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Abstract

Background: Individual variances usually affect drug metabolism and disposition, and hence result in either ineffectiveness
or toxicity of a drug. In addition to genetic polymorphism, the multiple confounding factors of lifestyles, such as dietary
preferences, contribute partially to individual variances. However, the difficulty of quantifying individual diversity greatly
challenges the realization of individualized drug therapy. This study aims at quantitative evaluating the association between
individual variances and the pharmacokinetics.

Methodology/Principal Findings: Molecules in pre-dose baseline serum were profiled using gas chromatography mass
spectrometry to represent the individual variances of the model rats provided with high fat diets (HFD), routine chows and
calorie restricted (CR) chows. Triptolide and its metabolites were determined using high performance liquid
chromatography mass spectrometry. Metabonomic and pharmacokinetic data revealed that rats treated with the varied
diets had distinctly different metabolic patterns and showed differential Cmax values, AUC and drug metabolism after oral
administration of triptolide. Rats with fatty chows had the lowest Cmax and AUC values and the highest percentage of
triptolide metabolic transformation, while rats with CR chows had the highest Cmax and AUC values and the least
percentage of triptolide transformation. Multivariate linear regression revealed that in baseline serum, the concentrations of
creatinine and glutamic acid, which is the precursor of GSH, were linearly negatively correlated to Cmax and AUC values. The
glutamic acid and creatinine in baseline serum were suggested as the potential markers to represent individual diversity and
as predictors of the disposal and pharmacokinetics of triptolide.

Conclusions/Significance: These results highlight the robust potential of metabonomics in characterizing individual
variances and identifying relevant markers that have the potential to facilitate individualized drug therapy.
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Introduction

Individual diversity usually affects the disposition, i.e., the

bioavailability, distribution, metabolism and elimination, of a drug

in vivo and, therefore, accounts for the drug’s level, ineffectiveness

and toxicity. Individualized drug therapy is therefore the ultimate

goal, which is expected to benefit patients in achieving better

therapeutic effects with fewer side effects. Generally, the genetic,

lifestyle and environmental factors primarily contribute to in-

dividual variances; yet each of them alone cannot fully explain the

individual diversity of a drug’s fate in vivo. The difficulty of

quantifying these multiple confounding factors greatly challenges

the realization of individualized drug therapy. In fact, inter-

individual variation in response to a drug is strongly inuenced by

the patient’s biochemical state [1], which is a consequence of

genetic polymorphism, personal genetic variation [2,3], lifestyles,

diet preferences [4,5], environmental factors [6] or a combination

of these factors [7]. The nature of an individual can be manifested

in the multi-levels of protein expression, function and activity of

enzymes, and fundamental biological metabolism. As the end

products of systemic functions and various metabolic pathways,

the low-molecular-mass molecules/compounds in biofluids reflect

the metabolic patterns and the individual nature of the body.

Metabonomic analysis of baseline endogenous molecules provides

a possible way to associate individual variances with the fate of

a drug in vivo. The correlation between basic metabolic patterns
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and the pharmacokinetic properties of a drug provides a potential

approach to understanding the individual diversity of a drug [8,9].

‘Pharmaco-metabonomics’ modeling, which was defined as ‘the

prediction of the outcome (for example, efficacy or toxicity) of

a drug or xenobiotic intervention in an individual based on

a mathematical model of pre-intervention metabolite signatures’

[8], is therefore considered as a potentially effective approach for

evaluating individual variances for more effective medical

treatment.

Biotransformation of the originally active drug into toxic

metabolites can lead to side effects and toxicity (e.g., para-

cetamol is metabolized into N-acetyl p-quinone imine, NAPQI

[10]), but biotransformation of a drug into metabolites of

pharmacological activity with less toxicity can reduce side effects

or toxicity. For example, triptolide is metabolized into hydroxy-

triptolide and shows less toxicity than the parent compound

[11]. Various individuals/patients dispose of a drug in different

ways, affecting the transformation of the drug and hence the

side effects and toxicity. Some pioneering works in pharmaco-

metabonomics have suggested the usefulness of metabolic

profiling of the fundamental baseline status, i.e., the low-

molecular-mass metabolites, in revealing the co-relationship

between the disposal patterns of acetaminophen and the

metabolic nature of the individuals [9,12]. Clayton et al. [8,13]

successfully predicted the susceptibility to acetaminophen-in-

duced liver injury in rats based on a pre-dose metabolic profile

of urine without a previous knowledge of their genotypes.

Winnike et al. [14] showed that profiles from healthy volunteers

obtained shortly after the start of treatment with acetaminophen

but prior to alanine aminotransferase elevation, could distin-

guish toxic responders from non-responders.bThese studies

suggested the potential of pharmaco-metabonomics in predicting

pharmacokinetic properties of a drug, although the only

currently available evidence is for acetaminophen exclusively.

