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We present a method for automatic solution of protein crystal struc-
tures. The method proceeds with a single initial model obtained, for
instance, by molecular replacement (MR). If a good-quality search
model is not available, as often is the case with MR of distant
homologs, our method first can automatically screen a large pool of
poorly placed models and single out promising candidates for
further processing if there are any. We demonstrate its utility by
solving a set of synthetic cases in the 2.9- to 3.45-Å resolution.
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At present, most protein crystal structures are determined in
the absence of experimental phase information [the phase

problem (1–3)], principally by molecular replacement (MR)
methods (4–8). This is especially relevant for the recently in-
troduced serial femtosecond crystallography (SFX) method
made possible by the availability of free electron laser (XFEL)
light sources (9–11), wherein de novo phasing is difficult due to
inherent inaccuracies of the scattering data (12–14). Success of
MR methods strongly depends on the quality of the search
model, which often is expressed as Cα-rmsd distance from the
solution. This distance correlates with the sequence identity
between the protein and the homolog used to build the model
(15). Typically 25–30% or better sequence identity is needed to
build a promising search model (7, 16). At lower sequence
identity the quality of the model deteriorates quickly, and MR
typically is unable to reliably place the model, instead producing
many (tens, hundreds) similarly poor solutions as evaluated by
log-likelihood and translation z scores (7, 17). Choosing the
initial model for building and refinement in this case is a non-
trivial problem and subject to a degree of chance. If one model
fails, one has to start with a different model, and the process can
take many months, and sometimes the structure is not solved.
Modern packages for automatic model building and refinement

(18–25) use smart algorithms for density map interpretation, yet
still rely to a large extent on human input, especially at the be-
ginning of the solution process when phases of sufficient quality
are not available. Here we build on these previous approaches and
present a method for solving protein crystal structures from low-
quality initial models that generally converges to the solution with
little or no human supervision. Contrary to the modern paradigm
in crystallography software development, we do not try to develop
an algorithm that can interpret electron densities on par with
human crystallographers. Instead, we use a statistical approach
wherein thousands of automatically built models of reasonable
(but far from the best) quality are combined together and lead to
the solution. This is possible since fast and reasonably accurate
algorithms for automatic model building are readily available (19).
As demonstrated below, our method has a large “radius of con-
vergence” expressed as the Cα-rmsd of the initial model from the
converged solution. Finally, our method can readily take advan-
tage of computational clusters to quickly screen pools of initial
models and find good candidates for further processing.
Here we test the method on several small proteins serving as

synthetic examples (Fig. 1) showing that we can generally solve
structures when the initial model is within 3 Å Cα-rmsd. In the
best-case scenario the method will produce a high-quality solution

(better than what a human could attain) or an improved model that
can be corrected manually and then run through another cycle of
unsupervised solution process. In Ufimtsev et al. (26), the method is
used to solve the crystal structure of the human lethal giant larvae
(LGL2) protein that resisted years of human efforts due to very low
10% sequence identity to the closest solved homolog (27).

Results
Description of the Method.We begin with an initial model obtained
by MR or some other method, the sequence of the molecule we are
building, and the experimental structure factor amplitudes with
standard deviations (SDs) (Fobs, σobs). The model can be a poly-
alanine chain (recommended at early macrocycles) or can have
partial or full sequence and consist of one or many chains. This
model is referred to as parent model M0. At this point we enter the
macrocycle loop (Fig. 2).
At the end of each macrocycle we anticipate the model to be

deformed toward the solution (if one chooses to refine Mm with
Fobs and φave restraints to produce Mm+1, i.e., the “refinement”
mode) or fully rebuilt (if Mm+1 is built in ρobs = {Fobs, φave}
density, i.e., the “full” mode). The refinement mode is good in
the beginning of the procedure when maps are poorly in-
terpretable and the chances of breaking the parent model in the
auto-building step are high. The full mode is good at late stages,
when the parent model has phases of good quality able to pro-
duce interpretable maps to guarantee rebuilding does not break
the model. One also can combine refinement and full modes by
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refining and rebuilding the parent model at every macrocycle
and passing the rebuilt model to the next macrocycle if the model
is of higher quality than the refined model. When run in refinement
mode, one macrocycle is akin to one iteration of a standard re-
finement program like Refmac or phenix.refine, yet it is more ro-
bust with respect to the choice of the optimization direction and the
ability to escape local minima. It is also ∼100 times more compu-
tationally expensive and typically is executed in parallel due to the
embarrassing parallelism of the macrocycle loop (Fig. 2).
At every macroiteration m, the algorithm proceeds through a

