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Abstract

The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided

adaptive immunity against viruses and other mobile genetic elements (MGEs). These sys-

tems show remarkable evolutionary plasticity and functional versatility at multiple levels,

including both the defense mechanisms that lead to direct, specific elimination of the target

DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy.

This flexibility is also evident in the recruitment of CRISPR systems for nondefense func-

tions. Defective CRISPR systems or individual CRISPR components have been recruited

by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and

by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived

CRISPR variants of yet unknown functions have been discovered. A major route of innova-

tion in CRISPR evolution is the repurposing of diverged repeat variants encoded outside

CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity

and functional versatility of CRISPR systems are striking manifestations of the ubiquitous

interplay between defense and “normal” cellular functions.

Introduction

The CRISPR systems are known primarily as a new generation of genome editing tools that

possess unprecedented specificity and efficiency thanks to the use of guide RNAs to recognize

unique sequences in the genome [1–3]. This specificity of nucleic acid recognition also under-

lies the primary biological function of CRISPR in prokaryotes, namely adaptive immunity

against viruses and other mobile genetic elements (MGEs) [4–7]. The CRISPR immune

response involves 3 stages:

i. adaptation, the process of acquisition of pieces of foreign DNA (protospacers) that become

spacers inserted between repeats in CRISPR arrays and are subsequently employed to pro-

duce guide RNAs that specifically target the cognate foreign nucleic acid;

ii. expression and maturation of the CRISPR (cr) RNAs, whereby the long transcript of the

CRISPR array, the pre-crRNA, is processed to yield functional, mature crRNA; and

iii. interference, whereby crRNAs are exploited as guides to recognize the target DNA or RNA

that is then, typically, cleaved by the nuclease moiety of the CRISPR effector complex.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001481 January 5, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Koonin EV, Makarova KS (2022)

Evolutionary plasticity and functional versatility of

CRISPR systems. PLoS Biol 20(1): e3001481.

https://doi.org/10.1371/journal.pbio.3001481

Published: January 5, 2022

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Funding: The authors’ research is supported by

funds of the National Institutes of Health of USA

(National Library of Medicine) Intramural Research

Program (to E.V.K). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: ABI, abortive infection; CARF,

CRISPR-associated Rossmann fold; CAST,

CRISPR-associated transposase; cOA, cyclic

oligoadenylate; crRNA, CRISPR RNA; creA,

CRISPR-resembling antitoxin; creT, CRISPR-

resembling toxin; HRAMP, haloarchaeal RAMP;

ICE, integrative conjugative element; L-tracrRNA,

long-form tracrRNA; MGE, mobile genetic element;

OMEGA, Obligate Mobile Element Guided Activity;

PCD, programmed cell death; RAMP, repeat-

https://orcid.org/0000-0003-3943-8299
https://doi.org/10.1371/journal.pbio.3001481
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001481&domain=pdf&date_stamp=2022-01-05
https://doi.org/10.1371/journal.pbio.3001481
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Each of these stages in the CRISPR immune function is mediated by a distinct set of Cas

(CRISPR associated) proteins that comprise functional modules of the CRISPR systems [8,9].

Characteristically of defense systems [10], CRISPRs are prone to fast evolution that involves

not only sequence change but also numerous rearrangements and replacements of the Cas

protein complexes [11,12]. In addition to the 3 core modules, most of the CRISPR systems also

encompass various accessory genes, which encode proteins modulating the activity of the core

CRISPR components in manners that, with a few exceptions, remain poorly characterized

[13,14].

From the early days of CRISPR research, it seemed natural to surmise that CRISPR systems

would be recruited for various nondefense functions, including regulation of gene expression,

but probably much more [15,16]. However, more than a decade later, the information on non-

defense functions of CRISPR remains scarce. Nevertheless, one remarkable theme has emerged

prominently, namely the recruitment of partially degraded, defective CRISPR systems by

transposons that employ them for RNA-guided transposition [17,18]. In addition, a variety of

highly derived cas operons have been discovered that are often not linked to CRISPR arrays

[19,20]; their functions remain enigmatic and await experimental study. Another trend that is

becoming increasingly prominent is the repurposing of the CRISPR themselves, that is,

crRNAs and their derivatives, for various, primarily regulatory functions rather than for target

recognition followed by cleavage [21–23].

In this essay, we outline our current understanding of the evolutionary plasticity and func-

tional versatility of CRISPR. Evolutionary plasticity refers to gain and loss of components by

CRISPR systems as well as functionally consequential evolutionary changes in cas genes, for

example, those that lead to enzyme inactivation. These evolutionary changes give rise to

remarkable functional versatility, that is, a broad repertoire of biological functions and molec-

ular mechanisms across the numerous variants of CRISPR systems and their derivatives. The

universe of CRISPR is expanding fast with advancing genome and especially metagenome

sequencing, but we believe that general trends can already be captured.

