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Magnetic resonance imaging provides a sea of quantitative and semi-quantitative

data. While radiation oncologists already navigate a pool of clinical (semantic) and

imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator

devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive

MRIgRT. The variety of MR sequences (of greater complexity than the single parameter

Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive

fractionation, and the sheer quantity of daily images acquired are challenges for

scaling this technology. Biomedical informatics, which is the science of information in

biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT

data into clinically meaningful information streams requires committing to the flow of

inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT

dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI

acquisition and post-processing. This review will attempt to conceptually ford these

topics using clinical informatics approaches as a theoretical bridge.

Keywords: MRI, MRI-guided radiotherapy, MR LINAC, informatics, biomedical informatics, clinical informatics,

imaging informatics, radiomics

INTRODUCTION

Use of magnetic resonance imaging (MRI) rather than computed tomography (CT) for
radiotherapy (RT) planning can be highly desirable because MRI visualizes soft tissues with
superior contrast and resolution (1), introduces unique sequences and contrast agents for
delineating specific tumors and anatomic subsites (1, 2), and permits daily adaptive radiotherapy
(ART) without added CT radiation dose (3–5). MRI-guided ART (MRIgART) machines
have advanced from low-field (0.35 Tesla) magnets with Cobalt-60 radiation sources (6) to
diagnostic-strength magnetic fields (1.5 Tesla) fully integrated with linear accelerators (7, 8) in <5
years. Over the coming decade, MRI-guided RT (MRIgRT) may change clinical practice paradigms
(9). The earliest adopter of MRIgART, Washington University in St. Louis (WUSTL), has already
altered its management of breast and abdominal malignancies (10). However, to scale MRIgRT,
workflow and standardization challenges that do not exist in CT-guided planning need be resolved.

First, MR scan reproducibility is more complicated than for CT. Consider a T1-weighted scan:
pixel intensities are predominately derived from longitudinal relaxation time (T1), an intrinsic
tissue property. Nevertheless, proton density (H) and transverse relaxation time (T2) (which are

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00983
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00983&domain=pdf&date_stamp=2019-09-30
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:CDFuller@mdanderson.org
https://doi.org/10.3389/fonc.2019.00983
https://www.frontiersin.org/articles/10.3389/fonc.2019.00983/full
http://loop.frontiersin.org/people/725944/overview
http://loop.frontiersin.org/people/815013/overview
http://loop.frontiersin.org/people/379818/overview


Kiser et al. Informatics Needs for Scaling MRIgRT

also intrinsic tissue properties) may greatly influence overall
signal intensity (11) depending on repetition time (TR) and echo
time (TE) parameters (see Equation 1).

S = K · [H] ·
(

1− e−
TR
T1

)

· e−
TE
T2 (1)

These parameters are not standardized across institutions or
vendors, so a T1-weighted scan acquired by a given vendor’s
machine is not necessarily equivalent in terms of observed
intensity as one acquired by another manufacturer. Similarly,
MRI acquisition suffers from geometric distortions that are
model-, vendor-, software-, shim-, and coil-dependent. Proper
correction also depends on variable user-driven acquisition
parameters (12, 13).

Second, there are more steps in MRIgRT planning than
CT-guided planning. MRI does not convey electron density
information necessary for standard photon dosimetry, so either
(1) MRI data must be registered to CT Hounsfield unit values
(14–17), or (2) a synthetic CT (sCT) must be algorithmically
generated from MRI (18, 19), or (3) tissue types must
be assigned a single, indiscriminate density (18) (Figure 1).
Additionally, MRIgART fractionation requires far more time of
the patient, radiation oncologist, and staff than traditional RT
treatment courses.

Third, RT generates seas of imaging data (20, 21) and
structured and unstructured clinical data (22–24) that will
deepen with multiparametric MRI sequences, unique contrast
agents, and radiomics features and MRIgART daily images,
contours, and plans (Figure 2). At our institution, MRIgRT
generates roughly four times as many bytes of data as CT-
guided RT (1 Gb per patient per day vs. 250Mb). Not all
data are fit for clinical decision-making or scientific inquiry.
For example, MRIgART could quantitatively track soft tissue
tumor shrinkage, but the results would only be clinically
actionable if the segmentation method were systematic and
reproduceable. Interpretability and reproducibility of MRI data
across institutions and vendors is not a given.

