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Abstract

Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) are hyperendemic in sub-Saharan Africa. The HBV
genotypes prevailing in HIV-infected Africans are unknown. Our aim was to determine the HBV genotypes in HIV-infected
participants and to identify clinically significant HBV mutations. From 71 HBV DNA+ve HIV-infected participants, 49 basic core
promoter/precore (BCP/PC) and 29 complete S regions were successfully sequenced. Following phylogenetic analysis of 29
specimens in the complete S region, 28 belonged to subgenotype A1 and one to D3. Mutations affecting HBeAg expression
at the transcriptional (1762T1764A), translational (Kozak 1809–1812, initiation 1814–1816, G1896A with C1858T), or post
translational levels (G1862T), were responsible for the high HBeAg-negativity observed. The G1862T mutation occurred only
in subgenotype A1 isolates, which were found in one third (7/21) of HBsAg2ve participants, but in none of the 18 HBsAg+ve

participants (p,0.05). Pre-S deletion mutants were detected in four HBsAg+ve and one HBsAg2ve participant/s. The
following mutations occurred significantly more frequently in HBV isolated in this study than in strains of the same cluster of
the phylogenetic tree: ps1F25L, ps1V88L/A; ps2Q10R, ps2 R48K/T, ps2A53V and sQ129R/H, sQ164A/V/G/D, sV168A and
sS174N (p,0.05). ps1I48V/T occurred more frequently in females than males (p,0.05). Isolates with sV168A occurred more
frequently in participants with viral loads .200 IU per ml (p,0.05) and only sS174N occurred more frequently in HBsAg2ve

than in HBsAg+ve individuals (p,0.05). Prior to initiation of ART, ten percent, 3 of 29 isolates sequenced, had drug resistance
mutations rtV173L, rtL180M+rtM204V and rtV214A, respectively. This study has provided important information on the
molecular characteristics of HBV in HIV-infected southern Africans prior to ART initiation, which has important clinical
relevance in the management of HBV/HIV co-infection in our unique setting.
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Introduction

Hepatitis B virus (HBV), with a genome of ,3,200 base pairs, is

the smallest DNA virus infecting humans, yet it is one of the most

important human pathogens, causing major health problems

globally. HBV, the prototype member of the family Hepadnaviridae,

is endemic in several parts of the world, including sub-Saharan

Africa, which accounts for at least 65 of the 360 million people in

the world chronically infected with the virus [1]. HBV causes

chronic and acute infections, associated with severe liver diseases,

including hepatitis, hepatic fibrosis, cirrhosis, and hepatocellular

carcinoma (HCC). Moreover, of the 33.3 million adults and

children living with HIV globally, 22.5 million reside in sub-

Saharan Africa [2]. HIV infection leads to the acquired

immunodeficiency syndrome [3], opportunistic infections, and

premature death.

The two viruses share a common mode of transmission and can

co-exist in the same host [4], and thus HBV and HIV co-infections

are frequent in sub-Saharan Africa [5]. Because HBV infection

precedes HIV infection in sub-Saharan Africa [5], the HBV

exposure rate does not differ from that found in HBV mono-

infected [6–9]. Even though direct comparison between studies is

difficult because of differences in study design and geographical

regions, a range of 28% to 99.8% exposure to HBV and 0.4% to

23% HBsAg prevalence have been found in HIV-infected South

African cohorts [10–20]. Moreover, comparisons between HBV

mono-infected and HBV/HIV co-infected individuals are further

confounded by the fact that since the introduction of universal

HBV vaccination in April 1995, no comprehensive studies have

been carried out in South Africa to determine either the exposure

or prevalence rates of HBV infection.

We have recently shown that of approximately 300 HIV-

infected individuals from a rural cohort in Mpumalanga Province,

77.5% had at least one HBV marker, with 53.7% being

HBVDNA2ve (having resolved the infection) and 23.8% being

HBVDNA+ve [20]. HBV DNA without HBsAg, was detected in

15.1% of the participants [20], which is within the 8% to 18%

range for other South African HIV+ve cohorts [11–14,16].
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However, only three of these HBsAg2ve participants met the

‘‘Taormina’’ definition of true occult HBV infection (HBV viral

load ,200 IU/ml) [21], whereas the remaining were HBsAg-covert

(HBsAg-cryptic overt) infections, having higher viral loads

(.200 IU/ml) [20].

