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This study was conducted to evaluate usefulness of nu-
merical weather prediction data generated by the Uni-
fied Model (UM) for plant disease forecast. Using the 
UM06- and UM18-predicted weather data, which were 
released at 0600 and 1800 Universal Time Coordinated 
(UTC), respectively, by the Korea Meteorological Ad-
ministration (KMA), disease forecast on bacterial grain 
rot (BGR) of rice was examined as compared with the 
model output based on the automated weather stations 
(AWS)-observed weather data. We analyzed perfor-
mance of BGRcast based on the UM-predicted and 
the AWS-observed daily minimum temperature and 
average relative humidity in 2014 and 2015 from 29 

locations representing major rice growing areas in Ko-
rea using regression analysis and two-way contingency 
table analysis. Temporal changes in weather conducive-
ness at two locations in 2014 were also analyzed with 
regard to daily weather conduciveness (Ci) and the 20-
day and 7-day moving averages of Ci for the inoculum 
build-up phase (Cinc) prior to the panicle emergence 
of rice plants and the infection phase (Cinf) during the 
heading stage of rice plants, respectively. Based on Cinc 
and Cinf , we were able to obtain the same disease warn-
ings at all locations regardless of the sources of weather 
data. In conclusion, the numerical weather prediction 
data from KMA could be reliable to apply as input data 
for plant disease forecast models. Weather prediction 
data would facilitate applications of weather-driven 
disease models for better disease management. Crop 
growers would have better options for disease control 
including both protective and curative measures when 
weather prediction data are used for disease warning.

Keywords : bacterial grain rot of rice, numerical weather 
prediction data, plant disease forecast, Unified Model 
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Plant disease forecast models are commonly driven by 
weather factors such as temperature, rainfall, leaf wetness 
duration and relative humidity (Duthie, 1997; Fernandes et 
al., 2014; Huber and Gillespie, 1992; Lalic et al., 2016). In 
general, weather-driven models require hourly and/or daily 
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weather data to identify conditions for infection (Kang et 
al., 2010; Magarey et al., 2005) or to simulate one or more 
processes in disease cycle (De Wolf and Isard, 2007; Do et 
al., 2012; González-Domínguez et al., 2014; Olatinwo and 
Hoogenboom, 2014; Park et al., 1997). By using observed 
weather data from automated weather stations (AWS) at 
near real-time basis, the models are able to determine if 
weather conditions favorable for pathogen infection have 
occurred in the immediate past period. The information 
generated by the models is not on what is going to hap-
pen in the future, but on what has happened in the past. 
However, the model output is interpreted as forecast on 
future appearance of disease symptoms after an incubation 
period of pathogen in the infected host plant (Orlandini et 
al., 2017). Consequently, post-infection treatments shall be 
taken when disease forecast information is produced based 
on observed weather data, and disease control measures 
should have curative effects to hinder pathogen growth in 
host plant tissues. In this regard, weather prediction data 
would facilitate applications of weather-driven disease 
models for better disease management. Crop growers 
would have better options of disease control tactics when 
weather forecast data are used for disease warning. For 
example, pre-infection treatments such as applying protec-
tive fungicides and cultural practices would be possible in 
this case. Pre-infection treatments are often more effective 
than post-infection treatments in terms of control cost and 
fungicide resistance suppression (Chakraborty et al., 2004; 
Gleason et al., 2008).

Although the advantages of using weather prediction 
data in plant disease forecast have been recognized in the 
literature (Magarey et al., 2001; Orlandini et al., 2017; 
Russo, 2000), there are still limited researches on applica-
tion of numerical weather prediction models in integrated 
pest and disease management (Bourke, 1970; Branislava 
et al., 2007; Bregaglio et al., 2011; Hirschi et al., 2012; 
Mihailović et al., 2001).

The present study investigated the usefulness of numeri-
cal weather prediction data generated by the Unified Model 
(UM) in plant disease forecasting. The UM is a numerical 
weather prediction and climate modeling software original-
ly developed by the United Kingdom Met office (Brown et 
al., 2012). Since 2010, the Korea Meteorological Adminis-
tration (KMA) has been using UM along with various glob-
al and local climate models and data assimilation systems 
to generate weather forecast information for public services 
(Kim et al., 2015). The KMA executes the UM-embedded 
Local Data Assimilation and Prediction System (LDAPS) 
four times a day and releases hourly weather prediction 
data for 36 h at 0000, 0600, 1200, and 1,800 Universal 

