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Background: Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in

Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite

Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and

secular patterns of malaria transmission along the East African coast.

Objective: The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria

admissions to Kilifi District Hospital (KDH).

Design: In this article, we apply several statistical models to look at the temporal association between monthly

paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally

adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to

examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and

whether these might become more or less predictable with increasing vector control.

Results: The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be

forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This

model is improved by incorporating either the previous month’s Indian Ocean Dipole information or the

previous 2 months’ rainfall.

Conclusions: Surveillance data can help build time-series prediction models which can be used to anticipate

seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria

vector control.
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Background
Malaria is avector-borne disease which is a major threat to

child survival across sub-Saharan Africa. The manifold

rise in funding for malaria control programmes over the

past decade (1, 2) has been associated with a simultaneous

decline in child mortality and parasite prevalence (3) which

has rekindled hopes of global eradication by the year 2030

(1, 4). It has been assumed that the success in controlling

the disease has been, in part, a result of scaled-up distri-

bution of vector control methods such as insecticide-

treated bed nets (3, 5) and the replacement of failing

first-line therapy drugs chloroquine and suphadoxine-

pyrimethamine with artemisinin-based combination (1).

Kilifi, on the Kenyan Coast, is a malaria-endemic

region. The most common type of malaria in the region

is caused by Plasmodium falciparum. The availability and

productivity of breeding sites for the Anopheles vector is

determined by climatic factors such as temperature and

rainfall, with rainfall playing a greater role in transmission

at the Kenyan coast (6, 7). The annual rainfall at the

Kenyan coast occurs in two seasons: the long rains which

take place from March to June and the short rains from

October to December, with the latter being subject to

considerable inter-annual variability (7). Climate vari-

ability, such as the El Niño�Southern Oscillation, have

been linked to malaria epidemics in the East African
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region (8�10). The Indian Ocean Dipole (IOD) is a climate

mode of coupled ocean and atmosphere variability in the

Indian Ocean (11). The intensity of the IOD can be

measured by the Dipole Mode Index (DMI) which is

defined as the difference between the sea surface tempera-

ture anomaly of the western equatorial Indian Ocean

(50E�70E and 10S�10N) and that of the south-eastern

equatorial Indian Ocean (90E�110E and 10S�0N) (11).

The IOD has an influence on the climate of countries that

surround the Indian Ocean Basin and has been shown to

have an influence on the short rainy season in East Africa

(12, 13). A study of malaria in the highlands of Western

Kenya found a causal link between the DMI and incidences

of malaria (14).

The burden of severe malaria, warranting admission to

hospital, among children along the Kenyan coast is

acutely seasonal, corresponding to annual periods of

rainfall, and varies between years. This variation has been

linked to the level of rainfall (7). The intensity of malaria

transmission rose during the late 1980s and peaked in

the late 1990s before declining again to low levels during

the mid-2000s (15). The temporal associations between

declining transmission or disease burden with climatic

variations, failing efficacy of treatments, or increasing

effective intervention are complex and hard to disen-

tangle. In addition to inter-annual seasonality associated

with rainfall, malaria transmission has also been shown

to exhibit poorly understood long-term cyclic trends (15).

From as far back as the 1920s, predicting the next

epidemic has been a major goal in malaria research (16).

The timing of vector control or mass drug administration

in preparation for epidemics, as well as understanding

future trends in disease burden, requires reliable forecasts.

Malaria-forecasting models that have been developed vary

from dynamic models, stochastic models, or a combination

of both (17�20). These models commonly incorporate

climatic factors with varying accuracy, and their perfor-

mance is therefore difficult to assess. The objective of this

study was to use malaria and climate information from a

regional surveillance in forecasting. In this article, we

develop autoregressive integrated moving average models

for the proportion of malarial paediatrics malarial admis-

sions to Kilifi District Hospital (KDH) using admission

data from 1990 to 2011.

Material and methods

Study area and period

Kilifi County, on the Kenyan Coast, covers an area of

12,245 km2. KDH is the county referral hospital located in

Kilifi town. Data on malaria admissions were obtained

from a paediatric ward surveillance system which was

initiated in 1989 (5, 21). The data used for this study

consist of counts of monthly malaria paediatric admission,

for children aged less than 15 years, with a primary

admission of malaria confirmed with microscopy. The

majority of paediatric malaria admissions (�90%) are

aged less than 5 years. The data also contain overall counts

of monthly non-malaria paediatric admissions (age 15

years and younger) from January 1990 to December 2011.

The total monthly rainfall (millimetres) from 1974 to

2014 was obtained from a private meteorological station

on a sisal plantation in Kilifi, 2 kilometres from KDH.

The DMI (11) was obtained from the Commonwealth of

Australia Bureau of Meteorology website: www.bom.gov.

au/climate/IOD.