Effective use of “biomedical data, information, and knowledge
for scientific inquiry, problem-solving and decision making”
formally defines the field of biomedical informatics (BMI) (25).
The raison d’être of BMI is to reduce data (which are meaningless
symbols) into information (which is data plus meaning), and
further into knowledge (which is information that is justifiably
believed to be true) (26). This paper considers BMI concepts in
the context of scalingMRIgRT (seeTable 1) and critiques existing
literature from the perspective of how it increases information
and knowledge to streamline MRIgRT workflow and ensure the
consistency and usability of MRIgRT data.

HOW IS BIOMEDICAL INFORMATICS
RELEVANT TO MRIGRT CURRENTLY?

MRI is already an established modality for image-guided
RT of nasopharynx, brain, spine, liver, pancreas, prostate,
and female genital tract cancers (1, 2, 32). In each case,
standardization preserves the integrity of critical decision-
making information. Consider MRIgRT for prostate cancer

(33, 34). Radiology standards exist for MRI acquisition,
interpretation, and reporting (35). These improve reporting
among radiologists of varying experience levels (36), lest
anatomic delineation suffer poor consistency and patient
outcomes comparison data be meaningless. At the MR-CT co-
registration step, co-registration between limited field-of-view
images is the recommended standard because error is increased
when the field-of-view includes the anatomically variable bladder
and rectum (37). At the RT planning step, guidelines from
the European Society for Radiotherapy and Oncology (ESTRO)
(38) and Radiation Therapy Oncology Group (RTOG) (39)
standardize MRI-based clinical target and organ-at-risk (OAR)
contour volumes. Ostensibly, these steps culminate in more
conformal prostate RT, but MRIgRT has proved only modest
decreases in OAR toxicity compared to CT-guided RT (40, 41),
especially with the development of rectal spacer hydrogel (42).
Evaluating data quality and the assumptions used to establish
the clinical value of MRIgRT will be a critical BMI task in
the coming decade, one that should exploit emerging consumer
health informatics approaches.

BMI Considerations for MRIgRT Dosimetry
As already noted, MRIgRT requires either MRI-CT co-
registration, sCT generation, or bulk density assignment to
calculate tissue radiation dose. MR-only workflows employ
either the second or third approach (with the caveat that
atlas-based sCT generation techniques employ MRI-CT co-
registration to generate an MRI atlas). Improving MR-only RT is
strongly motivated by the desire to simplify adaptive workflow
for integrated magnetic resonance linear accelerators (MRLs).
Figure 3 exemplifies an imputed electron densitymap in a patient
treated on an MRL. We refer the reader to Table 1 in (34) for an
overview of current MRL platforms.

Bulk Density Override and Synthetic CT
Homogenous bulk density override is crude but achieves
reasonable dosimetric accuracy if specific structures (e.g.,
cortical bone) are contoured by a radiation oncologist and
separately assigned a unique density (43–45). In contrast, sCT
generation by voxel-based or atlas-based methods obviates
the need for time-intensive contouring and therefore may be
preferred. Johnstone et al. extensively discussed sCT generation
methods in a systematic review (18). Many sCT results appear
clinically comparable to CT. In the brain, sCT-derived digitally
reconstructed radiographs were as geometrically robust as those
derived from CT (46). In the prostate, sCT gamma passing rates
have been comparable with CT gamma passing rates (median
1%/1mm pass rate of 100% for almost all regions of interest
across 29 patient scans) (47). Nevertheless, MR-only workflow
introduces unique BMI considerations. For example, prostate
RT plans are more precise with setup to intraprostatic gold or
titanium fiducial implants (48), but these are visualized as signal
void on conventional MRI sequences and poorly differentiated
from calcifications. Maspero et al. (49) reported that 3/48 fiducial
implants were imprecisely and inaccurately identified by five
radiation technologists when visualized only on MRI. On the
other hand, new setup techniques based on MR daily imaging
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FIGURE 1 | RT planning with MRI requires assignment of electron density to pixels or tissues to calculate dose, a step that is not part of CT-guided RT planning.

FIGURE 2 | MRI-guided radiotherapy may introduce a deluge of new image sequences, optimization needs, image post-processing needs, contrast agents,

prognostic and predictive radiomics features, and adaptive imaging and clinical data.

might obviate the need for fiducials. Thoughtful consideration of
parameters like these are needed to ensure not only the safety
of the method but the quality and reproducibility of the data.
Consensus is also needed to establish the standard metrics by
which sCT quality should be gauged (18).

MRI-CT Co-registration
MRIs can be registered to CT rigidly (without warping the
MRI) or by a deformation vector field. Deformable registration
confers a more concordant result than rigid registration between
diagnostic CT and simulation CT (50–53), but recent work from

Frontiers in Oncology | www.frontiersin.org 3 September 2019 | Volume 9 | Article 983

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kiser et al. Informatics Needs for Scaling MRIgRT

TABLE 1 | Biomedical informatics concepts.