pipeline composed of standard (density modification → auto build
→ refinement) steps, which is repeated 50 times (the inner
microcycle in Fig. 2). The density modification tool is our in-house
developed code. The density modification code generates an elec-
tron density map based on the parent model Mm, sequence (to
estimate the solvent content), and [Fobs, σobs] subject to a set of
standard restraints: (i) density histogram and bulk solvent restraints
(solvent flattening), (ii) [Fobs, σobs], and (iii) Mm’s low-resolution
phase restraints up to some resolution threshold smax that is ad-
justed dynamically at the end of each macrocycle. All these re-
straints are enforced through a set of real ↔ real and real ↔
reciprocal space projections: (i) density histogram projection, (ii)
2mFobs-DFc projection computed by the program Sigmaa (28), and
(iii) phase projection computed by Fourier transform of the density
map followed by the inverse Fourier transform of the computed
amplitudes and target phases. This runs for a fixed number of 30
iterations. The procedure starts with a map combining random
amplitudes r exp(−B0 s2) with Mm’s phases, where r is a random

number uniformly distributed in the [0,1] range, B0 is the overall B
factor, and s is the length of the reciprocal space vector.
Repeating the procedure 50 times produces 50 different density

maps, which are quite diverse at early macroiterations and overlap
strongly at late iterations. For each of the maps ρC we compute its
correlation with the Mm density map ρM and average all of the 50
correlation coefficients. If the average is greater than 0.6, smax is
decreased by 10% (fewer phases constrained to φM in the next
macrocycle, i.e., more relaxed phase constraints) and is increased
by 10% otherwise. Parameter smax is initialized at the beginning of
the solution process to the resolution of the NSF/2th structure
factor after sorting all of the NSF structure factors by resolution.
Next, for each map ρC we build a trial model by Buccaneer 1.6.1
(19) and refine it by Refmac 5.8.0135 (29) with default settings
against Fobs subject to secondary structure restraints generated by
Prosmart (30). The restraints do not include so-called h-bond
terms to avoid any unnecessary bias. Likewise, disulfide bond re-
straints are not applied. The 50 newly built trial structures are
ranked by their R-free values (31), and the 20 best structures are
used to derive phase restraints used to refine (in refine mode) or
rebuild (in full mode)Mm to produce the next parent modelMm+1.
We combine the 20 models together by averaging their figure-of-
merit–weighted (FOM-weighted) density maps as
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Fig. 1. Protein models in the 2.9- to 3.45-Å resolution range used in the synthetic tests. (Top row) Multiple initial decoys were generated by random deformation
of the deposited structures along lowest-frequency normal modes (33). All of the side chains were removed and renamed UNK. (Middle row) Solved structures.
(Bottom row) Same structures as in the Middle row displayed with side chains. Only solved models and the corresponding initial decoys are displayed for clarity.
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We also experimented with an alternative averaging scheme with
all Fn

k
c set equal to 1.0 and found that it performed similarly

well. A more accurate approach to combine the phases and filter
out outliers would be based on cluster analysis (32); however, it is
not employed in the current version of the code. In refine mode,
Mm+1 is generated by refining Mm against the complex value
structure factors {Fobs,φave}. In full mode, Mm+1 is built in the

{Fobs,φave} density map starting withMm’s alpha carbons. Finally,
this step completes one macrocycle, and Mm+1 is passed to the
next macrocycle if needed.

Validation with Synthetic Data. To test our method we selected
four small proteins solved at different fairly low resolution:
3ADJ at 3.0 Å, 4EIX at 2.9 Å, 2NSB at 3.2 Å, and 2B48 at 3.45
Å. For each protein we generated several hundred near-native
decoys by computing the protein’s normal modes and randomly
exciting the 10 lowest-frequency normal modes (33). After re-
moving structures with clashes, for each protein we obtained a
set of several hundred decoys with Cα-rmsd from the corre-
sponding deposited structure in the 0.1- to 5.0-Å range. Next, we
removed all side chains, ligands, and waters and renamed all
residues as UNK.
All of the decoys are represented in Fig. 3 as gray shaded

circles. The x and y coordinates were obtained from multidi-
mensional scaling (MDS) analysis (34) of the decoy all-to-all
pairwise rmsd matrix. Here, MDS seeks for n points on a 2D
plain, with pairwise Euclidian distances approximating the n-by-n
rmsd matrix in the least-squares way, and provides a 2D repre-
sentation of the rmsd data. Coordinates {xi,yi} of all decoys were
shifted by the same amount to place the deposited structure {x0,y0}
at the origin of the plot, and then each {xi,yi} pair was scaled so
that its Euclidean distance from the origin, (xi