Time Coordinated (UTC). The model runs at the horizontal 
resolution of 1.5 km for 70 vertical layers. The UM-data 
has horizontal grids of 602 East-West × 781 South-North, 
each of which contains data of 136 hourly prognostic vari-
ables. In this study, we used BGRcast, a weather-driven 
forecast model for bacterial grain rot (BGR) of rice, to 
evaluate usefulness of the UM-predicted weather data as 
input for plant disease forecast models. BGR of rice, which 
is caused by Burkholderia glumae (Kurita, 1967), has been 
reported worldwide (Ashfaq et al., 2017; Ham et al., 2011; 
Jeong et al., 2003; Kim et al., 2010; Nandakumar et al., 
2009; Webster and Gunnell, 1992). The BGRcast was de-
veloped by Lee et al. (2015) to estimate conduciveness of 
weather conditions for BGR development and to provide 
rice growers with disease warnings that could be used in 
decision-making for bactericide sprays at the pre- and post-
heading stages of rice plants. 

Materials and Methods

Disease forecast model. The BGRcast uses conduciveness 
of weather conditions for BGR development as disease risk 
factor that measures likeliness of bacterial inoculum build-
up (Cinc) and infection (Cinf) at the pre- and late-heading 
stages of rice, respectively (Lee et al., 2015). With the base 
temperature and relative humidity being 22°C and 80%, re-
spectively, the disease risk thresholds adopted in BGRcast 
were Cinc =0.3 and Cinf =0.5. The base relative humidity and 
temperature used in BGRcast were determined by Lee et al. 
(2015) based on the field observations that BGR was often 
detected when daily minimum temperature was ≥22oC and 
daily average relative humidity was ≥80%. When Cinc and 
Cinf are above the thresholds, disease warnings are made to 
advise bactericide sprays at the pre- and late-heading stages 
of rice, respectively. Consequently, the fixed two-spray 
scheme, which Korean rice growers commonly adopt to 
control BGR, can be improved by eliminating unnecessary 
sprays depending on the BGRcast forecast.

Observed crop and weather data. The BGRcast requires 
heading dates of rice cultivars to estimate environmental 
conduciveness for bacterial inoculum build-up prior to the 
panicle emergence and infection during the panicle head-
ing period. In this study, crop data on cultivars and heading 
dates of rice grown at 29 rice paddy fields in 2014 were 
collected from the National Crop Pest Management System 
(NCPMS) of the Rural Development Administration of 
Korea. Heading dates of 14 rice cultivars at 29 rice paddy 
fields were given with the location data in Table 1. The 
rice heading dates varied depending on cultivars and loca-
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tions with different weather conditions. The heading date 
was defined to be the date that approximately 40% of rice 
panicles were emerged (Lee et al., 2015).

The observed daily minimum temperature and average 
relative humidity data in 2014 and 2015 were collected 
from the automated weather observation network of KMA. 
Based on the longitude and latitude of the 29 paddy fields, 
the nearest AWS from individual paddy fields were iden-
tified. The distance between the paddy fields and their 
nearest AWS were in the range of 0.04-17.67 km (Table 
1). The site ID denoted the ascending order of the distance 
from the rice paddy fields to their nearest AWS. The geo-
graphical locations of rice paddy fields and nearest AWS 
were displayed in Fig. 1. The data collection sites for rice 
heading dates and weather conditions were distributed in 

the major rice growing areas throughout the country, and 
their ground elevation varied in the range of 0 to 327 m for 
rice paddy fields and 6 to 353 m for weather stations. 

Weather prediction data. Daily weather prediction data 
to be used as input for BGRcast were generated by LDAPS 
utilizing the ‘UM release version 8.2’ (Lee and Chun, 
2015). Of the four sets of weather prediction data released 
at different times, we used the UM-data released at 0600 
(UM06) and 1800 (UM18) UTC to generate 2-day disease 
forecast by BGRcast on the conduciveness of weather con-
ditions for BGR development. Because the Korea Standard 
Time (KST) is 9 hours ahead of UTC, UM18 and UM06 
were released at 0300 and 1500 KST during a day, respec-
tively. Consequently, hourly weather prediction data for 

Table 1. Heading dates of rice varieties cultivated at 29 locations in 2014, geographical locations of paddy fields and distances from the 
paddy fields to the nearest automated weather stations