Triptolide is a major bioactive diterpenoid triepoxide isolated

from Tripterygium wilfordii Hook. F. This compound possesses

some distinguishing pharmacological activities for the manage-

ment of certain intractable diseases, such as lupus erythematosus

[15] and diabetic nephropathy [16], and shows anti-fertility

[17], anti-inammatory [18,19], immune-suppressive [19], and

antitumor effects [20]. Triptolide also serves as a new molecular

probe for studying transcription and potentially as a new type of

anticancer agent through the inhibition of XPB ATPase activity

[21]. For a long time, triptolide involved traditional Chinese

medicine(e.g., Lei Gong Teng Duo Dai Pian, a conventionally

available dosage form of triptolide glucosides in China) has been

used clinically for the management of arthritis, lupus erythe-

matosus, diabetic nephropathy, tumor, etc. Although for

different kinds of diseases the dose varies, the dosage range is

strictly defined in order to maximize efficacy while minimize

toxicity or side-effects. For an example, the dose of total

triptolide glucosides is strictly limited between 1 to 1.5 mg/kg in

management of arthritis, and diabetic nephropathy. Animal

studies suggested that high amount of triptolide induced evident

toxicities, including hepatotoxicity, immunotoxicity, nephrotox-

icity, developmental and reproductive toxicities [22,23,24,25]. In

addition, studies have shown that metabolism, bioavailability

and toxicity of triptolide are heavily dependent on hepatic P450

activities in mice and on sex-related metabolism in rats [26,27],

indicating that metabolism may play an important role in the

disposition of triptolide. Among the environmental and lifestyle

factors, food preferences primarily contribute to individual

diversity within a community and may affect hepatic P450

activities [28,29] and the disposition of a drug [30,31,32]. In

this study, to evaluate the possible association between in-

dividual diversity and the disposition of triptolide, three groups

of rats were provided with different diets to mimic individual

diversity. The metabolism and pharmacokinetics of triptolide

were evaluated in these rat models, and to represent the

individual variances, molecules in the pre-dose baseline serum

were profiled with the metabonomic tool of gas chromatogra-

phy-time of flight mass spectroscopy (GC-TOFMS). Partial

least-squares (PLS) modeling was used to screen for potential

markers of individual diversity by correlating the molecules in

baseline serum and the pharmacokinetic parameters.

Results

Liver Histology
Histopathologic inspection of liver slices revealed that high dose

of triptolide (1.8 mg/kg) induced distinct karyopyknosis in the

control and CR rats, while the toxic effect on HFD rats was less

evident. However, low dose of triptolide (0.6 mg/kg) induced

perceptible hepatocytic toxicity only in CR rats, Figure S1.

Although lipid droplets were obviously accumulated in HFD rats,

it appeared negligible hepatic toxicity in the rats fed with HFD

chows. The results indicated that rats of the CR chows had more

exposure to triptolide than those of control and HFD chows.

Metabolic Profiling of Molecules in Baseline Serum
In total, the GC/TOFMS analysis of serum detected 267

peaks (Figure 1A), of which 85 were identified, including amino

acids, organic acids, carbohydrates, fatty acids, and steroids.

The peak area measured in each sample represents the relative

intensity of a peak/metabolite monitored in the serum. A peak

table was then constructed based on the peak areas with the

two vectors (the samples as the observation variables and the

peaks as the response variables). An overview of the data in the

principal component analysis (PCA) model shows relative

clustering of the three groups (Figure 2A), and a partial least

squares discriminant analysis (PLS-DA) model clearly shows

distant clustering of the three groups (Figure 2B), indicating

obvious metabolic differences rendered by the different diets.

Identification of the metabolites shows that some molecules in

the serum were obviously dependent on the dietary variation,

such as glutamic acid, creatinine, lysine, 2-aminobutyric acid, 3-

hydroxy-butyric acid, glycine, octadecanoic acid, glutamine, and

cholesterol. In detail, 3-hydroxy-butyric acid, glycine, octadeca-

noic acid, glutamine and cholesterol were more abundant in the

CR rats but less concentrated in the HFD rats, while glutamic

acid, creatinine, lysine and 2-aminobutyric acid were less

abundant in CR rats but more concentrated in the HFD rats.

These molecules were therefore suggested as potential markers

for indicating individual diversity of the rats.

Pharmacokinetic Study
To evaluate the pharmacokinetics (PK) of the drug, the plasma

concentration of triptolide was measured at various time points

after oral administration of the drug (0.6 mg/kg or 1.8 mg/kg). As

shown in Figure 3, the plasma concentration–time curves of

triptolide reveal a high degree of individual variation in terms of

PK. Interestingly, dietary variation greatly affected the PK

profiles, where the highest AUC and Cmax values of triptolide

were observed in the CR rats and the lowest AUC and Cmax

values of triptolide were observed in the HFD rats (Table 1),

indicating that the PK phenotype of triptolide was dependent on

the dietary variation.

Potential Biomarkers Predict PK Parameters
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Correlation between Cmax and Baseline Endogenous
Molecules