2 + yi
2)1/2, would be

exactly equal to the decoy’s rmsd from the deposited structure.
The deposited structure is represented by the magenta circle in
Fig. 3, and the concentric circles, therefore, define regions of
constant rmsd.
Next, for each protein we handpicked 20–30 decoys uniformly

distributed in the 2.3- to 3.5-Å rmsd zone (green circles in Fig. 3).
This level of deviation is much larger than the theoretical con-
vergence radius (35). We then processed each decoy for 120
macrocycles in refine mode (i.e., the parent model was only re-
fined and not rebuilt at each macrocycle). If a refined model was
inside the 2-Å rmsd zone outlined by the thick circle in Fig. 3, we
define it as a converged model and the corresponding initial
decoy is shown as a large green circle; otherwise it is shown as a
small green circle. The refined models are shown as large red
circles for those that converged and small red circles for those
that did not converge.
As anticipated, the converged models (large green circles in

Fig. 3 for 43 decoys in total) tend to localize closer to the origin
than unconverged models (small green circles for 47 decoys),
indicating a strong dependency of the quality of our solution on
the degree of deformation of the initial decoy. The statistics are
summarized in Fig. 4, where the relative fractions of converged
and unconverged decoys in various rmsd zones are shown by
green and red bars, correspondingly. The relative fraction of
solved decoys (green bars in Fig. 4) decreases almost linearly
with the magnitude of the initial deformation: At 2.3-Å rmsd all
structures are solved, while at 3.5-Å rmsd only 10% of structures
are solved. Approximately one-half of all decoys that start at 2.9-
Å rmsd deformation are solved, allowing this value to be con-
sidered as the radius of convergence of our method.
One can see in panel 2B48 in Fig. 3 that the converged solu-

tions (red circles inside the 2-Å zone) tend to cluster in the 1.5-Å
rmsd zone. To find the origin of such clustering, we rerefined the
structure, starting with the best trial structure in terms of R-free
and chain integrity that was generated in one of the later
macrocycles. Compared with the original deposited structure, our
solution has a larger number of protein atoms (1,230 vs. 1,145)
and lower R factors (work/free) (0.243/0.250 vs. 0.261/0.305). The
major structural difference is between residues R100 and T118 as
shown in Fig. 5.
Because a similar systematic shift is observed in panel 4EIX

in Fig. 3, we rerefined the structure starting from one of the
best trial structures. However, unlike the 2B48 case we did not

Fig. 2. Detailed flowchart of our unsupervised determination of protein crystal
structures. The parent model Mm is updated at each macrocycle based on in-
formation derived from the 20 best auto-built trial models (of 50). The trial
models are built by Buccaneer (19) and refined by Refmac (29), and their quality is
assessed by their free R factors (31). The models are built from density maps
generated by our in-house–developed density modification code. The density
modification solver is seeded randomly, thereby generating every time a different
map. Here,Mm is the structure of the parent model at macrocyclem, Fobs, σobs are
experimental structure factor amplitudes and SDs, ρM is the density map of
model M, {FM, φM} are computed structure factors of model M, ρC is the density
map used to build the trial models, {FC, φC} are computed structure factors of ρC,
and φave are the averaged phases. FFT is a fast Fourier transform of the density
map and FFT−1 is the inverse transform. The resolution of the data is measured
by 1/s with smax determining the degree of phase projection in each microcycle.
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find any relevant structural differences from the deposited
structure. Our method produced the systematic bias because
4EIX has an unstructured C-terminus loop that is supported
by two disulfide bonds at C115 and C121 residues. Ignoring
these bond restraints gave rise to unbalanced model bias
and produced structures with displaced loops and poorer
density maps.
To visualize a possible solution trajectory, we chose one

3ADJ decoy that was refined from an initial 2.7-Å rmsd down to
0.65-Å rmsd in a single unsupervised run. In Fig. 6 we plot the
highest (red) and lowest (blue) R-free factor of the 50 trial
structures generated at every macrocycle. In addition, the black
line in Fig. 6 represents rmsd from the deposited structure of
the parent model plotted on another scale. The structure was
solved in 80 macrocycles, with the 0.65-Å residual rmsd being
likely due to the 3.0-Å resolution of the data. One important
thing to note is that at final macrocycles Buccaneer and Refmac
consistently produce structures that are better than the deposited
structure (dashed line in Fig. 6), which was also refined by Refmac
(36). In addition, the high-quality trial structures generated at
late-stage macrocycles form an ensemble of possible solutions of
the phase problem and thus provide insights into the structural
heterogeneity of different parts of the protein and the lower
bound of the atomic coordinate errors (37). This is strikingly
different from the amount of information contained in the single-
structure solutions typically built by human crystallographers,
where the structural heterogeneity is modeled by temperature

factors, which sometimes does not provide accurate interpretation
of the data (38).