Site IDa Location Latitude Longitude Distance (km) Cultivar Heading date
  1 Goseong 34.9905 128.3309   0.04 Honong 22 Aug
  2 Seocheon 36.0622 126.7043   0.06 Ilpum 15 Aug
  3 Ganghwa 37.7074 126.4463   0.36 Chuchung 18 Aug
  4 Yangju 37.8312 126.9905   0.79 Daean 16 Aug
  5 Hampyeong 35.0602 126.5264   1.52 Ilmi 20 Aug
  6 Jinan 35.7619 127.4375   1.87 Shindongjin 19 Aug
  7 Jangheung 34.6888 126.9195   2.22 Hopyoung 22 Aug
  8 Gimhae 35.2300 128.8910   2.5 Yonghojinmi 23 Aug
  9 Yeonggwang 35.2837 126.4778   2.8 Saeilmi 21 Aug
10 Gimcheon 36.0813 128.1016   2.86 Ilpum 15 Aug
11 Jeongeup 35.5632 126.8661   3.04 Hwangeumnuri 20 Aug
12 Yeoncheon 38.0265 127.0781   3.52 Daean 19 Aug
13 Buan 35.7295 126.7166   3.54 Saenuri 23 Aug
14 Yeongam 34.7998 126.7013   3.79 Saenuri 19 Aug
15 Yeoju 37.2688 127.6396   3.82 Chuchung 15 Aug
16 Taean 36.7585 126.2964   4.29 Chuchung 13 Aug
17 Anseong 37.0038 127.2500   4.88 Chuchung 17 Aug
18 Damyang 35.3102 126.9727   4.91 Ilmi 19 Aug
19 Miryang 35.4915 128.7441   5.08 Ilmi 22 Aug
20 Gunsan 36.0053 126.7614   5.13 Hopum 14 Aug
21 Hapcheon 35.5650 128.1699   5.61 Chilbo 11 Aug
22 Gangneung 37.8046 128.8554   5.79 Odae   6 Aug
23 Goheung 34.6182 127.2757   5.96 Shindongjin 24 Aug
24 Icheon 37.2640 127.4842   7.84 Chuchung 15 Aug
25 Uiryeong 35.3226 128.2881   7.89 Ilmi 28 Aug
26 Hwaseong 37.1956 126.8201   8.9 Chuchung 20 Aug
27 Gumi 36.1300 128.3200 11.66 Ilpum 15 Aug
28 Pyeongtaek 36.9922 127.1124 11.91 Samgwang 13 Aug
29 Goyang 37.6343 126.8917 17.67 Chuchung 15 Aug

aSite ID is the number in ascending order of the distance between individual paddy fields and the nearest automated weather stations.
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0000-0200 KST from UM18 of yesterday and for 0300-
2300 KST from UM18 of today were used to forecast to-
day’s disease risk. In order to forecast tomorrow’s disease 
risk, hourly weather prediction data for 0000-2300 KST 
from UM06 were used. The UM data in GRIB2 file format 
were converted to generic text files using the KWGRIB2 
software which was developed by KMA to extract weather 
prediction data. Hourly weather prediction data by UM in 
2014 and 2015 were retrieved from KMA to run BGRcast 
in this study.

Evaluation of daily weather prediction data. Accuracy 
of daily weather prediction data from UM for the locations 
of 29 paddy fields was evaluated by comparing with the 
observed daily weather data from corresponding locations 
in 2014 and 2015. Daily minimum temperature and aver-
age relative humidity during May 5 to October 31, 2014 
and 2015 were used to compare the UM-predicted and the 
AWS-observed data using regression analysis. The abso-
lute differences between the UM-predicted and the AWS-
observed data and their root mean square error (RMSE) in 
daily minimum temperature were calculated from 10,411 

data points ([(180 days in 2014) + (179 days in 2015)] × 
29 sites) to examine the magnitude and variability of the 
differences. In the case of daily average relative humidity, 
differences between the predicted and the observed data 
and their RMSE were examined using 10,380 data points. 
There were missing relative humidity data for 31 days. 
The two-way contingency table analysis (Sokal and Rohlf, 
1973) on the UM-predicted and the AWS-observed relative 
humidity was carried out to investigate the impact of input 
weather data on the disease warnings by BGRcast. A total 
of 10,380 data points were categorized into four groups 
with reference to 80% relative humidity, which is the 
threshold of relative humidity for BGR development. The 
appropriateness of daily weather prediction data as me-
teorological inputs was evaluated based on the coefficient 
of determination (R2) and RMSE values. The ‘SciPy’ and 
‘Pandas’ packages in Python version 3.7 (Python Software 
Foundation, Wilmington, DE, USA) were used to perform 
the regression analysis and RMSE calculation.