The concentration of triptolide in target organs determines the

drug-induced cytotoxicity [11,33]; Cmax is therefore an indicator

for quantitative evaluation of toxicity. Considering that the

ultimate goal of this study was to identify metabolic markers that

can characterize individual diversity and predict PK parameters,

a two-stage PLS analysis was employed to approach a multivariate

statistic model that can predict individualized Cmax based on the

metabonomic data of three dietary groups with two dosages. In the

initial PLS analysis, the loadings plot was used to reveal the

relevant variables (marked with red squares) that were either

positively or negatively correlative to Cmax (Figure 2C, 2E). The

plots/metabolites on the top right corner were positively

correlated to the Cmax, while the plots on the lower left quarter

were negatively correlated to the Cmax. The variables/molecules

correlating to the Cmax were selected according to the ‘‘variable

importance to the projection’’ (VIP) values, which contributed

most to the model and the prediction. Finally, the variables/

molecules of high VIP values (.1) were selected as basic data

(variable data X) in combination with variable Y (the Cmax values)

to build the second PLS model for predicting the Cmax. After

cross-validation, the two-component PLS sub-model were built

(Figure 2D, 2F) which explained a 60.5% variation in X and

predicted a 27.9% variation in Y in the high dose group as well as

explained a 36.2% variation in X and predicted a 54.9% variation

in Y in the low dose group. Metabolites of high VIP values in the

first and second PLS models were selected and correlated to PK

parameter (Table S1, such as glutamic acid, creatinine, lactic acid,

glyceric acid, valine, uric acid and ornithine. Linear correlation

regression revealed that glutamic acid, creatinine, lactic acid,

valine, and some unidentified variables correlated well with the

Cmax and that the linearity was independent on the doses. Notably,

strong negative correlations for Cmax to glutamic acid (r =20.787,

p = 0.004 at low dose; r =20.687, p = 0.014 at high dose

[Figure 4A, 4B]) and creatinine (r =20.714, p = 0.014 at low

dose; r =20.787, p = 0.004 at high dose [Figure 4E, 4F]) were

observed.

Correlation between AUC and Baseline Endogenous
Molecules

AUC was calculated and correlated to endogenous molecules in

baseline serum. A two-stage PLS model showed that glutamic acid,

creatinine, glyceric acid, ornithine and valine had high VIP values

Figure 1. Chromatograms of GC/TOFMS and LC-IT-TOFMS. (A). Typical GC/TOFMS chromatograms of rat blood serum. (B). The LC-IT-TOF/MS-
extracted ion chromatograms (EIC) of a bile sample from a rat treated with triptolide. P, parent drug; M1, GSH conjugate of triptolide; M2, mono-
hydroxylated triptolide; M3–M6, dihydroxylated triptolide; M7, carboxylated triptolide; M8–M9, triptolide sulfate; M10, mono-hydroxylated triptolide
coupled with GSH.
doi:10.1371/journal.pone.0043389.g001
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PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e43389



in the two PLS model, Table S1. In the PLS model, glutamic acid

appeared to be the most promising marker with VIP values of 1.3

and 2.2 at low and high doses, respectively (Figure S2, Table S1).

Linear regression showed a strong correlation between glutamic

acid and AUC0230 min (r =20.762 with p = 0.03 in low dose

group, and r =20.691 with p = 0.017 in high dose group

[Figure 4C, 4D]). Creatinine also demonstrated a strong negative

correlation to AUC0230 min (r =20.787 with p = 0.002 in low dose

Figure 2. PCA scores plots, PLS-DA score plots and PLS loading plots for predicting the Cmax of triptolide. (A) PCA scores plots of the
three groups (CR, HFD and control). (B) PLS-DA score plots of the three groups (CR, HFD and control). (C) The initial PLS loadings plot based on all the
detected peaks/variables. Each point represents a metabolic feature detected in pre-dose serum using GC-MS. Red square, the selected variables of
high VIP values were used to build the second PLS model for predicting the Cmax (high dose). (D) The secondary PLS loadings plot based on the
selected peaks with high VIP values. (E) and (F) represent first and second PLS models at low dose, respectively. Glu, glutamic acid; Lac, lactic acid; Cre,
creatinine.
doi:10.1371/journal.pone.0043389.g002

Potential Biomarkers Predict PK Parameters
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group, and r =20.649 with p = 0.031 in high dose group

[Figure 4G, 4H]).

Prediction of Cmax Based on Levels of Glutamic Acid and
Creatinine in Baseline Serum

Based on the measured Cmax (transformed by the natural

logarithm) of triptolide and the concentrations of glutamic acid

and creatinine in the baseline serum, linear regression presented

two quantitative equations of good coefficients: (1) Cmax_-

pred = 6.8320.077Glu20.019Cre (Cmax, ng/ml; Glu, mM; Cre,

mM), r = 0.800, at the low dose (0.6 mg/kg); and (2) Cmax_-

pred = 10.2020.183Glu20.010Cre, r = 0.721, at the high dose

(1.8 mg/kg). Linear regression between the predicted values and

the actual measured values of Cmax again revealed a good linear

correlation (r = 0.800 at the lower dose and r = 0.721 at the higher

dose, Figure 4I, 4K), indicating the potential prediction ability

based on the baseline data. Considering the possible effect of body

weight on the parameters, the linear regression between the Cmax

and the three variables (body weight, glutamic acid, and

creatinine) in baseline serum revealed two equations, i.e.,

Cmax_pred = 7.878–0.066Glu–0.016Cre–0.007 weight(g),

r = 0.803, at the low dose (0.6 mg/kg), and Cmax_pred = 10.89–

0.186Glu–0.007Cre–0.004 weight(g), r = 0.726, at the high dose

(1.8 mg/kg). According to the coefficients, the inclusion of body

weight as an additional variable resulted in a negligibly improved

prediction ability of Cmax (linear regression coefficients: 0.800 vs.