For statistical analysis, we used the R-package version

3.1.3. The transformation yt�arcsin(pt), where pt is the

monthly proportion of malaria admissions, was adopted

for modelling. The purpose of this transformation was

variance stabilisation. For scaling and variance stabilisa-

tion purposes, rainfall was transformed to xt�raint/1000,

where raint is monthly rainfall in milliliters. DMI (zt) was

not transformed. The association across and within the

three series was studied using the cross-correlation func-

tion (CCF), the autocorrelation function (ACF), and the

partial autocorrelation function (PACF) (22). Prior to this

analysis, the series for yt was deseasonalised using dummy

variables for months in a year and detrended with a cubic

spline with nine knots. The series for xt was deseason-

alised using dummy variables for months.

Following the association analysis, three autoregressive

(AR) models for yt were formulated: an AR model for yt of

order 2, an AR model for yt of order 2 with xt�1 and xt�2

as predictors, and an AR model for yt of order 2 with zt�1

as a predictor. In all the models, the trend component was

represented by either a cubic function or a cubic spline with

a knot at January 2003. Time was represented by the

number of days from a reference date, assuming all mea-

surements were taken on the first day of the month. The

seasonal component of yt was represented using dummy

variables for months. The models were fit via maximum

likelihood estimation. The Akaike information criterion

(AIC) and the likelihood ratio test (LRT) were used for

model comparison. Normal quantile plots of the residuals

from each of the three models, as well as plots of their

sample ACF and PACF functions, were used to assess

model assumptions. Ljung�Box tests on the models’

residuals were used to assess serial auto-correlation.

To assess the predictive ability of the three models, we

obtained year-ahead forecasts using all data occurring in

and prior to a given reference year. All the data occurring

prior to and in the reference year YY, with YY �1995, . . .,

2010, were used to refit the model. The fitted model was

then used to obtain the next year’s forecast. We worked

with the assumption that climate information at least 1

month prior was available. We also obtained the 95%

confidence intervals for the forecasts on the transformed

scale. Exact confidence intervals with 95% confidence level

were obtained for the forecasted monthly proportions

Stella Wanjugu Karuri and Robert W. Snow

2
(page number not for citation purpose)

Citation: Glob Health Action 2016, 9: 29876 - http://dx.doi.org/10.3402/gha.v9.29876

http://www.bom.gov.au/climate/IOD
http://www.bom.gov.au/climate/IOD
http://www.globalhealthaction.net/index.php/gha/article/view/29876
http://dx.doi.org/10.3402/gha.v9.29876


of malarial admissions. This computationused the median of

monthly admission counts from the past data. We compared

the forecasted estimates with the true values using the root

mean square error (RMSE) function defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

t

ðyt � ^ytÞ
2

12

s

Results
The five summary statistics for the data series are shown in

Table 1, where nt represents the total admission in the

month t, pt represents the monthly proportion of malarial

admissions with the denominator equal to nt, and raint

represents monthly rainfall (millimetres). The variable zt

represents the DMI at month t. Monthly paediatric

admissions range between 117 and 656, and the proportion

of these admissions that were diagnosed as malaria ranges

between 1 and 78%. The maximum proportion of malaria

admissions during the study period occurred in July 1992.

December of 1997 was the month with the second highest

proportion of malaria admissions in the study period. The

maximum monthly rainfall within the study period was

975 mm (October 1997) and was associated with El Niño.

During the study period, 37 months had zero rainfall; the

most frequent months of zero rainfall were January and

February.

Monthly plots of the series are given in Fig. 1. The plots

for pt and nt exhibit the same rise and fall patterns which

indicate malaria as a major cause of admission during the

period of observation. The variation in pt is not constant

and decreases with time. The plot also indicates a decreas-

ing non-linear trend in pt after 2003. With the exception to

1997, the more pronounced within year peaks in rainfall

occur within the first half of the year and indicate the long

rain season. Less pronounced peaks occur at the end of the

year and indicate the short rains. The pronounced peaks in

rainfall that occur in 1991, 1997, and 2006�2007 coincided

with the positive values of DMI. From the year 2000 till

2011, there is evidence of correlation between DMI and

rainfall series, corresponding largely with the short rain

season from October to December; this has been docu-

mented previously (13).

Figure 2 shows the association between the three series

using the CCF and within series association using the ACF.