Verification on use of the UM-predicted weather data. 
The UM-based BGR forecast was verified in three ways. 
Firstly, relationships between the UM-based and the 
AWS-based estimates of Cinc and Cinf were examined by 
regression analysis. Secondly, the two-way contingency 
table analysis was conducted to evaluate concurrence of 
the BGRcast warnings from the UM-based and the AWS-
based disease forecasts for all 29 locations in Table 1. 
Thirdly, temporal changes in the UM-based estimates of 
Ci, Cinc, and Cinf were compared with the AWS-based es-
timates over the rice growing season for two locations in 
2014. We selected two locations in consideration of the 
distance to their nearest AWS and the BGRcast warnings. 
In this analysis, we used only the UM06 data as input for 
BGRcast in order to avoid redundancy. For the first and 
second verification tests, we used weather data from 2014 
and 2015, and calculated Cinc and Cinf assuming that head-
ing dates of rice plants varied from July 15 to September 
9. For the third verification tests, we used weather data 
only from 2014 since the heading dates of rice cultivars in 
Table 1 were not available for 2015. Without heading date 
data, it is not possible to delineate the periods of inoculum 
build-up and infection phases of the bacteria during the rice 
growing season (Lee et al., 2015). The disease risk thresh-
olds of Cinc and Cinf for BGRcast warnings were 0.3 and 0.5, 
respectively, as suggested by Lee et al. (2015).

Results

Evaluation of daily weather prediction data. The regres-

Fig. 1. Geographical locations of 29 rice paddy fields and their 
nearest automated weather stations in Korea. The distances be-
tween rice paddy fields and their nearest automated weather sta-
tions (AWS) are listed in Table 1.
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Fig. 2. The relationship between the Unified Model (UM)-predicted and the automated weather stations-observed daily minimum tem-
perature at 29 locations of paddy fields during the period from May 5 to October 31 in 2014 and 2015. The UM-predicted weather data 
for one day at all 29 locations were missing in the plot. UM06, UM-data released at 0600 Universal Time Coordinated (UTC); UM18, 
UM-data released at 1800 UTC.

Fig. 3. The absolute differences between the Unified Model (UM)-predicted and the automated weather stations-observed daily mini-
mum temperature at each location of rice paddy field during the period from May 5 to October 31 in 2014 and 2015 and the root mean 
squared error (RMSE) of the differences. The UM-predicted weather data for one day at all 29 locations were missing in the plot. UM06, 
UM-data released at 0600 Universal Time Coordinated (UTC); UM18, UM-data released at 1800 UTC.
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Fig. 4. The relationship between the Unified Model (UM)-predicted and the automated weather stations (AWS)-observed daily average 
relative humidity at 29 locations of paddy fields during the period from May 5 to October 31 in 2014 and 2015. The AWS-observed rela-
tive humidity data for 31 days at all 29 locations were missing in the plot. UM06, UM-data released at 0600 Universal Time Coordinated 
(UTC); UM18, UM-data released at 1800 UTC.

Fig. 5. The differences between the Unified Model (UM)-predicted and the automated weather stations (AWS)-observed daily average 
relative humidity at each location of rice paddy field during the period from May 5 to October 31 in 2014 and 2015 and the root mean 
squared error (RMSE) of the differences. The AWS-observed relative humidity data for 31 days at all 29 locations were missing in the 
plot. UM06, UM-data released at 0600 Universal Time Coordinated (UTC); UM18, UM-data released at 1800 UTC.
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sion analysis in Fig. 2 indicated that the UM-predicted and 
the AWS-observed daily minimum temperature appeared 
similar to each other in both cases of UM06 and UM18. 
The coefficient of determination (R2) of regression equa-
tions was approximately 0.9, and the regression coefficients 
were close to 1.0. The absolute mean differences between 
the observed and the predicted daily minimum tempera-
tures were less than 2oC in the most locations except Site 
22, which is an East coast area of South Korea (Fig. 3). The 
differences were a little greater for UM18 than for UM06 
as was indicated by RMSE. 