Functional versatility of CRISPR shaped by exaptation and diversification

In their principal role as adaptive immunity mechanisms against viruses and other foreign

DNA (and in some case, RNA), CRISPR systems show remarkable functional versatility [11].

This multitude of functionalities was apparently shaped by exaptation [24,25], that is, recruit-

ment of various genes with nondefense functions as CRISPR system components, as well as

extensive diversification [16,26].

Classification of CRISPR systems is based primarily on the composition of the expression

and interference modules (hereafter, jointly denoted effectors) of cas genes in the respective

CRISPR-cas loci. They are divided into 2 classes, 6 types, and over 30 subtypes (and counting)

[11]. The adaptation module is relatively uniform across CRISPR types and subtypes (although

see below on a major variation in type III), but the effector modules vary extensively (Fig 1).

The most drastic divide is between Class 1 and Class 2: In Class1, the processing and interfer-

ence modules are multisubunit complexes formed by several Cas proteins (known as Cascade

in the case of type I systems), whereas in Class 2 all these activities are combined within a single

multidomain protein. The Class 1 and Class 2 effectors are unrelated and have completely dif-

ferent evolutionary histories [27].

The effector complexes of type I and type III appear to be homologous, but the similarity

between them is distant and became fully apparent only after the structures of both types of

complexes were resolved [9,28]. In both these CRISPR types, the scaffold of the effector com-

plex is formed by several paralogous proteins (Cas5 and Cas7) containing a derived RNA
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recognition motif (RRM) domain. The complexes of both types also contain the so-called large

subunits (Cas8 and Cas10 in types I and III, respectively) that may or may not be homologous

and small subunits (Cas11), which are homologous despite vanishing sequence conservation,

as demonstrated by structure comparison [29]. Cas10 is an RNA polymerase of the Palm

domain superfamily (another distinct variety of the RRM fold) that specifically synthesizes

cyclic oligoadenylates (cOAs) [30,31], although in subtype III-C, the polymerase is inactivated

by substitution of some of the catalytic amino acid residues [9]. By contrast, Cas8, also a large

protein, contains no recognizable catalytic domains and is not significantly similar to Cas10.

The RNA polymerase activity of Cas10 was predicted in early analyses of Cas proteins [32],

but the experimental validation lagged behind for more than a decade, and the function of the

highly conserved catalytic domain remained an enigma. The solution opened a new chapter in

the study of CRISPR through the discovery of a signal transduction pathway embedded within

type III systems [30,31,33]. When a bacterium or an archaeon carrying a type III locus is

infected by a familiar virus, for which there is cognate spacer, target recognition activates the

polymerase activity of Cas10, which is both a structural subunit of the effector complex and an

active enzyme. As a result, cOA is produced and binds to the CRISPR-associated Rossmann

Fold (CARF) domain of an “accessory,” but nearly ubiquitous among type III systems, protein,

such as Csm6 or Csx1. cOA binding allosterically activates the second domain of this protein,

an RNase of the HEPN superfamily. A considerable sequence and structural diversity of sensor

CARF domains exists across type III systems, suggestive of variations in the signaling pathways

and the possibility that they use different signal oligonucleotides, which remain to be charac-

terized [34]. Furthermore, the nuclease moiety of the cOA-activated CRISPR effector also var-

ies. Although HEPN is most common, other nucleases, such as those of the restriction

endonuclease fold, are also induced by cOA to indiscriminately cleave single-stranded RNA

(ssRNA) and single-stranded DNA (ssDNA) [35–37]. Thus, the cOA-activated defense path-

way displays substantial combinatorial complexity, the functional implications of which

remain to be explored [33].

The cOA pathway couples 2 fundamentally distinct forms of antivirus response that appear

to be coupled in various defense systems: direct attack on an invading foreign element and

induction of cell dormancy or programmed cell death (PCD) [38]. Once a virus infects a cell

containing a type III system with a cognate spacer, the CRISPR effector recognizes the proto-

spacer and cleaves both the virus genome itself, via the HD nuclease domain of Cas10, and

transcripts of the virus genome, via a Cas7 subunit of the effector. Simultaneously, the HEPN

nuclease activated by cOA cleaves RNA molecules nonspecifically, resulting in growth arrest

or PCD, which represent altruistic form of defense whereby a cell arrests its own growth or

even commits suicide to prevent infection of other cells in the population [39,40]. The altruis-

tic mechanism is thought to be activated when the cells senses the failure of immunity [38] or

alternatively might function preventively as a backup. The complexity of signal transduction

built into type III systems does not stop here. The indiscriminate RNase activity of HEPN

nucleases is a costly reaction, so type III systems are endowed with a dedicated mechanism to

mitigate the damage whereby cOA is cleaved by RING nucleases encoded either within the

CRISPR loci or in different genomic locations [41]. The RING nucleases show considerable

Fig 1. Organizational and functional diversity of CRISPR as adaptive immune systems. General organization of loci encoding different

CRISPR-Cas systems is shown. The protein-coding genes are denoted by arrows (not to scale). Homologous genes are shown by the same color.

