the largest targeted sequencing study
of established pharmacogenes to date, with data queryable from
the SPHINX database. Variation is frequent within these clinically
relevant genes, with most individuals having multiple clinically
actionable variants. Hundreds of additional variants with potential

Figure 3 Estimates of prescriptions impacted by rare missense variants within pharmacogenes impacting the metabolism of frequently prescribed
drugs.
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pharmacogenomic function were identified and made available
online to the research community, setting the stage for future asso-
ciation studies within the eMERGE network.
Compared to other sequencing studies and variant repositories,

nearly half of all variants identified were novel, illustrating that exist-
ing exome-based resources, even those from large studies, may not
characterize genetic variation as well as the targeted methods used for
PGRNseq genes with a large sample size and very high depth of cov-
erage (�200 reads on average). The majority of identified variants
are singletons and doubletons, extremely low-frequency variants that
will require new analytic or high-throughput molecular strategies to
fully elucidate their function. Future studies of these variants within
eMERGE using EMR-based phenotypes may improve our under-
standing of their function on a phenotypic level. Computational pre-
dictions of variant pathogenicity (such as the CADD algorithm)
may also prove useful for variant prioritization, or for the exploration
of specific phenotypes. For example, the RYR2 gene has been impli-
cated with level 3 evidence from PharmGKB in rhabdomyolysis fol-
lowing cerivastatin treatment.28 This gene showed the highest score
for any gene-annotated variant. The BDNF gene, inconsistently
implicated in impacting drug efficacy for a variety of psychiatric dis-
order treatments, shows the highest median CADD score.29–32 In
addition, a more thorough examination of the distribution of types
of variation in different drug classes would be extremely valuable.
Perhaps we would observe different patterns in transporters, phase I
enzymes, phase II enzymes, channels, pharmacologic targets, and/or
drugs with low therapeutic index that would highlight relevant bio-
logical or evolutionary hypotheses about these genes.
Considerable care must be taken, however, when interpreting

such scores for clinical implementation. A recent eMERGE study

of SCN5A and KCNH2 found that pathogenic classification of
splice and missense variants within these genes can vary broadly,
even from commercial laboratories that provide clinical testing
for these specific genes.33 Clearly, certain findings may warrant
the recontact of study participants to avoid potentially life-
threatening conditions, and the complex ethical issues surround-
ing return of research results have been previously noted34 and
are a continual focus with the eMERGE network.
The eMERGE-PGx dataset is enriched for established pharma-

cogenomics variants; prior work by Van Driest et al.35 has shown
that nearly all individuals (98%) have at least one known, action-
able variant by current CPIC guidelines, which would either alter
the dose of a prescribed drug or would suggest an alternative ther-
apy. We recapitulate this result, showing a median of two action-
able variants per person, with over 1,800 individuals having three
or more actionable variants. As a result, there is a strong possibility
that this information could influence the clinical care of a patient
over his or her lifetime. This key finding highlights the importance
and potential clinical impact of the cataloged genetic variation.
Importantly, we also observed that genes with established CPIC
guidelines harbor many more potentially deleterious missense var-
iants that have not been previously characterized or reported.
To further explore the potential for pharmacogenomic discov-

ery, we used resources from the PharmGKB database to build
connections between PGRNseq captured genes and frequently
prescribed drugs. While these drug–gene relationships are based
on much weaker levels of evidence than CPIC recommendations,
we estimate that missense variants within these genes have the
potential to affect metabolism and efficacy of millions of US pre-
scriptions annually. Based on using gene sets with annotations by

Figure 4 Screenshot of SPHINX website (http://emergesphinx.org).
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drug in PharmGKB, we explored the relationships between types
of variants in the genes indicated as relevant for each drug. Even
when restricting this analysis to only predicted damaging mis-
sense variants, 2.6% of individuals have a variant within the genes
that affect rosuvastatin according to PharmGKB (22 million pre-
scriptions annually), and 9.8% of individuals have variants within
genes that affect celecoxib (9 million prescriptions annually).
While additional research will be required to establish clinical
effects and guidelines, with 34% of individuals harboring multiple
variants within CPIC-associated genes, there is great potential for
pharmacogenomic discovery within eMERGE-PGx. To encour-
age the similar use of eMERGE-PGx data in the broader pharma-
cogenomics community, variant-level data are viewable on
SPHINX with each data release through the online SPHINX
portal (http://www.emergesphinx.org). Through linkages with
the PharmGKB database, variant data can be queried by gene,
variant, pathway, and drug. SPHINX does not yet have any phe-
notypic data deposited, but this is an active area of development
for eMERGE.
There are several limitations to this study. Participants were