Concept Explanation Example

Data,

Information,

Knowledge,

Wisdom (DIKW)

pyramid

Data, information, and

knowledge are not

synonymous terms.

Information is data plus

meaning. Knowledge is

information plus a justifiable

belief in its veracity. Some

models also include wisdom

as a tier above knowledge

(27), but Bernstam et al. (26)

omit this.

Radiation oncologist expert

interpretation refines

dose-volume histogram

(DVH) data into information.

Statistical analyses then

extract and justify

knowledge.

The cycle of

clinical

information flow

Clinical care generates data,

which are used in biomedical

research, the results of which

develop prevention and

treatment standards, which

are built into clinical protocols,

which are built into clinical

decision support and

order-entry systems, which

directly influence clinical care,

etc. (28).

MRIgRT outcomes data are

recorded in electronic health

records, then leveraged in

clinical research, which

begins to establish the role

of MRIgRT, which dictates

clinical protocols, which are

built into clinical decision

support and other health

information technology

systems, which collaborate

with physicians during

MRIgRT treatment

evaluation and planning,

etc.

Data standards Data standards define and

describe “common and

repeated use, rules,

guidelines or characteristics

for activities or their results,

aimed at the optimum degree

of order” (29).

Digital Imaging and

Communications (DICOM),

DICOM-RT, Fast Healthcare

Interoperable Resources

(FHIR), AAPM Task Group

263 consensus

nomenclature for dosimetric

structures (24).

Interoperability Interoperability is “the ability of

a system or product to work

with other systems or

products without special effort

on the part of the customer”

(30). Data standards precede

interoperability.

FHIR-conforming electronic

health record applications

are interoperable between

different vendors that also

conform with FHIR.

Consumer

health

informatics

Consumer health informatics

is a subfield of biomedical

informatics focused on the

interactions of patients and

consumers with health

information systems,

catalyzed by mobile

technologies and the

Internet (31).

Patients log acute and late

toxicities during and after

MRIgRT in applications built

for their phones.

our group did not demonstrate the same advantage between
simulation MRI and simulation CT, at least in the head and
neck (17). This should not imply that rigid registration is
adequately accurate, since we also found that the registration
error (whether by deformable or rigid means) may not be
within the target tolerance recommended by the American
Association of Physicists in Medicine (AAPM) Task Group 132
(Dice similarity coefficient > 0.8) (54). Perhaps registration was
poor because of MR geometric distortion, or perhaps because

not all OARs are clearly delineated on both CT and MRI.
Regardless, this informs our view that sCT may be preferred
to CT-MRI co-registration for RT dose deposition calculation,
pending needed standardizations as discussed above.

WORKFLOW CONSIDERATIONS FOR
INTEGRATED MR LINEAR
ACCELERATORS

The “holy grail” of MRL RT is to see the target at setup, adapt
the plan as needed, and gate by watching anatomic movement
while the beam is on. The experience of the Department of
Radiation Oncology atWUSTL, which introduced the first 0.35 T
tri-cobalt-60 MRIgRT system (ViewRay, Oakwood Village, OH,
USA) in the USA (6), provides great insight into adaptive MRL
clinical informatics challenges. In a Phase I trial intended to
demonstrate the temporal feasibility of MRI-guided stereotactic
body radiation (SBRT), median on-table time per fraction was
79min and consisted of MR set-up, physician arrival, patient
localization, re-segmentation, re-planning, quality assurance
(QA), and beam on-time (3). Almost all fractions (81/97)
were adapted based on the patient’s anatomy-of-day to avoid
irradiating OARs. Despite fear that patients would not tolerate
fractions longer than 80min, all 20 patients completed their
treatments as prescribed.