The arrows with dashed outline identify genes that are optional in the respective loci. Adaptation module genes are semitransparent. Gene names

are indicated according to the established nomenclature [11]. Vertical arrows indicate genes that are directly involved in target cleavage or cOA

synthesis. Anc, ancillary gene; CARF, CRISPR-associated Rossmann fold; Eff, effector domain; PALM, PALM domain involved in cOA synthesis;

RuvC-like, HNH, HEPN, HD, PD-DExK, PIN, RelE, nucleases of the respective families.

https://doi.org/10.1371/journal.pbio.3001481.g001
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structural diversity; some are distinct versions of the CARF domain, whereas others are

enzymes of different families [34,41]. The details of the interplay between immunity and dor-

mancy/PCD in the CRISPR response, which are likely to differ depending on the lifestyles of

bacteria and archaea, remain to be characterized experimentally.

The cOA signaling pathway is an integral, key component of type III CRISPR systems,

although some of these have secondarily lost it through the elimination of the CARF-HEPN

protein and inactivation of Cas10, which in these cases retains its structural role only. There is

much additional complexity and versatility associated with type III systems, as demonstrated

by systematic analysis of genomic neighborhoods for genes that are significantly associated

with CRISPR [13,14]. Almost none of these genes have been experimentally characterized.

Computational predictions reveal recurrent connections of type III systems with various signal

transduction pathways as well as membrane transport. A lot of novel biology will undoubtedly

be discovered when the interactions of these accessory proteins with the core CRISPR machin-

ery are studied experimentally.

Apart from the functional versatility of the effectors, there is less pronounced but function-

ally relevant variation in the adaptation modules of type III CRISPR systems as well. In partic-

ular, numerous type III variants include a reverse transcriptase, likely derived from group II

introns, which is typically fused to Cas1 protein and mediates spacer incorporation by reverse

transcription of virus RNAs [42–44].

A far more drastic alteration of the adaptation module might have occurred in subtype I-E

systems of various bacteria in the family Streptomycetaceae [17]. These loci contain a CRISPR

array and appear to be competent for interference but lack the typical adaptation module (that

is, cas1 and cas2 genes). Instead, they are consistently associated with tnsB and tnsC, the genes

encoding 2 subunits of the Tn-like transposon transposase (Fig 2). Given that transposon ends

were not detected in the vicinity of these loci, the hypothesis has been proposed that the trans-

posase has been recruited as an alternative adaptation module [17]. Given the apparent origin

of the Cas1 protein, the integrase in the classical CRISPR adaptation module, by exaptation of

the transposase of a distinct transposon family, the casposons [45,46], parallel evolution of an

alternative adaptation module from a distinct transposase appears plausible.

Notably, all these organizational and functional complexities, and especially, the integration

of CRISPR adaptive immunity with a fundamentally different form of defense, dormancy

induction/PCD, through a dedicated signal transduction pathway, are characteristics of type

III but not type I systems. This appears surprising given that type I CRISPRs are considerably

more abundant among bacteria and archaea, and hence, apparently, more evolutionarily suc-

cessful than type III [11]. Although there is currently no direct evidence that the coupling of

adaptive immunity with dormancy induction/PCD is advantageous to bacteria and archaea

carrying type III CRISPR, the conservation of the cOA pathway in most type III variants

implies such an advantage. Tracing evolutionary connections of the signal transduction

machinery provides a clue for the ultimate origin of the Class 1 effectors (Fig 3). Search of bac-

terial genomes for homologs of Cas10 identified a putative operon that consists of a gene

encoding a “minimal” Cas10 homolog consisting of the polymerase domain alone and a pro-

tein comprising a fusion of CARF and HEPN domains [47]. So far, this module has not been

studied experimentally, but the domain composition implies that it functions as an abortive

infection (ABI) system that, after cOA synthesis is triggered by virus infection, causes dor-

mancy/PCD through the nonspecific RNase activity of HEPN. Given the simplicity and com-

pactness of this type of ABI module, they appear to be likely ancestors of the type III effectors

(as opposed to the reverse direction of evolution). Subsequent evolution of CRISPR would

involve major complexification of type III effector modules including capture of additional

domains, such as the HD nuclease domain of Cas10, as well as likely serial duplication of the
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https://doi.org/10.1371/journal.pbio.3001481.g002
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RRM domain of Cas10 yielding the entire superfamily of RRM-containing Cas proteins: Cas5,

Cas6, and Cas7 (collectively denoted repeat-associated mysterious proteins, RAMPs) [27].