HBV replicates by reverse transcription of the pregenomic RNA

using a viral-encoded polymerase that lacks proof-reading activity.

The genome may evolve at an estimated error rate of 1.4–561025

nucleotide substitutions/site/year, which results in genetic hetero-

geneity [22–24]. As a result of this genetic variability, genotypes of

HBV have been identified defined by inter-genotypic differences of

more than 7.5% in the complete nucleotide sequence [25–27]. To

date, phylogenetic analysis of the HBV genome has lead to

recognition of nine genotypes of HBV: A to D [26,28], genotype E

to F [25,28,29], genotype G [30], genotype H [31] genotype I

[32–36]; and a tenth genotype J has been proposed [37]. The

genotypes have distinct geographical distributions [38]. In Africa,

genotype A is found predominantly in southern, eastern and

central Africa, genotype D in northern Africa, whereas the

majority of isolates from western Africa belong to genotype E [1].

Subgenotypes have been identified within genotypes A and D [26].

Genotypes A and D coexist in southern Africa, with genotype A

predominating, with the dominant subgenotypes being A1 and D3

[39].

Very few studies have been conducted on the genotypes and

molecular characterization of HBV in HIV-infected individuals in

the Africa [39–42]. Such studies are important because the natural

history of infection and response to antiviral therapy are

influenced by the HBV genotype [40]. Thus the aim of this study

was to molecularly characterize HBV isolated from HIV-infected

southern Africans from the Mpumalanga Province cohort prior to

the initiation of antiretroviral therapy (ART) [20], in order to

determine the genotypes, possibly explain the high level of HBsAg-

and HBeAg-negativity and to identify clinically relevant muta-

tions.

Methods

Serum samples
Of the 298 samples obtained from HIV+ve individuals prior to

the initiation of antiretroviral therapy (ART), 71 plasma samples

were shown to be positive for HBV DNA [20] and were used in

this study. All participants from which the plasma samples were

obtained signed informed consent. The study was approved by the

Human Research Ethics Committee (Medical) of the University of

the Witwatersrand and Mpumalanga Department of Health

Research Ethics Committee. Although an attempt was made to

sequence all 71 samples, the serological profile of those that were

successfully sequenced is shown in Table 1.

Polymerase chain reaction (PCR)
DNA was extracted from 200 ml blood plasma with the

QIAamp DNA Blood Mini Kit (QIAGEN Gmbh, Hilden,

Germany) and eluted into 75 ml of best-quality water (BQW).

Known positive and negative sera and BQW were used as controls

for the extraction. The basic core promoter/precore (BCP/PC)

region and complete S open reading frame (ORF) were amplified

in a MyCyclerTM thermocycler (Bio-Rad, Hercules, Ca, USA)

using Promega Taq DNA polymerase (Promega, Madison, WI) as

described previously in detail [20]. The BCP/PC region of HBV

isolates was amplified using a nested PCR: primers 1606 (+) and

1974 (2) were used for the first round and 1653(+) and 1959(2)

for the second round to yield an amplicon 1606–1974 from EcoRI

site [41,42]. A nested PCR reaction was carried out to amplify the

complete S open reading frame: primers 2410(+)/1314(2)were

used for the first round and 2451 (+) and 1280 (2)for the second

round (2451–1260 from EcoRI site) [42].

Sequencing
The amplicons were prepared for direct sequencing using the

BigDye Terminator v3.0 Cycle Sequencing Ready Reaction Kit

(Applied Biosystems., Foster City, USA) and sequencing was

performed by the Central Analytical Facility, Stellenbosch

University, South Africa, using the ABI 3130XL Genetic analyser

(Applied Biosystems, Foster City, CA). BCP/PC sequences were

analysed in both the forward and reverse directions of a single

fragment, whilst the complete S sequences were analysed in 3

overlapping fragments. In addition to the primers used for

amplification, HBV-specific primers [42] were used for sequenc-

ing.

Phylogenetic analysis
Both BCP/PC (160 nt, 1742–1901 from EcoRI site) and

complete surface DNA sequences (1203 nt, 2854–835from EcoRI

site) were assembled and aligned manually using GeneDoc [43]

and fed into MEGA5 [44]. The sequences were compared with

corresponding subgenotype A1 sequences of HBV from GenBank.