MRL RT has evolved into a dominant indication for
abdominal and breast cancers at WUSTL, primarily because
motion gating and daily adaptation prevent OAR dose constraint
violations (10). The MRL has also prevented violations in
hypofractionated lung tumor stereotactic radiotherapy, and
enabled adaptive GTV reductions by as much as 65% (55).
However, adaptation remains time-intensive. Current systems
require physician attendance during every fraction (56), which
would not be sustainable at sites that lack sufficient physician
and support staff. Three studies from the University of Alberta
examined whether automated ROI segmentation can decrease
the burden on physician time. In the first, a pulse-coupled neural
network (PCNN) was developed to segment lung tumors in
the context of adaptive MRL RT (57). The PCNN achieved a
strong Dice Similarity Index (DSI) of 0.87–0.92, but it required
training on a unique dataset of manually-generated contours
per patient. A follow-up study improved DSI (58) with a pre-
segmentation deformable registration methodology, but still
required a physician to segment lung tumor across multiple
image frames. In the third study, DSI and other conformality
metrics improved using a fully convolutional neural network
(FCNN), but the FCNN still needed to be trained on 30
manual contours per patient. While these studies demonstrate
that automated segmentations of lung tumors for MRL RT
can achieve high fidelity, they may not hasten adaptive, online
MRL workflow. In contrast, a WUSTL novel tri-convolutional
neural network architecture capable of segmenting liver, kidneys,
stomach, bowel, and duodenum did reducemanual segmentation
time by 75% at WUSTL (59).

Intra and inter-observer variation in segmentation quality
has been documented using many imaging modalities in pelvic
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FIGURE 3 | This patient was reirradiated for a rectal adenocarcinoma recurrence on a hybrid magnetic resonance-guided linear accelerator. The planning image (top)

is an electron density imputation based on the simulation MRI (bottom).

(60, 61), lung (62), breast (63), head-and-neck (60, 64), and
brain (65) RT planning. In the specific context of MRL for
lung stereotactic body RT, Wee et al. (66) found no significant
intra or inter-observer variation in manual segmentations
of images acquired on a 0.35 T MRL. However, only two
radiation oncologist observers were compared, for only one ROI
(gross tumor volume) (66), limiting the generalizability of the
study conclusion.

To hasten MRL re-planning, WUSTL simplified the number
of planning objectives by grouping OAR structures into a single
structure (67). This both increased PTV coverage and simplified
re-planning by reducing the computational burden of satisfying
a greater number of competing objectives. This work was specific
to pancreatic cancer planning objectives, but the approach may
be amenable to re-planning for other sites.

Intrafraction motion management/gating is a hotly
anticipated MRL advantage. Han et al. (68) applied 3D-Rotating

Cartesian K-space MRI (4D-ROCK-MRI) in an MRL RT
workflow to improve lung tumor motion tracking. 4D-ROCK-
MRI improved image quality and motion tracking and decreased
lung cancer GTV variability compared with 4D-CT, which
suffers from 2D-slice “stitching” artifact. The authors reason that
it might capture motion better than 2D-CINE MRI because it
acquires data over a 7min interval, while the latter screens less
than a minute of data. Cusumano et al. (69) compared 4D-CT
and 2D-cine MR motion data acquired at the time of simulation
with complete 2D-cine MR datasets acquired over entire
MRIgRT treatment courses. Simulation 2D-cine MR appeared
better than simulation 4D-CT, though not significantly. Patients
with large motion amplitudes at the time of simulation tended
to have more variable amplitudes throughout their treatment
course, but even targets with steady amplitudes frequently drifted
from the motion trajectory calculated at simulation. Drift was
as severe as 1.6 cm craniocaudally and 1.2 cm anteroposteriorly,
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which highlights the importance of continual IGRT monitoring
throughout treatment. Palacios et al. (70) tracked adrenal
metastases and discovered that one-third of the time anatomy
positioning violated OAR or target dose constraints. van Sornsen
de Koste et al. (71) followed lung, adrenal, and pancreatic tumor
GTVs with 2D-cine MRI. In 90% of cases these tumors oscillated
no more than 6mm anteroposteriorly and 9mm craniocaudally.
Mean coverage was better than 94% of the GTV volume for all
three tumor types (coverage was defined as a 3mm isotropic
GTV expansion).

ART discussions encompass many other considerations
beyond the scope of this paper, but we highlight one more:
both US commercial hybrid MRL systems use what Heukelom
et al. (5) define as “serial ART” (i.e., daily images are registered
to a planning scan serially without interval dose accumulation)
but can conceivably be utilized for “triggered ART” (when
fixed interval re-planning offline occurs) or “cascade ART”
(when serial deformed dose is integrated from prior treatments).
Consequently, a need for new ways of visualizing and reporting
dose and morphometric alterations will soon arise. Centers that
lack MRL machines but are interested in MRIgRT for abdominal
cancers may find the workflow outlined in Heerkens et al. (72)
informative. This phase I trial demonstrated a favorable toxicity
profile (no treatment-attributable grade 3 acute or late toxicities)
in 20 patients with unresectable pancreatic cancer who received
24 Gy/3 fx SBRT planned with multiparametric MRI sequences
and sagittal cine MRI.