0.803; 0.721 vs. 0.726), indicating that the variable of body weight

contributed little to the prediction ability in addition to the two

variables of glutamic acid and creatinine in baseline serum. To

approach an integrative equation including data of both high and

low doses, a linear regression was applied and the equation was

calculated, Cmax_pred = 6.921+0.909dose20.106Glu20.017Cre

(dose, mg/kg, r = 0.804). The predicted values of Cmax correlated

well to the actual measured values (Figure 5A).

Prediction of AUC Based on Levels of Glutamic Acid and
Creatinine in Baseline Serum

The measured AUC (transformed by natural logarithm) of

triptolide also showed linear correlation to the concentrations of

glutamic acid and creatinine in baseline serum according to the

two equations, AUC0230 min_pred = 9.53120.087Glu20.022Cre,

r = 0.832, at the low dose (0.6 mg/kg), and AUC0230 min_-

pred = 12.43620.157Glu20.015Cre, r = 0.673, at the high dose

(1.8 mg/kg). The strong correlation between the predicted values

and the measured actual values of AUC0230 min (linear regression

coefficients: 0.833 at the low dose, and 0.673 at the high dose

[Figure 4J, 4L]) suggests the potential prediction ability based on

the baseline data. The inclusion of body weight as an additional

variable contributed little to the prediction ability of AUC0230 min,

where the equations were expressed as AUC0230 min_-

pred = 9.14720.091Glu20.023Cre+0.003 weight (g), r = 0.833, at

the low dose (0.6 mg/kg) and AUC0230 min_pred = 14.36120.149-

Glu20.004Cre20.014 weight (g), r = 0.72, at the high dose

(1.8 mg/kg). An integrative equation including data of both high

and low doses was calculated, AUC0230 min_pred = 9.315+0.797do-

se20.114Glu20.011Cre (dose, mg/kg, r = 0.714). It was shown

that the predicted values of AUC0230 min correlated well to the

actual measured values (Figure 5B).

The Effect of Varied Diets on Metabolites and GSH
Conjugates in Bile

Glutamic acid is the primary constituent of glutathione, which

plays an important role in detoxification by conjugating with

Figure 3. The plasma concentration–time curves of triptolide
after oral administration of triptolide. (A) low dose (0.6 mg/kg),
(B), high dose (1.8 mg/kg). N, CR diet; &, normal diet; m, high fat diets.
(n = 4, Mean6SD).
doi:10.1371/journal.pone.0043389.g003

Table 1. Measured Cmax and AUC of triptolide in rats plasma.

Parameter Dose Control CR HFD

mean 6 SD mean 6 SD mean 6 SD

Cmax (ng/mL) Low 7.7 6 3.4 28.9 6 12.5** 3.2 6 1.7#

High 30.4 6 10.8 37.4 6 11.5 9.8 6 8.2#

AUC(min?ng/mL) Low 185.7 6 99.1 534.6 6 240.2* 82.1 6 58.3##

High 719.5 6 262.4 964.8 6 312.2 305.3 6 139.8*#

AUC, area under the curve.
*, **Statistically different from the Control, P,0.05 or P,0.01 (t test).
#, ##Statistically different from the CR, P,0.05 or P,0.01 (t test).
doi:10.1371/journal.pone.0043389.t001
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chemicals. To check for evidence of GSH conjugating with

triptolide, the metabolites of triptolide in bile were profiled. Based

on the accurate masses and the Met ID software supplied in the

LC-IT-TOF/MS platform, the quasi molecular ions of [M2H]2

and [M+H]+ obtained in negative and positive modes, m/z

666.2338 and 668.2500, were identified as a GSH conjugate of

Figure 4. Linear correlation for the prediction of PK parameters of triptolide. (A) Cmax vs. glutamic acid at low dose; (B) Cmax vs. glutamic
acid at high dose; (C) AUC0230 min vs. glutamic acid at low dose; (D) AUC0230 min vs. glutamic acid at high dose; (E) Cmax vs. creatinine at low dose; (F)
Cmax vs. creatinine at high dose; (G) AUC0230 min vs. creatinine at low dose; (H) AUC0230 min vs. creatinine at high dose; (I) measured Cmax vs. predicted
Cmax values at low dose; (J) measured AUC0230 min vs. predicted AUC0230 min values at low dose; (K) measured Cmax vs. predicted Cmax values at high
dose; (L) measured AUC0230 min vs. predicted AUC0230 min values at high dose; (M) Predicted Cmax values including body weight vs. Predicted values
excluding body weight at low dose; (N) Predicted AUC0230 min values including body weight vs. Predicted values excluding body weight at low dose;
(O) Predicted Cmax values including body weight vs. Predicted values excluding body weight at high dose; (P) Predicted AUC0230 min values including
body weight vs. Predicted values excluding body weight at high dose.
doi:10.1371/journal.pone.0043389.g004