Discussion
Unlike standard refinement protocols using maximum-likelihood
estimator target functions to fit the experimental data (39, 40),
our method deforms a model in the direction that improves in-
terpretability of density maps produced by combining experimental
amplitudes with phases derived from the ensembles of trial models.
We define interpretability as the ability of a computer program, in
our case Buccaneer, to automatically build a good model whose
quality is quantified by the model’s R-free value. The particular
method or program used to build and refine the models should not
matter as long as it is applied consistently everywhere during the
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Fig. 5. Deposited (A) and rerefined (B) structure of Bcl-XL at 3.45-Å reso-
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major structural difference is between R100 and T118 residues. Note
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The rerefined structure is depicted by the cyan circle in Fig. 3.

10816 | www.pnas.org/cgi/doi/10.1073/pnas.1821512116 Ufimtsev and Levitt

https://www.pnas.org/cgi/doi/10.1073/pnas.1821512116


solution process. In fact, we observed that it was better to trade
accuracy for speed and build as many as possible trial models rather
than rely on a smaller number of higher-quality models. This is
partially due to the fact that electron density maps in principle
cannot be fully interpreted at early stages of structure solution.
We observed that unlike the R-factor signal which degrades

quickly with rmsd, the interpretability signal is more robust with
respect to model deformations and allows us to explore and
navigate through “flat” R-free surfaces. For instance, in the 30-
to 60-macrocycle range in Fig. 6, the correlation coefficient be-
tween the best R-free value in a cycle (blue line in Fig. 6) and
rmsd of the parent model (black line) is zero (−0.01), although
rmsd still exhibits steady progress toward the solution.

In addition, Fig. 7 shows that essentially all decoys are im-
proved in terms of rmsd and R-free metrics. Even the models
that did not converge to the deposited structures to within 2-Å
rmsd demonstrated systematic improvements. To our surprise,
we discovered a few polyalanine chains (for instance, 2B48 decoy
15) that fitted the experimental data quite accurately yet de-
viated substantially from the corresponding deposited structures.
Building full sequence models from such backbones never
succeeded.
Fig. 8 shows the 20 overlaid best trial structures generated at

the first and the last macrocycle iteration in the 3ADJ run shown
in Fig. 6. More interpretable parts of the electron density map
can be traced well enough to be visible in this ensemble repre-
sentation and indicate the high-resolution part of the structure.
Less interpretable parts of the density are represented by more
random atom distribution that forms low-resolution structures,
such as cylinders in place of alpha helices. Furthermore, regions
of structural heterogeneity in the solved structure are visible in
Fig. 8, Right.

Methods
In the density modification protocol, the spacing of the real space grid was set
to one-quarter of the dataset resolution, and all Fourier transforms were
performed by the Nvidia CUDA FFT library. The calculations were carried out
inside the unit cell with all space group symmetry operations handled in the
real space explicitly. The Protein Data Bank (PDB) ID 5DTE structure was used
to compute the reference density histogram for the density histogram
projection. The binary proteinmask includes all grid points locatedwithin 1.3-
Å distance from any atom of the parent model. If the size of this distance-
based protein mask is smaller than that estimated from the protein content
of the unit cell cV, we compute the Gaussian-weighted density map
fluctuations
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to the distance-based protein mask as needed to make its size will be
equal to cV.
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Fig. 8. (Left) Deposited 3ADJ structure (orange) and the initial decoy (cyan).
(Center) Trial structures built at the first macrocycle by Buccaneer based on
the density maps computed by our density modification code. One beta
strand was interpreted quite accurately but the other strand was less clear.
Attempts to build the beta turn at the right place are visible. Alpha helices
are interpreted as cylinders due to the large displacement of the helices in
the initial decoy. (Right) Trial structures built in the last macrocycle. Regions
of structural heterogeneity are circled. All trial structures were super-
imposed to minimize their mutual rmsd and all side chains were removed for
clarity.
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