As for daily average relative humidity, the regres-
sion equations between the UM-predicted and the AWS-
observed were statistically significant for both UM06 and 
UM18 (Fig. 4). However, R2’s and the scatter plots indicat-
ed that the relationship between the observed and the pre-
dicted daily average relative humidity were not as similar 
to each other as in the case of daily minimum temperature. 
The differences between the UM-predicted and the AWS-
observed daily average relative humidity varied widely and 
RMSE for the differences was almost 10% (Fig. 5). The 
overall patterns of differences between the UM-predicted 
and the AWS-observed daily average relative humidity 
across the 29 locations appeared similar for UM06 and 
UM18. The difference in relative humidity was particularly 
high in the case of Site 22. 

Results of two-way contingency table analysis on con-
currence of the UM-predicted and the AWS-observed daily 

average relative humidity were graphically presented with 
reference to the threshold of relative humidity in Fig. 6. 
The threshold of daily average relative humidity was 80% 
as suggested by Lee et al. (2015). When the threshold was 
used as a criterion for categorization of the relationship 
between the UM-predicted and the AWS-observed data, 
the probability of detection (POD) and the false alarm ratio 
(FAR) by the UM06 were 58.4% and 29.2%, respectively. 
As for UM18, they were 63.5% and 33.6%, respectively. In 
this analysis, POD and FAR are the percent detection and 
false-detection, respectively, of the AWS-observed relative 
humidity of ≥80% by the UM-predicted.

Verification on use of the UM-predicted weather data. 
The relationships between the UM-based and the AWS-
based estimates of Cinc and Cinf were presented in Fig. 7. 
The regression coefficients for all four graphs were close 
to 1.0 with the intercept being approximately 0.0, suggest-
ing that use of the UM-predicted weather data as input for 
BGRcast would result in Cinc and Cinf that are similar to 
the model outputs produced by using the AWS-observed 
weather data as input. The R2’s were higher for both Cinc 
and Cinf when the UM06-predicted data were used (Fig. 7A 
and C) than the UM18-predicted data (Fig. 7B and D). It 
was also found that R2’s for Cinf (Fig. 7C and D) was higher 
than for Cinc (Fig. 7A and B) in both cases of using the 
UM06- and the UM18-predicted weather data as input for 
BGRcast. 

Fig. 6. Graphic presentation of the two-way contingency table analysis on the Unified Model (UM)-predicted and the automated weather 
stations (AWS)-observed daily average relative humidity (RH) at 29 locations of paddy fields during the period from May 5 to October 
31 in 2014 and 2015. Data points were categorized into four groups with reference to 80% RH, which is the threshold of relative humid-
ity for bacterial grain rot development. UM06, UM-data released at 0600 Universal Time Coordinated (UTC); UM18, UM-data released 
at 1800 UTC.
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Results of the two-way contingency table analysis on 
concurrence of BGRcast warnings from the UM-based 
and the AWS-based disease forecasts were presented in 
Table 2. A total of 3,306 cases (57 days × 29 locations × 2 
years) were included in the analysis by using weather data 
from 2014 and 2015 with varying heading dates of rice 
plants from July 15 to September 9. As compared with the 
AWS-based disease warnings for the pre-heading spray, 
the UM06-based BGRcast was able to provide the same 
disease warnings at 98.18% POD, and issue incorrect dis-
ease warnings at 3.74% FAR. Regarding disease warnings 
for the post-heading spray, POD and FAR were 95.22% 
and 7.12%, respectively. In general, the UM06 and UM18-
predicted weather data resulted in almost the same outputs 

on Cinc and Cinf with negligible differences. The accuracy 
and bias score indices indicated that both the UM-based 
and the AWS-based disease forecasts by BGRcast would 
provide almost the same outputs. 

Using the heading dates and the AWS-observed weather 
data at 29 locations in 2014, Cinc and Cinf were estimated by 
BGRcast for the inoculum build-up and infection phases, 
respectively (Table 3). Durations of the inoculum build-up 
phase and the infection phase were determined with refer-
ence to the observed heading dates of rice cultivars. As 
was defined by Lee et al. (2015), the infection phase spans 
7 days during the period between 3 days prior to and 3 
days posterior to the heading date. The inoculum build-up 
phase extends over 20 days before the panicle emergence, 