recruited from clinical settings and as a result may be enriched
for alleles that influence disease or treatment. As described in
Rasumussen-Torvik et al.,25 each eMERGE site used a unique
recruitment strategy for eMERGE-PGx. Some sites specifically

ascertained participants who were prescribed medications with
pharmacogenes of interest on the gene panel. Others recruited
based on disease. As a consequence of this ascertainment strategy,
the study sample (while multiethnic) has limited population
diversity, which limits our ability to detect rare alleles isolated to
non-European descent populations. With respect to variant
annotation, for simplicity our strategy examined variant conse-
quences in the context of the Ensembl canonical transcript only;
many variants will have different consequences relative to differ-
ent transcripts, so assessments of variant consequences are likely
underestimates of their most severe impact.
While it is unclear specifically how many of the identified var-

iants influence clinical outcomes, it is clear that surveys of these
critically important genes using sequencing technologies will
reveal large numbers of rare variants, each with the potential to
impact pharmacogenomic traits. Future studies within the
eMERGE-PGx project will explore these relationships with the
ultimate goal of informing clinical care with genetic variation.

METHODS
Sequencing and quality control
As of February 2015, a total of 5,639 samples have been sequenced from
nine eMERGE sites (Table 1) (more details in Supplemental Material).
Samples were sequenced by the Center for Inherited Disease Research

Table 2 Counts of Ensembl consequence type for variants mapped to canonical transcripts of PGRNseq captured genes

ENSEMBL consequence type IN PGx IN 1KG IN EXAC NOVEL

Upstream Gene Variant 6,094 2,122 23 3,924

Intron Variant 5,542 2,016 460 3,038

Missense Variant 4,806 1,485 1,792 2,212

3 Prime UTR Variant 4,245 1,539 65 2,629

Downstream Gene Variant 3,574 1,239 44 2,219

Synonymous Variant 3,147 1,335 1,255 1,163

5 Prime UTR Variant 931 287 59 597

Missense Variant, Splice Region Variant 147 48 62 60

Splice Region Variant, Intron Variant 142 60 49 54

Stop Gained 97 20 31 54

Splice Region Variant, Synonymous Variant 90 — 36 40

Splice Acceptor Variant 18 5 3 1 2

Splice Donor Variant 15 3 6 8

Splice Region Variant, 5 Prime UTR Variant 14 3 3 10

Initiator Codon Variant 11 2 2 7

Stop Gained, Splice Region Variant 3 1 1 2

Stop Lost 2 — — 2

Stop Retained Variant 1 1 — —

Splice Region Variant, 3 Prime UTR Variant 1 1 — —

Total 28,880 10,167 3,891 16,019

Counts of variants previously discovered in the 1000 Genomes Project (1KG), the Exome Aggregation Consortium (EXAC), and novel variants in the eMERGE PGx project
(PGx) are also shown.
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(CIDR), University of Washington, Mayo Clinic,36 Icahn School of
Medicine at Mount Sinai, or Children’s Hospital of Philadelphia
(CHOP). Sequencing was performed using the PGRNseq targeted

exome platform, using 100 bp paired end runs on a HiSeq2500, and
aligned to the GRCh37 reference with decoy sequences with Burrows-
Wheeler Aligner (BWA).37 Reads were further processed using GATK
HaplotypeCaller v. 3.3-0 according to the GATK best practices38 with
multisample calling. Reads for the two targeted HLA genes (HLA-B and
HLA-DQB3) were excluded due to general poor alignment, thus all fur-
ther results refer to 82 pharmacogenes. Although both insertion/dele-
tions (INDELs) and SNVs were called, only SNV calls were used for
subsequent analyses and are currently provided in SPHINX. Raw variant
calls failing any of the following filters were dropped: QUAL <50;
ABHet >0.75; QD <5.0. Raw genotype calls failing any of the following
filters were also dropped: GQ <50; Heterozygous call with AB >0.75.

Variant frequencies
Variants were partitioned into five mutually exclusive frequency classes:
common (MAF >0.05), low frequency (>0.01, 0.05), rare (<0.01), dou-
bleton (observed only twice), and singleton (observed only once). For all
variants, we required at least 10,714 chromosomal observations (non-
missing genotype calls), equivalent to 95% genotyping efficiency. Con-
sistent with the use of rare-variant burden tests, we computed a CMAF,
indicating the frequency at which individuals have one or more nonre-
ference alleles at low frequency (<0.05) within a gene. We considered
loci showing nonreference alleles at high-frequency (>0.95) as likely
errors in the reference sequence and included the reference allele as the
minor allele for CMAF calculations. Residual Variation Intolerance
Scores (RVISs) for captured genes relative to the ExAC release 0.3 were
accessed online (http://chgv.org/GenicIntolerance/). Linear regression
examining the relationship between gene length and the number of iden-
tified variations was performed using STATA 12.0 (STATA, College
Station, TX).