Under this scenario, type III CRISPR systems were the first to evolve, whereas Type I systems

are derived forms that have lost the cOA signaling circuit and hence the coupling of target rec-

ognition and cleavage with dormancy/PCD. Thus, a major trend in the evolution of Class 1

CRISPR systems, after the initial phase of accretion of cas genes, apparently, was functional

reduction and simplification (Fig 3). Below we discuss even more dramatic manifestations of

this trend.

The evolutionary scenarios for the Class 2 CRISPR effectors are completely different [48]

and present striking cases of exaptation of proteins encoded by MGE for defense functions in

CRISPR systems. The single-protein effectors of type II and several subtypes of type V and

type VI all appear to have evolved independently. The type II and type V effectors (Cas9 and

Cas12, respectively) are both homologous to transposon-encoded proteins known, respec-

tively, as IscB and TnpB, which are abundant in many bacteria and archaea. The role of IscB

and TnpB in the transposon life cycle remains unknown. Recently, however, it has been shown

that these proteins are RNA-guided nucleases that utilize a small RNA encoded by an adjacent

gene (denoted ωRNA, after Obligate Mobile Element Guided Activity, OMEGA) to target spe-

cific sequences in a manner resembling the CRISPR mechanism [49,50]. All these proteins

contain homologous RuvC-like nuclease domains, but, likely, specific evolutionary relation-

ships can be traced. The Cas12 proteins of different type V subtypes appear to have evolved

independently from different families of TnpB as inferred from strongly supported affinities in

the phylogenetic trees of the TnpB family [48]. Cas9 proteins, by far the most common Class 2

effectors, share a distinct domain architecture with IscB, namely an HNH nuclease domain

inserted into the RuvC-like nuclease, suggesting that IscB could be the ancestor of Cas9 [51].

In a phylogenetic tree rooted by the recently discovered IsrB proteins, homologs of IscB and

Cas9 that lack the HNH domain, the Cas9 branch, is lodged with IscB, supporting this ances-

tral relationship [49].

The type VI effectors, Cas13 proteins, are unrelated to the type II and type V effectors and

contain 2 HEPN domains, which are both catalytically active RNases required for the Cas13

function. Type VI systems are the only known variety of CRISPR that is strictly specific for

RNA targets [52]. Furthermore, unlike type I, II, and V systems that target only DNA, but sim-

ilar to type III systems that cleave also RNA, type VI CRISPR, once activated by target recogni-

tion, cleave RNA indiscriminately and induce dormancy or cell death [53]. The major

difference from type III is that type VI systems are much simpler: Both the RNA-guided cleav-

age of the target and the nonspecific RNA cleavage are performed by the same catalytic

domain, and there is no built-in signal transduction circuit controlling cell damage. In essence,

type VI CRISPR systems are target-specific, RNA-guided ABI modules. The HEPN domains

of Cas13 proteins are homologous to the HEPN domains of the toxin RNases of numerous

toxin–antitoxin (TA) systems including ABI, but the presence of 2 HEPN domains within the

same protein appears to be a unique feature of Cas13. Although HEPN domains are too diver-

gent for robust phylogenetic analysis, the widespread and simple architecture of the toxin

Fig 3. Origins and evolution of CRISPR-Cas systems: Initial accretion of components and subsequent reduction. The figure schematically shows the hypothetical

evolutionary scenarios for the common varieties of CRISPR systems and their derivatives. Genes are shown by block arrows not drawn to scale. Protein and domain

families are denoted by color. The evolutionary events thought to have been involved in each step are briefly described to the right of the schematics. Inverted repeats

flanking transposable elements (IscB and InpB) are shown by triangles. The multipronged arrows pointing to type V indicate the origin of the effector genes of different

subtypes from different families of TnpB as well as independent origins of the adaptation modules. The 3 distinct sequence motifs that comprise the catalytic site of the

RuvC-like nucleases in IscB, Cas9, TnpB, and Cas12 are denoted I, II, and III.

https://doi.org/10.1371/journal.pbio.3001481.g003
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RNases contrast the rarity and complexity of Cas13, suggesting that type VI CRISPR evolved

from an ABI system [11,17,27].

All Class 2 CRISPR effectors are much larger proteins than their likely ancestors, so their

evolution appears to have involved accretion of additional domains. This seems to have been a

gradual, piecemeal process because apparent evolutionary intermediates between TnpB and

typical type V effectors (Cas12) that are larger than the former but smaller than the latter have

been identified [48,54]. Such enlargement and complexification seem to be a general trend,

having occurred convergently in the evolution of multiple CRISPR effectors, including Cas9,

Cas10, Cas12, and Cas13 (Fig 3).