Nucleotide divergence calculations were carried out using Dambe

[45]. The evolutionary history was inferred using the Neighbor-

Joining method [46] and the evolutionary distances computed

using the Kimura 2-parameter method [47]. Bootstrapping was

performed using 1 000 replicates in order to determine the

support for the specific nodes. The accession numbers of HBV

isolates sequenced in this study have been deposited in GenBank/

EMBL/DDBJ as JX144270–JX144323.

Results

Using detection of HBV DNA by amplification of at least two of

three regions of the HBVgenome, 71 of 298 HIV infected

individuals were found to be co-infected with HBV [20]. The basal

core promoter/precore (BCP/PC) region of 49 HBV isolates and

the complete S region of 29 isolates were successfully sequenced.

The relatively longer amplicon of the S region compared to the

BCP/PC region, meant that fewer samples could be sequenced in

that region successfully. The results are summarized in Table 1.

Analysis of the basal core promoter/precore (BCP/PC)
region

Using the criteria of Kramvis et al [26], the genotypes/

subgenotypes were deduced from the BCP/PC region sequence

of 48 isolates (Table 1). The genotype for SHH027 could not be

deduced. Four isolates (SHH016, SHH042, SHH053, SHH167),

with 1858T, did not belong to genotype A. Four isolates (SHH032,

SHH060, SHH217, and SHH249) had Kozak sequence GCAC at

1809–1812, 1858C and 1888G, generally found in subgenotype

A2. Thirty nine sequences belonged to subgenotype A1 with

Kozak sequence TCAT (or mutant) at nucleotides1809–1812,

1888A and 1858C/T. Although SHH221, with 1858C belonged

to genotype A, its subgenotype could not be deduced from the

BCP/PC region because it had GCAC at 1809–1812 and 1888A.

Of the 49 cases, 5 were HBeAg+ve and the remaining 44

HBeAg2ve. Three of the five isolates from HBeAg+ve cases

(SHH121, SHH159, SHH255) did not show any BCP/PC

mutations, which can down-regulate or abolish the expression of

the HBeAg. These had wild type sequences relative to the

consensus for subgenotype A1 of HBV, that is, 1762A/1764G,

1809–1812 (TCAT Kozak), 1862G and 1888A. One isolate from

Genotyping of HBV from HIV Infected Africans
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a HBeAg+ve participant, SHH253, had Kozak sequence TCCT,

which would down- regulate but not abolish, HBeAg expression.

Another isolate, SHH274, from a HBeAg+ve participant, had a

start codon mutation, together with 1762T/1764A. It is possible

that HBeAg was expressed from a minor population.

The 44 BCP/PC sequences derived from HBeAg2ve individuals

were analysed for mutations (Table 1), which are known to down-

regulate the synthesis of HBeAg or abolish its expression. In

subgenotype A1, these mutations may be at the transcriptional,

translational, or at post translational levels [48]. Mutations

1762T/1764A known to down-regulate HBeAg expression at

the transcriptional level occurred in eight isolates (SHH009,

SHH061, SHH148, SHH180, SHH184, SHH221 and SHH264,

SHH274), in five cases occurring together with the T1753C. The

Kozak mutations (1809–1812), affecting the expression of HBeAg

at translational level were found in ten isolates, in two occurring

together with the precore initiation codon mutations (1814–1816).

Four isolates (SHH027, SHH094, SHH148 and SHH300) had

either a single or double mutation or six isolates (SHH061,

SHH180, SHH184, SHH193, SHH240 and SHH253) had a

triple mutation at the Kozak sequence. Eight isolates had precore

initiation codon mutations (table 1), which completely abolish

HBeAg expression at translational level. The G1862T, which

interferes with post-translational modification of the HBeAg-

precursor and affects HBeAg expression [49] occurred in isolates

from 7 HBeAg2ve sera. The classical G1896A mutation occurred

in five isolates and in four cases it occurred together with C1858T.

An unusual mutation, T1884C, was detected in three HBV

isolates (SHH0187, SHH219 and SHH246). Two of three isolates

obtained from true occult infections were sequenced in this region:

SHH060 and SHH107 and were wild-type for subgenotype A2

and A1, respectively (table 1).