RADIOMICS STANDARDIZATION: A
PRESSING INFORMATICS CHALLENGE

The use of imaging biomarkers for diagnosis and prognosis
is the field known as radiomics (73), or radiogenomics if the
biomarkers are both radiomic and genomic (74, 75). MRI
radiomics features have predicted tumor histopathology (76,
77), improved region-of-interest (ROI) auto-segmentation (78),
automated radiotherapy planning (79) and predicted outcomes
(e.g., survival, toxicity) (80–82). However, standardization
of radiomics feature parameters is needed across radiation
oncology, radiology, and nuclear medicine disciplines (83). In a
systematic review of MRI radiomics applications, Jethanandani
et al. concluded that MRI radiomics studies suffer from lack
of standardization at multiple stages of image acquisition
and processing, including MRI scanner sequence, scanner
vendor, and scan acquisition parameters. There is currently
no way to reliably compare between MRI radiomics studies
(84). MRI has not nearly enjoyed the attention given to
CT and PET radiomics standardization. Traverso et al. (85)
systematically reviewed studies that assessed the repeatability and
reproducibility radiomics features, finding only 1/41 papers (86)
that investigated MRI.

Radiomics models should be commissioned from their
ideation with a clinical decision support use case in mind (87).
Studies designed to maximize the likelihood of a statistically
significant finding at the expense of clinical generalizability
ignore that practical implementation is a greater obstacle than

discovery. To illustrate, one study that discriminated triple-
negative from other breast cancer types using radiomics features
ostensibly aspires to be a diagnostic alternative to biopsy (88),
but would need to be less expensive yet no less accurate—a
steep challenge.

Radiomics feature stability should be benchmarked on public,
multi-institutional datasets (85, 89). For example, Bakas et al.
(90) publicly provided radiomics features manually extracted
from neuroradiologist segmentations of glioblastomas and low-
grade gliomas for benchmarking future studies of these cancers.
Stability should be benchmarked per anatomic site, since features
that are repeatable and reproduceable at one site may degrade in
the context of another.

INITIATIVES FOR FAIRER DATA

Inter-institutional findable, accessible, interoperable, reusable
(FAIR) (91) and high-quality data is essential for establishing
the clinical value of MRIgRT. However, political, financial, and
legal obstacles silo data within institutions (92) and ethical
questions surrounding health data analytics, particularly by tech
institutions currently not subject to the same patient privacy laws
as healthcare institutions, are unresolved (93, 94). The need for
FAIR data is not exclusive to MRIgRT: FAIR data are critical
for achieving the vision for machine learning in healthcare
widely (95–97).

A recent AAPM council observed that RT data increase as
cancer patients survive longer and genomic data move toward
mainstream clinical use (98). The council predicted, “Whereas
success in medical research in the past has favored very large
single institutions that can develop a critical mass of knowledge
and resources in close physical proximity, diffuse networks of
institutions able to generate and share information will have an
advantage in the future” (emphasis added). We now conclude
with a discussion of two emerging initiatives for FAIRer data:
“distributed learning,” a method for inter-institutional machine
learning, and Fast Healthcare Interoperability Resources (FHIR,
pronounced “fire”) a healthcare data standard.

Distributed Learning
Distributed learning refers to training machine learning models
on multi-institutional data without sharing the data (99–101).
The key is that the statistical weights and parameters of the
machine learning model travel between institutions, not the
data. Distributed learning is an option method for generating
statistical models for emerging technologies, such as MRLs (7, 8).
Distributed learning is possible between horizontally-partitioned
data (same features, different patients) or vertically-partitioned
data (different features, same patients) (101, 102).

FHIR
Conceived in 2014, FHIR is a specification for health data
formatting (i.e., XML and JSON) and messaging (i.e., RESTful
application programming interfaces). FHIR-conforming data are
retrievable between health information technology softwares
(103), and FHIR may soon be a mandated EHR specification
(104). FHIR provides a standard for storing and querying
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radiotherapy data objects independent of vendor, such as total
dose, or DICOM-RT structure sets. Conformity with FHIR
also makes it possible to build applications that integrate
health information technologies. For example, Substitutable
Medical Applications and Reusable Technologies (SMART) is
an EHR app platform built on FHIR (105). SMART delineates
authorization, authentication, and user interface specifications
for FHIR-conforming apps. Because RT treatment planning and
information systems are usually separate from EHRs (98, 106),
initiatives like SMART on FHIR envision a future where it is
possible to build RT task-specific apps into EHRs (107). Open-
source, FHIR-conforming applications may be one platform for
scaling MRIgRT software.
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