The opposite trend, secondary partial degradation, and simplification of effector modules

are recurrent as well. We note above that type I CRISPR systems might have evolved from type

III along this route. An even more striking case of reductive evolution is presented by the

recently discovered subtype III-E [11,55,56]. The III-E effector presents an appearance of a

paradox: Although clearly derived from type III ancestors, it formally could be classified as

Class 2 inasmuch as it is a single protein that comprises a fusion of 4 Cas7 subunits and Cas11

(hence the designation Cas7–11, also known as g(iant)RAMP). Subtype III-E systems lack

some of the functionality of the “regular” type III systems: Having lost the cas10 gene, they nei-

ther cleave the target DNA nor induce dormancy/PCD via the cOA pathway. Their only

remaining route of interference is target RNA cleavage by the Cas7 domains. Furthermore,

unlike the rest of type III systems, in which the crRNA maturation is catalyzed by the dedicated

Cas6 protein, but similarly to the type VI effector Cas13, Cas7–11 itself catalyzes this reaction,

in addition to target RNA cleavage [56]. The evolutionary intermediate between typical type

III systems and the derived subtype III-E appears to be variant III-D2 that retains Cas10 and

Cas6 but also encompasses a protein with 3 fused Cas7 domains (Cas7x3) [56].

The brief overview given in this section inevitably falls short of capturing all the complexity

and functional versatility of the defense molecular machinery of CRISPR systems. Hopefully,

however, it is sufficient to highlight the general trends of the evolution of the CRISPR diversity

that are becoming apparent, namely the convergent routes of initial complexification via accre-

tion of proteins and domains, in many cases recruited from MGE, and subsequent reductive

evolution that yields a plethora of specialized variants (Fig 3). The exaptation of MGE compo-

nents for roles in CRISPR systems is a clear manifestation of the “guns for hire” phenomenon,

whereby the same molecular components (in many cases, nucleases) are employed both by

hosts as means of defense and by MGE, as offense or antidefense weapons [57]. In the next sec-

tion, we address even more drastic modifications of CRISPR systems that involve their exapta-

tion for functions distinct from adaptive immunity.

The exaptive splendor of CRISPR

In this section, we discuss the well characterized as well as tentative cases of exaptation of

CRISPR systems and their components, that is, their recruitment for alternative biological

functions distinct from bacterial or archaeal adaptive immunity [16,26]. Diverse cases of

CRISPR exaptation have been discovered (and counting), although they seem to comprise

only a relatively small minority of CRISPR systems [11]. In some instances, an intact, appar-

ently functional CRISPR systems is subverted for a new function. The dev operon of Myxobac-

teria that regulates the sporulation process encodes a typical subtype I-B CRISPR system

including the adaptation module and the CRISPR array [58,59]. However, this CRISPR system

contributes to the regulation of sporulation via a mechanism that is distinct from the typical

CRISPR activity. It has been shown that the complex of Cas5, Cas7, and Cas8 proteins, a sub-

complex of the Cascade, employs a distinct antisense RNA to abrogate the expression of devI, a
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sporulation inhibitor, and thus promote sporulation [59]. Most likely, the I-B CRIPSR system

in the dev operon performs a dual function, in both adaptive immunity and expression regula-

tion. Without targeted experimental studies, it is impossible to tell how common the dual

functionality of CRISPR systems might be, opening the tantalizing possibility that such sec-

ondary recruitment occurred in many cases. Apart from the utility for the host cell, the gain of

a new function that is important for the host could make it addicted to CRISPR, preventing

the loss of the CRISPR locus and stabilizing the “symbiosis” between CRISPR and the host

organism (more on such addiction below).

Other cases of repurposing of intact, functional CRISPR systems have been identified in

viruses. Some bacteriophages infecting Vibrio bacteria encode a subtype I-F CRISPR system

that targets innate immunity systems of the host bacteria and thus contributes to the virus–

bacterium arms race [60,61]. CRISPR systems have also been discovered in multiple mega-

phages that infect Bacteroidetes [62]. This is a striking illustration of the guns for hire princi-

ple. Below we discuss several additional cases of this form of exaptation, which is a persistent

trend in the evolution of CRISPR derivatives (Fig 3).

On many other occasions, exaptation of CRISPR involves derived forms resulting from

reductive evolution. The first case in point are type IV systems, another reduced derivative of

type III (Fig 2). Type IV systems possess homologs of Cas7 and Cas5 but lack Cas10 (or Cas8)

and instead encompass a much smaller protein, which plays the role of the large subunit (Csf1)

of the effector complex but does not contain any recognizable enzymatic domains [63–65].