Potential Biomarkers Predict PK Parameters
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triptolide (MW 667.2411); fragmentations confirmed their identi-

fication. In detail, the typical loss of 129 Da in the negative mode

and 131 Da in the positive mode indicated the presence of

a glutamic acid residue that comprises GSH, while m/z 375.13

came from the skeleton of triptolide, where one oxygen was

replaced by a sulfur through which triptolide conjugates with GSH

(Figure S3). Other metabolites were also identified in bile,

including mono-hydroxylated triptolide ([M+Na]+ at 399.1419),

dihydroxylated triptolide ([M2H]2 at 391.1398), carboxylated

triptolide ([M2H]2 at 389.1242), triptolide sulfate ([M2H]2 at

439.1068) and a mono-hydroxylated triptolide coupled with GSH

([M2H]2 at 682.2287) (Figure 1B). Consistent with the quanti-

tative results in plasma, the highest amount of the parent drug

triptolide was found in the bile from the CR group (0–3 h), while

the lowest amount of triptolide was found in the HFD group

(Figure S4). Due to the absence of reference standards and the

known levels of the metabolites, the relative amounts of the

metabolites were semi-quantitatively evaluated by calculating the

ratios of peak areas relative to the internal standard. The results

showed that in bile, the total molar amount of the metabolites (the

GSH conjugate, mono-hydroxylated triptolide-GSH conjugate

and di- hydroxylated triptolide, 0–3 h) was higher in the CR group

and lower in the HFD group (Table S2). However, in the HFD

group, the relative transformation of triptolide (the amount of the

metabolites compared to the amount of the parent drug) was much

higher than in the CR and control groups (Table S2).

Discussion

Although pharmacogenetic studies have achieved great success

in clarifying individual diversity in PK [2,3,34], pharmacogenetics

alone cannot fully interpret individual diversity due to the other

confounding factors such as environmental and lifestyle factors

that also play an important role in affecting the absorption,

disposition and elimination of drugs in the body. Among the

environmental and lifestyle factors, food preferences contribute to

diversity among individuals within a community and may have

a great effect on metabolic patterns [35] and the disposition of

a drug [30,31,32]. Hence, in this study, three groups of rats

provided with different diets were chosen to mimic food

preferences and to induce individual variances. Of the three diets,

different nutritious components and calorie supply primarily

contributed to metabolites in serum, while metabolic response of

biological systems to dietary change contributed partially, both of

which alter metabolic pattern of the rats. It was shown that the

three groups had distinctly different metabolic patterns, and

a panel of endogenous metabolites in baseline serum characterized

the diversity amongst the three groups. Evaluation of baseline

metabolomic data and PK parameters of triptolide revealed that

some molecules (e.g., glutamic acid and creatinine) in baseline

serum correlated well to the Cmax or AUC value. The two

molecules in baseline serum were suggested as the potential

markers to represent individual diversity and as predictors of the

disposal and PK of triptolide.

To our knowledge, this is the first study to evaluate the

predictive capacity of PK parameters (Cmax, AUC) and metabo-

lism of triptolide based on the pre-dose serum molecules. Glutamic

acid is well known as the crucial molecule for the synthesis of GSH

that plays an important role in the elimination of xenobiotics by

conjugating with them [36,37]. As is known, GSH is involved in

anti-oxidative stress and its level reflects the relative response of the

rats to various stimuli, herein, high fatty or low calorie diets. It has

been reported that chronic caloric restriction elevated GSH levels

in rats [38], while GSH levels declined when the rats were induced

by high fat diet [39]. Consistently, in this study, more GSH

conjugate of triptolide was found in the CR group (relative to the

control), while less of them was determined in the HFD group

(relative to the control). Unfortunately, the contribution of

metabolism to PK parameters remains elusive because the

authentic metabolites are not available and the quantitative

measurement of various metabolites of triptolide in serum and bile

is impossible. However, the reverse correlation between glutamic

acid, creatinine and triptolide highlights the potential role of

baseline glutamic acid and creatinine in predicting individualized

levels of triptolide, the possible side effects and the therapeutic

outcomes. In addition, the two suggested markers, glutamic acid

and creatinine, are among the most commonly available

endogenous metabolites that can be quantitatively determined in

most biological samples, irrespective of the origin species (animal

or human). This advantage greatly facilitates a translational

research from model animals to humans.

Despite the potential dispute of these two molecules as PK

markers or as surrogate endpoint markers of individual variance,

their significance is obvious. Individualized drug therapy has been

proposed for a long time, yet few regimens have been amended or

practiced based on environmental or lifestyle factors, largely

Figure 5. Correlation between the measured and predicted
values of PK parameters including both high and low doses of
triptolide. (A) measured Cmax vs. predicted Cmax values; (B) measured
AUC0230 min vs. predicted AUC0230 min values.
doi:10.1371/journal.pone.0043389.g005

Potential Biomarkers Predict PK Parameters
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because the appropriate tools for quantitative measurement of the

individual variances are absent. The absence of baseline bio-

markers that can predict a drug’s fate (absorption, distribution,

metabolism and elimination) within the body greatly hinders our

effort to realize an individualized regimen design and to further

improve safety and efficacy of an effective pharmacotherapy.

Dissimilar to genomics and proteomics, metabonomics permits the

quantitative measurement of endpoint metabolites (endogenous

low–molecular-weight molecules) that represent the ultimate

downstream response of biological systems to genetic or environ-

mental change. A change in metabolic patterns does not only

provide an insight on the functional changes that occur due to any

given stimuli, both genetic and environmental, but also reflect the

underlying biology of the individual [40]. The identified metabolic

markers that reflect the nature of an individual in a quantitative

way are of crucial significance for the quantitative prediction of

PK parameters. We believe that the suggested markers in model

rats have the potential to bridge preclinical and clinical usage of

triptolide for evaluating PK properties, although further trans-

lational research is required.