The plots in the diagonal represent the sample ACF of a

series. The sample ACF represents the association of the

series with itself when the values are shifted by a given

number of lags (months). The sample CCF represents the

association in two series when one series is shifted forward

by a given number of lags (months). In Fig. 2, the series for

yt indicates a strong autocorrelation at a lag of 1 month

(0.54, 95% CI: 0.37�0.7066). From the subplot in Row 1

(top row) Column 2 (middle column), the strongest

association between proportions of malaria admission

and lagged rainfall is positive and occurs at lags of 1 and

2 months. This indicates that high rainfall in the past

2 months is associated with current high proportions of

malarial admissions. The CCF plot for xt and zt in row

1 (top row) Column 3 (right column) with xt leading

indicates a significant association between rainfall and the

first three lags of DMI. Similarly, the CCF plot of yt and zt

with yt leading indicates an association between rainfall

and the first few lags of DMI. The large ACF values for zt

are caused by the strong autocorrelation in the series at lag

1 which is propagated to later lags. For example, as a

consequence of the strong association between zt and zt�1

and zt�1 and zt�2, the association between zt and zt�2 (lag

2 autocorrelation) will result in a significant ACF because

of the strong association between the intermediate

observation zt�1 with both zt and zt�2.

Three AR models for yt were fit; these were guided by

the analysis of Fig. 2. Model 1 is an AR model for yt of

order 2. Model 2 is an AR model for yt of order 2 with

zt�1 as a predictor. Model 3 is an AR model for yt of

order 2 with xt�1 and xt�2 as predictors. Diagnostics of

the fitted models’ residuals did not indicate any departure

of the modelling assumptions.

The results of the fit are given in the Supplementary

materials. Model 3 resulted in the smallest AIC. The results

of a LRT comparing Model 1 with Model 3 indicate that

Model 3 is significant (LRT statistics 36.8, p-value

approximately 0). The coefficients for the dummy variables

representing seasonality change significantly in Model 3

compared with those in Model 1. This indicates rainfall

seasonality impacts malaria seasonality. The trend para-

meters in Model 1 remain more or less the same when

Table 1. Summary statistics for nt (Monthly admissions), pt (proportion of monthly malaria admissions), raint (monthly rainfall

in mm), and zt (monthly dipole modal index (DMI)) from January 1990 to December 2011

Variable minimum 1st quantile Median 3rd quantile maximum

nt 117 247.8 295.5 351.5 656

pt 0.01 0.14 0.31 0.46 0.78

raint 0.00 15.00 51.55 133.57 975.40

zt �0.71 0.03 0.19 0.36 1.54
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rainfall information is incorporated, which indicates that

rainfall does not explain the changing trend in proportion

of malaria admissions.

To assess the predictive ability of the three models, we

obtained 1-year-ahead forecasts using all data occurring

in and prior to a given reference year. All the data

occurring prior to and in the reference year YY, with

YY�1995,. . .,2010, was used to refit the model. The fitted

model was then used to obtain the next year’s forecast. We

compared the estimates to the true values using the RMSE.

Forecasts close to the true value will have a smaller RMSE.

Figure 3 gives a year-ahead forecast for the years 1997 and

2009�2011. Predicted proportions of malaria admissions

for 1997 are of interest as this year had unusual rainfall

because of El Niño. The year 2009 is of interest as this year

had the lowest number of malaria admissions, while the

year 2010 saw a rise in annual malaria admissions after a

decline which started in 2003. The year 2011 is the last year

for which data on malaria admissions were available.

Model 3 provided considerably better forecasts for the

1997 proportions compared with Model 2. These forecasts

also have smaller forecasting errors. All models under-

estimate yt in 2010; however, they seem to give better fore-

casts towards the end of 2009 and the beginning of 2011.

Fig. 1. Plots of the series nt, pt, raint/1000, and zt; the dashed vertical lines mark the beginning/end of a year. The red line marks

January 2003, the beginning of a declining trend in malaria admissions.
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Fig. 2. Plots of autocorrelation function (ACF) and cross correlation function (CCF) of the data series.
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The RMSE estimates for the year-ahead forecasts for all

models are given in Fig. 4. The three models have comp-

arable prediction accuracy for predictions in 2001�2009,

with Model 3 having less accuracy than the other two

models in the period 2003�2008. This period coincides

to a drought period when rainfall was below average (see

Fig. 1). Evidence of the underestimated forecasts for 2010

is given by the large RMSE value for that year. Further

studies of the trend in pt (see Fig. 1) indicates a change in

the trend after the year 2003, when there is a much more

rapid decrease in pt; a single cubic trend might not capture

this trend.

We model the trend using a cubic spline with a knot at

January 2003; this is a segmented cubic trend, with a

separate cubic functions prior and post January 2003. This

adjustment also captures the rise in malaria admissions
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Fig. 3. Year-ahead forecasts (on the transformed scale) for years 1997, 2009, and 2010, using previous years’ data. The blue line

denotes the forecast, and the black line denotes the observed proportions (on the transformed scale).

Fig. 4. RMSE for 12-month-ahead forecast using previous years’ (1996�2001) data. The x-axis denotes the forecasted year, the

solid line represents Model 1, the dashed line represents Model 2, and the dotted line represents Model 3.
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that occurred after 2010. The 2011 forecasted proportions

after this adjustment for Model 3 are given in Fig. 5, which

also gives the 95% confidence level. The plot indicates

good predictions and good coverage in the first 10 months.