Notably, in the recently discovered subtype IV-C, Csf1 protein contains a carboxyl-terminal

HD nuclease domain related to the corresponding domain of Cas10. In the phylogenetic tree

of Cas7, subtype IV-C is the deepest branch, suggesting that it could represent an intermediate

stage of evolution of type IV from some variant of type III. Comparisons of the solved struc-

tures of the effector complexes also support the affinity of type IV and III [64,66]. The subtypes

within type IV show considerable variability of gene composition. In particular, subtypes IV-A

and IV-C encompass Cas11, the small subunit of the effector complex, whereas subtype IV-B

systems lack this protein. Additionally, different subtypes have distinct accessory proteins,

such as the DinG helicase in subtype IV-A and the inactivated homolog of APS/PAPS reduc-

tase CysH in subtype IV-B and some subtype IV-A systems. The presence of these genes that

are tightly associated with type IV loci suggests distinct functionalities that remain uncharac-

terized, although it has been shown that DinG is required for subtype IV system interference

activity against plasmids [67]. All identified type IV systems are located on plasmids, integra-

tive conjugative elements (ICEs), prophages, and some free phages. Those spacers in CRISPR

arrays of subtypes IV-A and IV-C, for which protospacers were detected, mapped primarily to

genes of plasmid conjugative machinery [65]. Thus, type IV systems are most likely engaged in

competition among MGE, in particular plasmid exclusion. The molecular mechanisms of their

action, however, remain enigmatic given that, with the exception of the rare subtype IV-C,

they all lack recognizable nuclease domains. Furthermore, there are major functional differ-

ences between subtypes IV-A and IV-C, on the one hand, and IV-B, on the other hand. The

IV-A effector complexes that lack Cas11 bind crRNA similarly to other CRISPR systems,

whereas subtype IV-B systems bind heterogeneous small RNAs via a filament formed by

Cas11 subunits [29], suggestive of a distinct, unknown mechanism. Regardless of the mecha-

nistic details, type IV systems are another clear-cut case of CRISPR recruitment as “guns for

hire.”

The next variety of derived CRISPR systems we discuss is an even more striking exhibit for

the same principle. A genomic survey of CRISPR systems has shown that numerous Tn7-like

transposons encode partially degraded subtypes I-B, I-F, and V-K CRISPR loci (Fig 2)

[17,68,69]. These CRISPR systems have been acquired by transposons on at least 3, but
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probably, more independent occasions, suggesting that they confer selective advantages on the

transposons. Furthermore, all transposon-encoded CRISPR systems have lost the interference

capacity albeit via different routes, either by losing the cas3 genes, which encodes the helicase–

nuclease protein that shreds DNA in type I systems, or by inactivation of the catalytic site of

the RuvC-like nuclease in V-K. Hence, it has been proposed that this variety of CRISPR medi-

ates RNA-guided transposition, a phenomenon that has not been described prior to these

observations [68]. Indeed, this route of transposition has been experimentally demonstrated

for all major varieties of transposon-encoded CRISPR systems, subtypes V-K, I-B, and I-F

[70–73]. In each case, the effector complex of the CRISPR systems binds to the target via the

guide crRNA and delivers the transposase which inserts the transposon within a short distance

from the recognized protospacer. Accordingly, the RNA-guided transposition systems were

dubbed CRISPR-associated transposase (CAST). Notably, in the case of CAST-V-K and CAS-

T-I-F, all transposition appears to be RNA-guided (some details of the molecular mechanism

are discussed below), whereas transposons encoding CAST-I-B alternate 2 modes of transposi-

tion, one of which is CRISPR independent [70].

Type IV CRISPR systems, as well as the CASTs, deviate from the adaptive immune function

of CRISPR, but are typically associated with CRISPR arrays and rely on the same fundamental

molecular principle, namely employing guide RNAs to ensure the specificity of target recogni-

tion. Other CRISPR derivatives seem to depart from the mainstream even further (Fig 2).

In numerous species of Streptomyces, a derived subtype I-E system consisting of cas5, cas6,

cas7, and cas8 genes colocalizes with a gene coding for a STAND NTPase, a putative PCD

effector [14]. Given the absence of Cas3, an adaptation module or an array, this module cannot

be a typical CRISPR system, but rather, can be predicted to function as a distinct defense

mechanism, in conjunction with the STAND NTPase.