Fig. 7. The relationships between the Unified Model (UM)-based and the automated weather stations (AWS)-based estimates of Cinc and 
Cinf, which were calculated assuming that heading dates of rice plants varied from July 15 to September 9. Weather data for the period 
from May 5 to October 31 in 2014 and 2015 were used to run BGRcast. (A) UM06-based Cinc vs. AWS-based Cinc. (B) UM18-based Cinc 
vs. AWS-based Cinc. (C) UM06-based Cinf vs. AWS-based Cinf. (D) UM18-based Cinf vs. AWS-based Cinf. UM06, UM-data released at 
0600 Universal Time Coordinated (UTC); UM18, UM-data released at 1800 UTC.
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which is the staring day of the infection phase. A warning 
for the pre-heading spray was advised on the last day of 
inoculum build-up phase if Cinc ≥0.3, which is the threshold 
for disease risk. In this study, none of 29 locations had a 

warning for the post-heading spray because Cinf on the last 
day of the infection phase at all locations was less than the 
threshold of Cinf, which is 0.5. Based on disease warnings 
that were advised by BGRcast using the AWS-observed 

Table 2. Two-way contingency table analysis on concurrence of BGRcast warnings based on the UM-predicted and the AWS-observed 
weather dataa  

Indexb

Warning for the pre-heading spray
(Cinc ≥ 0.3)

Warning for the post-heading spray
(Cinf ≥ 0.5)

UM 06 UM 18 UM 06 UM18
Hit 1,131 1,124 678 668
Miss 21 28 34 44
False alarm 44 52 52 95
Correct negative 2,110 2,102 2,542 2,499
POD (%) 98.18 97.57 95.22 93.82 
FAR (%) 3.74 4.42 7.12 12.45 
ACC (%) 98.03 97.58 97.40 95.80 
Bias score 1.02 1.02 1.03 1.07

UM, Unified Model; AWS, automated weather stations.
aBGRcast warnings were determined by varying heading dates of rice plants from July 15 to September 9 for 29 locations (The 29 sites are listed 
in Table 1) of paddy fields in 2014 and 2015.
bHit, miss, false alarm, and correct negative are relative frequency that event occurred in both the observed and the predicted, event occurred in 
the observed but not in the predicted, event did not occur in the observed but occurred in the predicted, and event did not occur in both the ob-
served and the predicted, respectively. POD, FAR, CSI, and ACC indicate the probability of detection, false alarm ratio, critical success index, 
and accuracy, respectively. POD = Hit/(Miss + Hit); FAR = False alarm/(False alarm + Hit); ACC = (Correct negative + Hit)/(Correct negative 
+ Miss + False alarm + Hit); and Bias = (Hit + False alarm)/(Hit + Miss).

Fig. 8. Temporal changes of Cinc and Cinf over the rice growing season in 2014 for two locations, Yangju and Goseong. The automated 
weather stations (AWS)-observed (gray) and the UM06-predicted (red) weather data were used as input data for BGRcast to estimate Ci, 
Cinc and Cinf.
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weather data, 29 locations were categorized into two dis-
ease warning groups (Table 3). The first group includes 14 
locations where both Cinc and Cinf were not reached their 
thresholds and no disease warnings were advised. The sec-
ond group of 15 locations had a pre-heading warning with 
Cinc ≥0.3. None of 29 locations had only a post-heading 
warning or both pre- and post-heading warnings when the 
AWS-observed weather data were used as input data for 
BGRcast.

Temporal changes of Ci, Cinc and Cinf over the rice grow-
ing season in 2014 were examined for two locations, 
Yangju and Goseong, representing each of the two disease 
waring groups (Fig. 8). The two locations had AWS for 
weather monitoring at the closest distance among all loca-
tions in the respective disease warning groups (Table 3). 

The UM06-predicted and the AWS-observed weather data 
resulted in different daily weather conduciveness (Ci). 
However, there were not much differences in the moving 
averages of Ci for 20 days of the inoculum build-up phase 
(Cinc) and for 7 days of the infection phase (Cinf) between   
the outputs of BGRcast using the UM06-predicted and 
the AWS-observed weather data. The daily weather con-
duciveness (Ci) suggested that weather conditions in 2014 
were more favorable for BGR development at Goseong 
than Yangju. In Yangju, the UM06-based Cinc over the 
inoculum build-up phase during July 24-August 12 was 
≤0.12, and the UM06-based Cinf over the infection phase 
during August 13-August 19 was 0.00. In the case of Gos-
eong, the UM06-based Cinc during July 30-August 18 and 
the UM06-based Cinf during August 19-August 25 ranged 

Table 3. The BGRcast-estimated conduciveness of weather conditions during the inoculum build-up phase (Cinc) and the infection phase 
(Cinf), and dates of warning based on the conduciveness for bacterial grain rot development at 29 locations of rice paddy fields in 2014