Variant annotation
We performed variant annotation using the Ensembl Variant Effect Pre-
dictor (VEP) v. 74, build39,40 and SNPEff41 v. 3.5c (build 2014-02-21),
annotated against the GRCh37.71 database, and restricted annotations
to the Ensembl canonical transcript of PGRNseq captured genes only.
CADD42 PhRED-normalized scores were retrieved online and mapped
to variants by chromosome, position, and alternate allele. On the
PhRED scale, substitutions are assigned scores according to percentile,
where the highest 10% of all scores are assigned values �C10, the highest
1% are assigned values �C20, etc.42 We also compared identified var-
iants to other established catalogs of genetic variation, including dbSNP
build 141 (accessed online in VCF format 3/4/2015), 1000 Genomes
Project phase 3 data (accessed online in VCF format 2/19/2015), and
the Exome Aggregation Consortium (ExAC) dataset release 0.3 (accessed
online in VCF format 1/13/2015).

To annotate variants by pharmacogenomics impact, recommendations
were accessed for nine genes with CPIC “Level A” evidence, which pro-
vide specific clinical actionability (Table 3). CPIC Level A indicates that
“Genetic information should be used to change prescribing of affected
drug”8 and can be found at https://www.pharmgkb.org/page/cpic. Var-
iants were mapped to CPIC alleles by chromosome, basepair position,
and alternate allele. Defining the star (*) alleles10 for all of the relevant
genes is currently ongoing.

To further examine the implications for pharmacogenomics discovery,
we accessed two sources of prescription activity in the US from the IMS
Institute for Healthcare Informatics, a National Prescription Audit list-
ing the 100 most frequently prescribed brand name drugs with nation-
wide prescription numbers from April 2013 to March 2014,43 and a
subsequent review of medication use in 2013 which lists the 25 most dis-
pensed medications.44 Brand names and/or active ingredients of these
drugs were matched to brand names and/or active ingredients listed in
PharmGKB.45 PharmGKB reports gene–drug interactions with multiple
levels of supporting evidence, including clinical annotation, variant
annotation, “very important pharmacogenes,” and pathways. Using
PharmGKB, we extracted reported interactions between these drugs and

Table 3 Clinical Pharmacogenetics Implementation Consortium
(CPIC) actionable variants for selected genes

GENE CPIC PUBMED IDS RS number

Number of eMERGE PGx
samples with at least one

nonreference allele

CYP2C19 23486447;
21716271;

4244285 1,578

CYP2C19 23698643 4986893 20

CYP2C19 12248560 2,087

CYP2C19 28399504 37

CYP2C19 41291556 19

CYP2C19 72552267 3

CYP2C9 25099164;
21900891

1057910 635

CYP2C9 1799853 1,186

CYP2D6 16947 4,767

CYP2D6 1065852 2,061

CYP2D6 1135840 3,686

CYP2D6 3892097 1,783

CYP2D6 28371706 238

CYP2D6 28371725 926

DYPD 23988873 3918290 54

DYPD 55886062 8

DYPD 67376798 53

G6PD 24787449
(Table S4)

1050828 144

G6PD 1050829 349

G6PD 5030868 2

G6PD 137852339 2

SLCO1B1 22617227;
24918167

2306283 3,940

SLCO1B1 4149015 599

SLCO1B1 4149056 1,486

TPMT 21270794;
23422873

1142345 481

TPMT 1800460 383

TPMT 1800462 22

TPMT 1800584 1

VKORC1 21900891 9923231 3,280

CYP2C19 23486447;
21716271;

4244285 1,578

CYP2C19 23698643 4986893 20

CYP2C19 12248560 2,087
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genes captured by the PGRNseq platform with any level of evidence as a
potential pharmacogene for a given drug.

Data availability
Summary level data from the most current version of the eMERGE-PGx
project data are viewable in SPHINX. First released in December 2013,
SPHINX provides allelic variation identified by the sequencing and vari-
ant calling pipelines reported here. Users can search identified variants
by a variety of criteria, including basic attributes such as gene symbol.
More advanced searches use data from PharmGKB and other public
data sources to enable queries by drug and metabolic pathway, allowing
higher-level hypotheses to be investigated. Variant information includes
chromosome, position, SNP ID (if known), SNPEff41 annotated conse-
quence (e.g., downstream, 30UTR, nonsynonymous, etc.), and allele fre-
quencies calculated globally across the entire cohort and by population
for European and African descent groups.

Additional Supporting Information may be found in the online version of
this article.
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