Many Haloarchaea encode a distinct, highly diverged CRISPR derivatives dubbed haloarch-

aeal RAMP (HRAMP) that encompass homologs of Cas5 and Cas7 along with additional

nucleases and uncharacterized proteins (Fig 2) [20]. In the case of HRAMP, the sequences of

the Cas5 and Cas7 homologs have diverged to such an extent that tracing their origin to a spe-

cific subtype or even type of regular CRISPR systems is challenging, although there is some-

what higher similarity to the homologs from type III systems. The presence of apparently

active nucleases implies that HRAMP is a distinct defense system that, however, can be

expected to function via mechanisms distinct from those of CRISPR. CRISPR system deriva-

tives distantly related to HRAMP have been identified in genomes of many Asgard archaea

(and accordingly denoted ARAMP) [19]. In addition to the components distantly related to

those of HRAMP, most of the ARAMPs encompass a distinct form of the adaptation integrase

Cas1, making their mechanism even more enigmatic (Fig 2). Furthermore, Asgard genomes

encode an unprecedented diversity of Cas1 homologs, some possibly associated with novel

MGE [19].

All the CRISPR-like systems discussed here are limited in their spread to a particular group

of prokaryotes or MGE, which supports the view that these are derived CRISPR forms. There

is little doubt that, with further advance of genomics and metagenomics, many additional spe-

cialized CRISPR derivatives will be discovered.

CRISPR RNAs exapted for new functions

In the final section of this essay, we discuss a different type of exaptation of CRISPR system

components, namely repurposing of the crRNAs or just the repeats, often for additional func-

tions within CRISPR systems (Fig 4). The best known case are the trans-acting crRNAs

(tracrRNAs) that are required for interference in type II and some subtypes of type V systems
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[74–77]. The tracrRNAs consist of an antirepeat and a distal portion that contains a Rho-inde-

pendent transcription terminator. The function of the tracrRNA is to facilitate maturation of

crRNA catalyzed by RNase III and to form the functional guide RNA through duplex forma-

tion between the antirepeat and one of the repeats of the crRNA. In the guide RNA complex,

the structural features of tracrRNA ensure maximum exposure of the spacer [75]. The tracrR-

NAs are encoded within CRISPR loci but not contiguously with the array. Detailed phyloge-

netic analysis of tracrRNAs from 2 groups of bacteria suggests that they evolved independently

in different CRISPR variants, via duplication and relocation of a repeat [75].

A distinct, long form of tracrRNA (L-tracrRNA) present in many Streptococcus species has

remarkably been recently shown to regulate the expression of the II-A cas operon [21]. Simi-

larly, to the short-form tracrRNA (S-tracrRNA), L-tracrRNA contains an antirepeat and forms

the guide RNA complex with a crRNA. Additionally, L-tracrRNA contains a 9-bp sequence

that is complementary to the promoter of the cas operon and by base pairing with the pro-

moter directs Cas9 to repress transcription about 3,000-fold, as compared to a mutant with

deleted L-tracrRNA coding sequence. Such regulation lowers the efficiency of adaptive immu-

nity but also substantially reduces the cost of CRISPR due to autoimmunity [21]. Thus, in this

case, a duplicated (anti)repeat, is repurposed for autoregulation as part of the L-tracrRNA.

Similar repurposing of an ectopic copy of a repeat and of Cas9 has been studied in detail in

the pathogenic bacterium Francisella novicida. Here, Cas9, in a complex with tracrRNA and

sca(Small CRISPR-Associated)RNA, which is another small RNA encoded in the vicinity of

the CRISPR locus, represses the expression of bacterial lipoprotein genes, which is required for

bacterial virulence [78,79]. The scaRNA contains a diverged repeat that enables complex for-

mation with tracrRNA by base pairing with the antirepeat, and a 15-bp sequence complemen-

tary to the 50 untranslated region of the lipoprotein operon, which is employed to recognize

the target and deliver Cas9. Importantly, it has been shown that the extent of complementarity

between the guide RNA and the target regulates Cas9 function [23]. The short duplex formed

by scaRNA engenders transcription repression, whereas the longer duplex formed by crRNA

triggers target cleavage (Fig 3) [23]. Comparative genomic analysis suggests that scaRNA and,

by inference, exaptation of CRISPR for regulation of gene expression is common in type II

CRISPR systems [80].

A distinct, even more surprising form of exaptation of a repeat has been discovered in the

archaeon Haloarcula hispanica and predicted to operate also in related species [22]. The sub-

type I-B CRISPR locus of these archaea was found to encode a unique TA module that consists

of 2 small RNA, the first all-RNA TA module to be discovered. The toxin RNA (CRISPR-

resembling toxin, creT) arrests cell growth by binding to the ribosome where it impedes trans-

lation by sequestering a rare tRNA. The antitoxin RNA (CRISPR-resembling antitoxin, creA)

consists of a repeat-like sequence and a spacer-like sequence that is partially complementary to

the creT promoter, to which it binds as a complex with Cascade, and represses the toxin

expression (Fig 3). This elaborate mechanism safeguards cas genes from disruption and dele-

tion, making the host addicted to the CRISPR locus, because abrogation of the genes encoding

the Cascade subunits (without disrupting creTA, which is a small target) unleashes the toxin.