Warning  
group

Site  
ID Location Heading

date

Inoculum build-up phase Infection phase

Duration Cinc
Warning

date Duration Cinf
Warning 

date
No warning   4 Yangju 16 Aug 24 Jul-12 Aug 0.09 - 13 Aug-19 Aug 0.00 -

  6 Jinan 19 Aug 27 Jul-15 Aug 0.05 - 16 Aug-22 Aug 0.00 -
  7 Jangheung 22 Aug 30 Jul-18 Aug 0.25 - 19 Aug-25 Aug 0.36 -
10 Gimcheon 15 Aug 23 Jul-11 Aug 0.16 - 12 Aug-18 Aug 0.00 -
12 Yeoncheon 19 Aug 27 Jul-15 Aug 0.15 - 16 Aug-22 Aug 0.00 -
15 Yeoju 15 Aug 23 Jul-11 Au 0.19 - 12 Aug-18 Aug 0.00 -
19 Miryang 22 Aug 30 Jul-18 Aug 0.12 - 19 Aug-25 Aug 0.31 -
21 Hapcheon 11 Aug 19 Jul-7 Aug 0.22 -   8 Aug-14 Aug 0.00 -
22 Gangneung   6 Aug 14 Jul-2 Aug 0.04 - 3 Aug-9 Aug 0.36 -
24 Icheon 15 Aug 23 Jul-11 Aug 0.12 - 12 Aug-18 Aug 0.03 -
25 Uiryeong 28 Aug 5 Aug-24 Aug 0.07 - 25 Aug-31 Aug 0.00 -
26 Hwaseong 20 Aug 28 Jul-16 Aug 0.28 - 17 Aug-23 Aug 0.00 -
27 Gumi 15 Aug 23 Jul-11 Aug 0.22 - 12 Aug-18 Aug 0.00 -
29 Goyang 15 Aug 23 Jul-11 Aug 0.17 - 12 Aug-18 Aug 0.00 -

Warning at the 
pre-heading 
stage (Cinc)

  1 Goseong 22 Aug 30 Jul-18 Aug 0.69 18 Aug 19 Aug-25 Aug 0.43 -
  2 Seocheon 15 Aug 23 Jul-11 Aug 0.83 11 Aug 12 Aug-18 Aug 0.00 -
  3 Ganghwa 18 Aug 26 Jul-14 Aug 0.40 14 Aug 15 Aug-21 Aug 0.00 -
  5 Hampyeong 20 Aug 28 Jul-16 Aug 0.54 16 Aug 17 Aug-23 Aug 0.13 -
  8 Gimhae 23 Aug 31 Jul-19 Aug 0.45 19 Aug 20 Aug-26 Aug 0.41 -
  9 Yeonggwang 21 Aug 29 Jul-17 Aug 0.49 17 Aug 18 Aug-24 Aug 0.04 -
11 Jeongeup 20 Aug 28 Jul-16 Aug 0.53 16 Aug 17 Aug-23 Aug 0.10 -
13 Buan 23 Aug 31 Jul-19 Aug 0.30 19 Aug 20 Aug-26 Aug 0.16 -
14 Yeongam 19 Aug 27 Jul-15 Aug 0.66 15 Aug 16 Aug-22 Aug 0.00 -
16 Taean 13 Aug 21 Jul-9 Aug 0.41   9 Aug 10 Aug-16 Aug 0.00 -
17 Anseong 17 Aug 25 Jul-13 Aug 0.39 13 Aug 14 Aug-20 Aug 0.00 -
18 Damyang 19 Aug 27 Jul-15 Aug 0.67 15 Aug 16 Aug-22 Aug 0.01 -
20 Gunsan 14 Aug 22 Jul-10 Aug 1.28 10 Aug 11 Aug-17 Aug 0.00 -
23 Goheung 24 Aug 1 Aug-20 Aug 0.54 20 Aug 21 Aug-27 Aug 0.20 -
28 Pyeongtaek 13 Aug 21 Jul-9 Aug 0.66   9 Aug 10 Aug-16 Aug 0.00 -
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0.42-1.04 and 0.08-0.32, respectively. 