Discussion
Linking the incidence of malaria with rainfall is not a new

finding; the periodicity of the clinical manifestations of

malaria associated with rainfall patterns has been recog-

nised for decades (23, 24). Here, however, we have focussed

on the importance of annual seasonal and between-year

variations in rainfall, the influence of sea surface tempera-

ture, and malaria admissions data alone as predictors of

future malaria admissions to hospital. We have developed

a time-series model to forecast the monthly rates of malaria

admissions to the district hospital in Kilifi based on the

data of the previous 2 months. This basic model was

improved using ground-station rainfall measurements and

IOD indices. As might be expected, the seasonality of

malaria burden is linked to seasonal variations in rainfall;

with rainfall in the preceding 2 months providing year-

ahead prediction with fairly good accuracy such that the

forecasts’ RMSE is comparable with the standard error of

the modelling errors. Including the DMI reading of the

month before hospital admission provided a better fit

compared with a model with malaria admission informa-

tion alone (LRT p-value B0.001). More surprisingly, we

show that these models, based on long-term data, can be

used to reliably forecast the hospital’s malaria burden over

the subsequent 12 months (see Figs. 3 and 5).

It is important to note that models based on malaria

admission data alone (Model 1) were able to predict

subsequent months’ burdens with the same degree of

accuracy as Model 2 and Model 3, as shown in Fig. 3. In

the absence of any reliable meteorological data proximal to

hospitals, this finding suggests that careful monitoring of

monthly case burdens will provide valuable information on

burdens in subsequent months. However, depending on the

needs for more detailed predictions, notably when malaria

burdens begin to decline and epidemics might emerge, the

inclusion of climate data improves predictive accuracies

considerably as shown in Fig. 3. Monthly records of

rainfall, carefully collected at a private meteorological

station close to the hospital, proved to be a better predictor

than the IOD when considered independently. However,

our analysis suggests that both predictors result in

comparable forecasts when rainfall is not extreme. The

fact that the model using dipole information provides

comparably even better forecasts raises the possibility of

easily available dipole information acting as a surrogate for

rainfall where local, reliable meteorological station data

are not available.

Most climate prediction models in East Africa have

focussed on the margins of stable, endemic transmission

in the highland fringes (25�32). However, using time-

series prediction models to anticipate seasonal variations

in clinical disease burdens has value in other, more stable

transmission areas to anticipate surges in hospital case-

loads and schedule appropriate community-based actions

that might mitigate against exceptional seasonal rises in

severe disease.

A limitation encountered in modelling is the adequate

representation of the changing trend in malaria transmis-

sion. The fit from Model 3 indicates that after accounting
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Fig. 5. Plot of forecasted proportion of malarial proportions using Model 3. The shaded area gives 95% exact confidence levels.
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for seasonality, rainfall does not impact the trend (on the

transformed scale) of the proportion of malaria admis-

sions. Furthermore, the data indicate that the rate of

change in the trend of the proportion of paediatric malaria

admission, on the transformed scale, is probably caused by

extrinsic factors such as increasing drug resistance or the

availability of more effective treatment. Cubic splines can

accommodate changing trends in malaria transmission.

The proposed models are therefore constrained in how far

ahead they can forecast before requiring an update.

Another limitation in this study is that the modelling did

not include patient-level risk indicators such as nutritional

status, age, access to treated bed nets, and level of drug

resistance. Modelling monthly data and using the assump-

tion that data was collected on the first day of every month

helps in ensuring that the numbers in the numerator and

denominator of monthly malaria paediatric admissions are

sufficient to ensure that the regularity conditions of

Models 1�3 are not violated. Using monthly data instead

of daily or weekly data and assuming time coincides with

the first day of the month has the effect of increasing the

modelling error. Consequently, the estimated values of s

are underestimates of the true modelling error. Weekly or

daily variation in malaria admissions and rainfall can be

represented in a Bayesian framework by specifying prior

distributions which represent the monthly variation of the

data. The applicability of these models are limited to Kilifi

and its environs and cannot be extrapolated spatially and

we impress similar analyses are required elsewhere to test

externality.

Conclusions
Based on comprehensive surveillance data, we have devel-

oped three time-series models to help forecast incidences of

paediatric malaria. We have shown that the simplest of the

three models, an AR model of order 2, can be used to

forecast the malaria hospital burdens over the subsequent

12 months. The more complex models incorporating either

past rainfall or dipole information improved this model.

We have shown that the trends in these models can be

adjusted to accommodate changing trends in malaria pre-

valence brought on by extrinsic factors such as increasing

drug resistance. Though spatially specific to Kilifi, the model

structures’ can form the basis of a hierarchical modelling

approach encompassing data from various locations.
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