It is conceivable that the differential Cmax level of triptolide in

the three groups is associated with the body weight of the rats.

Indeed, the rats in the HFD group possessed a higher average

body weight than those of the normal control group, while the rats

in the CR group had the lowest body weight (Table 2). In other

words, the body weights of the rats were negatively correlated to

Cmax and AUC values of triptolide. However, the linear regression

revealed the poor correlation-ship between PK parameters and

body weight alone at higher dose of triptolide (1.8 mg/kg) for both

Cmax and AUC, although the linearity is not bad at lower dose

(0.6 mg/kg), Table S3. Further linear regression analysis showed

that body weight did not significantly contribute to the variation of

the PK parameters of Cmax and AUC, because inclusion of body

weight as an additional variable did not improve the prediction

ability for Cmax and AUC at either the high dose or the low dose,

according to their linear coefficients (Figure 4M–4P). On the other

hand, levels of glutamic acid or creatinine correlated to body

weight to some extent (Figure S5), while the normalized levels of

glutamic acid and creatinine (vs body weight) were not well

correlated to Cmax and AUC, especially at higher dose(1.8 mg/kg),

Table S4. These results suggest that these two metabolic markers

(glutamic acid and creatinine) reflect individual variation well and

may have included the contribution of body weight to the

prediction ability of PK parameters.

Materials and Methods

Triptolide was purchased from Suzhou Bochetown Medical

Technology Company, Ltd (Suzhou, China). The stable isotope-

labeled [13C2]-myristic acid (Cambridge Isotope Laboratories,

Andover, MA, USA) was added to the serum as the internal

standard (IS). The alkane series (C8–C40, Fluka, Buchs, Switzer-

land) was analyzed as standards to calculate retention index. N-

methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) plus 1%

trimethylchlorosilane were provided by Pierce Chemical (Rock-

ford). Methoxyamine was purchased from Fluka (Switzerland).

Prednisolone acetate and warfarin were provided by the National

Institute for Control of Pharmaceuticals and Biological Products

(Beijing, China). Methanol and acetonitrile were provided by

Fisher Scientific (USA).

Animal Experiments and Sample Collection
Twenty-four male Sprague Dawley (SD) rats (weight 180–

200 g) were purchased from Slac Laboratory Animal (Shanghai,

China). To mimic different lifestyle diets, a two-week dietary

intervention study was undertaken: fatty, calorie restricted (CR)

and routine diets were supplied with a 12 h light-dark cycle for

2 weeks and water ad libitum. Rats were randomly assigned to one

of three different experimental groups with 8 rats per group.

Group A was provided with the high fat diet (HFD) (2%

cholesterol, 10% pork fat, 10% custard powder, 0.5% cholate

and 77.5% basal diet), group B with the 40% calorie restricted

(CR) diet and group C with the conventional diet as control

(China Experimental Animal Food Standard, GB 14924.2–2001

and GB 14924.3–2001, containing 190 g/kg crude protein, 60 g/

kg crude fat, 50 g/kg crude fiber, 16 g/kg calcium, and 12 g/kg

phosphonium). After an overnight fasting, triptolide was admin-

istered intragastrically at a low or a high dose (0.60 or 1.80 mg/kg,

respectively, n = 4), and 250 mL of blood was collected at 0, 5, 10,

15, 30, 45, 60, 90, 120, and 180 min. An aliquot of blood was put

into a gel and a heparinized tube to prepare serum and plasma,

respectively. Plasma (100 mL) was isolated and stored at 270uC
for LC/MS analysis of triptolide, and a 30 mL aliquot of pre-dose

serum was prepared for GC/TOFMS analysis of the endogenous

molecules. The animal experiments were conducted with the

approval of the Animal Ethics Committee of China Pharmaceu-

tical University. The use and care of experimental animals

complied with all regulations in the Use of Laboratory Animals, as

adopted and promulgated by the United States National Institutes

of Health.

Bile samples for blanks were collected from model rats fed with

HFD, routine diet, and CR. Bile samples were also collected after

the rats were intragastrically administered a single dose of

triptolide (1.8 mg/kg) for 12 hours. Both the blank bile and bile

samples (after treatment) were precipitated and extracted with

methanol (bile: methanol, 1:5), and the supernatants were

analyzed in the LC-IT-TOFMS (Shimadzu, Kyoto, Japan) for

identifying the metabolites of triptolide and in the LC-MS

(Shimadzu, Kyoto, Japan) for quantitative analysis of triptolide

and its metabolites.

Liver Histopathology
After feeding with different diets for 2 weeks, the rats were

intragastrically administered triptolide (0.60 mg/kg and 1.8 mg/

Table 2. The body weight of rats fed with different diets for two weeks.

Control CR HFD

Mean 6SD Mean 6SD Mean 6SD

Low dose 258.5 6 8.5 222.0 6 15.0** 300.8 6 14.5**

High dose 262.8 6 2.5 219.3 6 11.3** 293.3 6 15.5**

**Statistically different from the control, P,0.01 (t test).
doi:10.1371/journal.pone.0043389.t002

Potential Biomarkers Predict PK Parameters

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e43389



kg) and then euthanized and sacrificed 24 h later. The livers were

then harvested for histological inspection as previously described

[25].