Discussion

It was found that the UM-predicted weather data would be 
as useful as the AWS-observed weather data for disease 
forecast by BGRcast. Even though the differences between 
the UM-predicted and the AWS-observed daily average 
relative humidity was obvious, the difference in relative 
humidity did not affect the BGRcast output significantly as 
was shown in Fig. 7. This was due to the fact that BGRcast 
adopted 80% relative humidity as the threshold for estimat-
ing conduciveness of weather conditions (Lee et al., 2015). 
The two-way contingency table analysis with reference to 
the threshold of daily average relative humidity in Fig. 6 
suggested that approximately 75% of 10,380 data points 
in Fig. 5 should have resulted in no differences in the 
BGRcast output although the UM-predicted and the AWS-
observed relative humidity were not exactly same. It is also 
shown in Fig. 6 that there might be approximately 13-15% 
and 9-12% chances of missing and false warnings, respec-
tively, on disease risk by BGRcast. However, the chances 
of miss-forecasting by BGRcast could be reduced in real-
ity because of the temperature threshold in the model. For 
example, when daily minimum temperature is lower than 
22oC, BGRcast would not advise disease risk warnings 
even if daily average relative humidity were higher than 
80%. The results from BGRcast suggested possible use of 
the UM-predicted weather data for plant disease forecast 
in general even if accuracy of disease forecast may vary 
depending on the sensitivity of disease forecast models to 
weather variables.

Numerical weather prediction models like UM produce 
gridded weather data covering a large area at a certain spa-
tial resolution using various methods to calculate meteoro-
logical variables within the grids (Collins et al., 2013; Stan-
iforth et al., 2014). Difference between the UM-predicted 
and the AWS-observed data was partially attributed to grid 
generation methods of UM and physical nature of meteo-
rological variables (Cullen and Davies, 1991; Mesinger, 
1981; Walters et al., 2019). The UM that was used in this 
study has 470,162 grid points at the spatial resolution of 1.5 
km × 1.5 km covering the Korean Peninsula. Unlike other 
sites in Table 1, Site 22 (Gangneung) is a coastal area at 
the distance of only 332m from the East Sea. The UM-grid 
cell encompassing Site 22 covers the area which consists 
of both ocean and inland. The geographical location of Site 
22 probably has caused the particularly large differences 
between the UM-predicted and the AWS-observed weather 
data, especially relative humidity, as compared with other 

locations. The R2’s of the regression equations in Fig. 7 
indicated that the UM06-predicted weather data were gen-
erally more accurate than the UM18 when compared with 
the AWS-observed weather data. Since Cinc is the 20-day 
moving average of the daily conduciveness of weather con-
ditions (Ci), the relationship between the UM-based and the 
AWS-based BGRcast showed higher R2 for Cinc than Cinf, 
which is the 7-day moving average of Ci (Fig. 7). Based on 
the results from the regression analyses in Fig. 7, the UM-
based BGRcast would be as good in estimating Cinc and Cinf 
as the AWS-based BGRcast. Furthermore, the two-way 
contingency table analysis in Table 2 showed the disease 
warnings based on the UM-predicted weather data were 
highly concurrent with the warnings based on the AWS-
observed weather data. 

It was suggested by Lee et al. (2015) that Cinc and Cinf 
estimated by BGRcast could be used as a disease risk fac-
tor for determining whether or not to spray bactericides at 
the pre- and post-heading stages, respectively. Based on 
the UM06-based BGRcast warnings, there was no need 
for bactericide sprays at both the pre- and post-heading 
stages at Yangju, whereas only the pre-heading spray was 
necessary at Goseong. Although the AWS-based BGRcast 
resulted in slightly higher Cinc and Cinf at Goseong than 
the UM-based BGRcast, disease warnings for bactericide 
sprays should have been the same regardless of the sources 
of weather data for both Goseong and Yangju in 2014. By 
using the UM-predicted weather data, it was possible to 
forecast possible risk of BGR two days earlier than when 
the AWS-observed weather data were used as input data 
for BGRcast.

In conclusion, it was found in this study that the UM-
predicted weather data released by KMA were useful 
for their use in plant disease forecast. The UM-predicted 
weather data could be applicable to various disease fore-
cast models other than BGRcast. A major advantage of 
using the numerical weather prediction data is that disease 
forecast information should be available prior to actual in-
fection by pathogen (Firanj Sremac et al., 2018), which al-
lows crop growers to take better options of disease control 
measures including both protective and curative chemicals 
(Beresford and Manktelow, 1994). By incorporating pro-
tective measures in plant disease management, it is pos-
sible to suppress development of fungicide resistance in 
pathogen population (Darolt et al., 2016; Hollomon, 2015; 
Horsfield et al., 2010). Besides, the UM-predicted weather 
data are available free of charge (Magarey and Isard, 2017) 
throughout the whole country of Korea at the spatial reso-
lution of 1.5 km × 1.5 km. 
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