A different type of repeat exaptation was discovered in the V-K and I-F CASTs (see the pre-

vious section). For RNA-guided transposition, both these systems employ a “delocalized

crRNA” that is encoded near the transposon end, separately from the CAST CRISPR array

[70,81]. The delocalized crRNA consists of a partial copy of the repeat and a spacer-like

Fig 4. Exaptation of CRISPR repeats for regulatory functions. Schematic representation of the functions of repurposed CRISPR repeats.

Designations are the same as in Fig 1.

https://doi.org/10.1371/journal.pbio.3001481.g004
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sequence matching a tRNA to home the transposon near the corresponding tRNA gene. Nota-

bly, these CASTs do not utilize the array for homing. Given that the spacers in the CAST array

often target other MGE, the CASTs seem to perform 2 distinct functions, namely RNA-guided

transposition via the delocalized crRNA and inter-MGE competition via the CRISPR array.

The cases of repeat exaptation discussed above are biologically diverse but all seem to follow

the same evolutionary scenario. This series of events involves ectopic duplication of a repeat

followed by partial sequence divergence. The crRNA-like transcript containing such a derived

repeat forms a complex with a CRISPR effector, targeting it to a sequence recognized by the

spacer-like portion of the CRISPR-like RNA. Importantly, these derived repeats located out-

side CRISPR arrays are not easy to detect in genome analysis as illustrated by the delocalized

crRNA and by scaRNA, which were not detected in the initial analyses of the CASTs and type

II loci, respectively. Along similar lines, regulatory functions of noncanonical CRISPR RNAs

typically rely on partial complementary of the spacer-like sequence and the target, which can

serve a toggle between target cleavage and expression regulation [23]. We do not know how

many small RNAs containing derived variants of the repeats are lurking around CRISPR loci,

and to identify these, dedicated, sophisticated bioinformatic approaches are required as dem-

onstrated by the search for scaRNAs [80].

The final case we discuss further exemplifies the “guns for hire” phenomenon. A search for

CRISPR components encoded in MGE led to the unexpected identification of CRISPR minia-

rrays (typically, 2 repeats flanking a spacer; Fig 3) in many bacterial and archaeal viruses [17].

The repeats in these miniarrays are identical to the repeats in CRISPR arrays of the host, sug-

gesting that miniarrays hijack the host CRISPR machinery. Strikingly, most of the spacers in

these miniarrays target other viruses, primarily, those closely related to the miniarray-encod-

ing virus, leading to the hypothesis that miniarrays are involved in intervirus competition [17].

This hypothesis indeed has been validated in experiments with 2 competing archaeal viruses

[82]. In addition to the miniarrays, some viruses encode single repeat units that were recog-

nized by identity to the host repeats [17]. The functions of such solo repeat copies remain

obscure, but inhibition of the host CRISPR activity seems an attractive possibility.

Conclusions

The extensive study of CRISPR systems over the last decade or so has revealed remarkable

diversity and functional plasticity that are manifested both in the variety of immunity mecha-

nisms and in the exaptation of CRISPR systems and their components for functions different

from adaptive immunity or even from any form of defense. At a higher level of generalization,

evolution of CRISPR systems seems to have involved 2 phases that occurred convergently in

the 2 classes and in some of the types and subtypes (Fig 3). The first phase is the initial com-

plexification via accretion of additional proteins and domains around the core that is typically

derived from MGE. The second phase involves simplification and partial degradation, specifi-

cally the recurrent loss or inactivation of the components required for interference. In molecu-

lar terms, most of the derived CRISPR forms function along the same universal principle,

namely the utilization of guide RNAs to direct protein complexes to their sites of action. How-

ever, some of the most highly derived variants might have departed from RNA-guided mecha-

nisms. From the functional point of view, a key trend is “guns for hire,” shuttling of RNA-

guided systems between MGE and their prokaryotic hosts that often involves reductive evolu-

tion. The derived CRISPR variants are typically limited in their spread to relatively narrow

groups of prokaryotes or MGE, suggesting that they evolved comparatively recently and are

likely to be engaged in specialized functions. Furthermore, often, these systems are hosted by

“exotic” bacteria or archaea, making their biological characterization a challenge. Beyond
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reasonable doubt, many such CRISPR derivatives remain to be discovered. Although the

major advances of CRISPR research over the last decade have led to the elucidation of the core

mechanisms, the true functional complexity of CRISPR systems and especially the aspects of

microbial biology that drive its evolution remain largely unexplored. The study of CRISPR

diversity will be a source of fascinating discoveries for years to come.
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