GC/TOFMS Analysis, Data Acquisition and the
Identification of Metabolites

Serum samples (50 mL) were prepared, derivatized, and

measured as described previously [41]. For chromatographic

separation, the derivatized sample (0.5 mL) was injected into

a 10 m60.18 mm ID fused-silica capillary column chemically

bonded with 0.18 mm DB-5MS stationary phase (J&W Scientific)

in an Agilent 6890 GC system, and the analytes in the eluent were

profiled in a Pegasus III TOFMS (Leco Corp., St. Joseph, MI,

USA) as described previously [41]. The acquired GC/TOFMS

raw data were deconvoluted using the ChromaTOF 3.25 software

[42]. The retention index of each peak was calculated by

comparing its retention time against those of the standard alkane

series C8–C40. Each metabolite was identified by comparing its

mass spectrum and retention index with those of authentic

reference standards and those available in the National Institute of

Standards and Technology (NIST) library 2.0 (2008), the Wiley 9

library (Wiley_VCH Verlag GmbH & Co.KGaA, Weinheim,

Germany), and in-house libraries established by the Umeå Plant

Science Center, Umeå University (Sweden), and by the key lab of

drug metabolism and PK at China Pharmaceutical University.

Quantitative Analysis of Triptolide in Plasma
The concentration of triptolide in plasma samples were

determined in a Shimadzu 2010A liquid chromatographic/mass

spectrometry system (LC/MS, Kyoto, Japan) with an atmosphere

pressure chemical ionization (APCI) interface [43]. The quant

masses, [M2H]2 at m/z 359.15 and 341.3 for both triptolide and

the IS (prednisolone acetate), were monitored. The concentrations

of triptolide were calculated by fitting the peak area ratios of the

analyte to the IS into the calibration curve ranging from 1 to

500 ng/mL. A concentration-time curve was finally graphed, and

the area under the curve (AUC) was calculated.

Quantitative Measurement of Glutamic Acid and
Creatinine

The concentrations of glutamic acid and creatinine in serum

were determined and calculated by comparing their relative

abundances in GC/TOFMS responses in serum with those of

standard solutions of glutamic acid and creatinine. Peaks of

glutamic acid and creatinine were quantified at the quant masses

of m/z 246.1 and 429.3, respectively, and the internal standard,

[13C2]-myristic acid, was quantified at m/z 287.2. The stock

solutions of the glutamic acid and creatinine were prepared at

10 mM in water, from which a series of standard working solutions

(5, 20, 50,100, 200, and 500 mM) were prepared by diluting both

stock solutions with methanol. In each of the diluted standard

solutions, 20 mL was removed and added into GC vials. After

drying in a speed-vacuum, derivatization, and GC/TOFMS

analysis, standard curves were prepared for calculating the

concentrations of glutamic acid and creatinine in serum.

LC-IT-TOF/MS Analysis and the Identification of
Metabolites of Triptolide

Liquid chromatography was conducted in a Shimadzu HPLC

system (Kyoto, Japan). Chromatographic separation was achieved

on a Zorbax SB-C18 3.5 mm 150 mm62.1 mm ID column

(Agilent, USA) at 35uC with a mobile phase rate at 0.2 mL/min.

The mobile phase was comprised of solvent A (pure water

containing 0.04% HCOOH) and solvent B (methanol). A gradient

elution was programmed: 10% solvent B constantly for 0–5 min,

a linear gradient of 10–70% solvent B from 5–40 min, which was

then maintained for 5 min. Finally, the mobile phase was returned

to an initial 10% solvent B within 3 min and maintained for

4 min.

Multiple MSn analyses were conducted on a Shimadzu IT-

TOF-MS equipped with an electrospray ionization (ESI) source,

and the optimized operating conditions were as follows. A positive

mode with electrospray voltage of 4.5 kV and a negative mode of

23.5 kV were monitored simultaneously. The curve dissolution

line (CDL) and the heat block temperature were set at 200uC, with

nebulizer gas (N2) flows at 1.5 L/min, and cooling gas (Ar) flows at

95 mL/min. The pressure in the ion trap was 1.761022 Pa, with

an ion accumulated time of 200 ms. The collision energy was set

at 15% both for MS2 and MS3; for MS1, m/z 200–700 were

scanned, while m/z 100–700 were scanned for MS2 and MS3.

Metabolite identification was carried out using the Met ID

solution 1.0 based on the accurate masses of molecular ions and

their fragmentations. Shimadzu’s Composition Formula Predictor

software was used to calculate the chemical formula for confirming

the identification of metabolites of triptolide.

Measurement of Triptolide and its Metabolites in Rat Bile
Triptolide and its metabolites in rat bile were analyzed on

a Shimadzu 2010A liquid chromatographic system equipped with

an ESI source. The quantitative measurement of triptolide and its

metabolites was performed using LC-IT-TOFMS. The CDL and

heat block temperature were set at 250uC and 200uC, respectively,

with the detector voltage of 1.6 kV. Liquid nitrogen was used as

the nebulizer gas, and the curtain gas source was set at 1.5 and

2.0 L/min. [M+H]+ at m/z 361.15, 668.25, 684.20, 413.10, and

415.20 were monitored for triptolide, GSH conjugate, mono-

hydroxylated triptolide-GSH conjugate, carboxylated triptolide,

and dihydroxylated triptolide, respectively, and the IS of warfarin

was detected for [M+Na]+ at m/z 331.15. Peak area ratios of the

triptolide to IS were calculated by fitting the data into the

calibration curve.

Multivariate Statistical Analysis
For each of the samples, the detected peaks in GC/TOFMS

were identified and their peak areas were obtained as previously

described [42,44]. Consequently, the acquired metabonomic data

was a data matrix constructed by the peak areas normalized

against the internal standard, with two vectors: sample names as

observations in the first column, and retention times/peaks as the

response variables in the first row. Multivariate statistical analysis

(MVSA) was carried out based on the dataset using SIMCA-P 11

software (Umetrics, Umeå, Sweden) as published [45].

As a mathematic model, every sample represents a plot in a N-

dimensional space where N stood for the number of variables.

Here, principal component analysis (PCA) and partial least squares

projection to latent structures & discriminant analysis (PLS-DA)

were employed to process the metabonomic data. PCA involves

a mathematical procedure that transforms a number of detected

variables into a smaller number of ‘dummy’ variables called

principal components (PCs), i.e., by projecting the plots and

reducing to a few principal components that described the

maximum variation of different groups or samples. Thus, the

comparative analysis of the data was facilitated by reducing the

dimensionality of the data set while retaining the similarity or

diversity of the samples as much as possible. The result of PCA

displayed as score plots to represent the scatter of samples, which

cluster closely to indicate similar metabonomic composition and
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stand far away to indicate compositionally different metabonome.

The purpose of PLS-DA was to calculate models differentiating

groups or classes. For PLS-DA modeling, samples from the one

group were classified into the same one, respectively, so that all

samples were divided into different groups as the qualitative

‘dummy’ variable, Y. Cross-validation [46] with seven cross-

validation groups was used throughout to determine the number

of principal components (PC), and a permutation test was

performed with an iteration of 100. The goodness of fit for

a model is evaluated using 3 quantitative parameters; i.e., R2X is

the explained variation in X, R2Y is the explained variation in Y,

and Q2Y is the predicted variation in Y. The parameters of model

were carefully checked to avoid over-fitting of the model.

Selection of Baseline Molecules Correlating to PK
Parameters

In addition, partial least-squares projection to latent structures

(PLS) was employed to correlate metabonomic data and PK

parameters, i.e., metabolites peak areas from pre-dose serum as

predictor variables (X) and the Cmax or area under the curve

(AUC0-t, logarized) of triptolide as the response variables (Y). The

relevant markers of PK were identified based on the four criteria

followed. i) the metabolites must be authentically identified to

facilitate further studies; ii) the metabolites had high VIP values

(VIP.1) in the PLS models with metabolites in baseline serum as

predictor variables (X) and the PK parameters (Cmax and AUC) of

triptolide as the response variables (Y) [9]; iii) The discriminatory

metabolites characterized metabolic patterns of the three groups

conferred by varied diets, and the relative standard deviations of

them were not more than 30% within a group; iv) the metabolites

had high coefficients (.0.6, Pearson regression) when they are

correlated to Cmax and AUC.

Statistical Analysis
The results are shown as the mean6SD, and the Pearson

correlation was calculated by SPSS (version 16.0). Statistical

analysis between groups was performed using a One-way ANOVA

embedded in SPSS (version 16.0) with a significant level of 0.05 or

0.01.

Supporting Information

Figure S1 Histopathological inspection of the livers (HE
staining) of rats with or without triptolide(0.6 mg/kg).
A: Control+Non-treated; B: Control+ treated; C: CR+Non-

treated; D: CR+ treated; E: HFD+Non-treated; F: HFD+ treated.

(TIF)

Figure S2 PLS loading plots for predicting the Cmax of
triptolide. (A) The initial PLS loadings plot based on all the

detected peaks/variables. Each point represents a metabolic

feature detected in pre-dose serum using GC-MS. Red square,

the selected variables of high VIP values were used to build the

second PLS model for predicting the AUC (high dose). (B) The

secondary PLS loadings plot based on the selected peaks with high

VIP values. (C) and (D) represent first and second PLS models at

low dose, respectively. Glu, glutamic acid; Cre, creatinine.

(TIF)

Figure S3 The proposed fragmentation mechanism of
triptolide GSH-conjugated metabolites.

(TIF)

Figure S4 Relative abundances of glutamic acid in
serum and triptolide and its major metabolites in bile.
(A) The levels of glutamic acid in baseline serum; (B) the levels of

triptolide in rat bile; (C) Relative LC/MS response intensity

Metabolites of triptolide in bile. GSH, triptolide-GSH conjugate;

O+GSH, GSH conjugate of the mono-hydroxylated triptolide.

*significant difference vs. control group (p,0.05). #significant

difference vs. CR group(p,0.05).

(TIF)

Figure S5 the correlation between glutamic acid or
creatinine and body weight. (A) glutamic acid vs. body

weight; (B) creatinine vs. body weight.

(TIF)

Table S1 The metabolites of high VIP values in a two-
stage PLS models correlating to PK parameters.

(DOC)

Table S2 The relative abundances of triptolide and its
metabolites in bile.

(DOC)

Table S3 The equations and coefficients after linear
regression between PK parameters and body weights.

(DOC)

Table S4 The equations and coefficients after linear
regression between PK parameters and the normalized
metabolites concentrations (against body weight).

(DOC)
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