Of the 39 samples belonging to subgenotype A1, for which the

BCP/precore region was sequenced successfully, 18 were from

HBsAg+ve and 21from HBsAg2ve sera. There was no difference in

the frequency of the various BCP/PC mutations between the

HBsAg+ve and HBsAg2ve groups, except for G1862T, which

occurred in HBV from one third of HBsAg2ve participants (7/21),

but in none of the isolates from 18 HBsAg+ve participants

(p,0.05).

Phylogenetic and molecular analysis of the complete S
region

The complete S region (position 2854–835 from the EcoRI site)

was sequenced successfully for HBV isolates from 29 participants.

Following phylogenetic analysis, 28 of 29 isolates clustered with

subgenotype A1, whereas one isolate, SHH055, clustered with

genotype D (Figure 1) and belonged to subgenotype D3 (data not

shown). For the isolate from SHH167, a discordant result was

obtained between the HBV genotyping deduced using BCP/PC

sequences and the S region phylogenetic analysis of HBV i.e. ‘‘not

genotype A’’and ‘‘subgenotype A1’’, respectively.

Subgenotype A1 isolates from HBV/HIV co-infected individ-

uals were compared to subgenotype A1 isolates from Asian and

African countries using a circular unrooted phylogenetic tree

(Figure 1). Seventeen isolates (SHH011, SHH014, SHH037,

SHH039, SHH043, SHH045, SHH074, SHH109, SHH159,

SHH167, SHH193, SHH221, SHH253, SHH255, SHH270,

SHH274 and SHH300) clustered with the ‘‘Asian’’ cluster (red) and

the remaining 11 isolates clustered with the African cluster (green).

There was no clustering with respect to whether the isolates were

derived from HBsAg+ve or HBsAg2ve samples.

Upon translation of the pre-S1/pre-S2, the majority of the

subgenotype A1 isolates showed distinct subgenotype A1 amino

acids Q54, V74, A86 and V91 in the pre-S1 region and L32 in the

preS2 region [39,50]. Twenty isolates belonged to serological

subtype adw2, eight, including the genotype D isolate, to ayw2 and

one to adr (Figure 1). The majority of the isolates in the ‘‘Asian’’

cluster (red) had S5, S6, F25 in the pre-S1. The isolates in the

African cluster (green) displayed greater variation with three

geographically distinct clades: the largest consisting of southern

African strains with S5, A6, F25 in the pre-S1, a second consisting

of eastern African strains with L5, P6, F25 and a third one

consisting of central African strains, which like the ‘‘Asian’’ strains,

had S5, S6, F25 in the pre-S1 (Figure 1). The majority of the

isolates from the HIV-infected individuals sequenced in the

present study displayed great variation at these signature positions

(figure 1, table 1). The mean intragroup divergence 6 standard

deviation (%) of the complete S sequences of the newly sequenced

strains from HIV-infected individuals was 2.43+0.12, whereas for

the previously sequenced South African HBV subgenotype A1

isolates from HBV mono-infected individuals it was 1.9260.75

[39].

Five newly sequenced HBV isolates had deletions in the pre-S1/

pre-S2 region (figure 2):

1. SHH011 pre-S1 and pre-S2 deletion mutant: This mutant strain had

a double deletion. The first, a 30 nucleotide deletion found in

the preS1 region at position 2900 to 2929 from the EcoRI site,

leading to a 10 amino acid deletion of the pre-S1 amino acids

16–26. The second, a 66 nucleotide deletion in the pre-S2

region at nucleotide position 3211 to 55 from the EcoRI site,

leading to a 22 amino acid deletion of the pre-S2 amino acids

1–22.

2. SHH045 pre-S2 deletion mutant: This mutant had a 33 nucleotide

deletion at position 23 to 55 from the EcoRI site, leading to an

11 amino acid deletion of the pre-S2 amino acids 11–22.

3. SHH167 pre-S2 deletion mutant: This mutant had a 45 nucleotide

deletion at position 9 to 54 from the EcoRI site, leading to a 15

amino acid deletion in the preS2 region.

4. SHH274 and SHH300 pre-S2 deletion mutants: These mutant

strains had a 54 nucleotide deletion at position 2 to 55 from the

EcoRI site, leading to an 18 amino acid deletion in the pre-S2

region.

All deletion mutants, except for SHH045, were from HBsAg+ve

participants.

The following mutations occurred significantly more frequently

in HBV isolated from HIV-co-infected individuals in this study

than in strains of the same cluster of the phylogenetic tree: in the

pre-S1, ps1F25L, ps1V88L/A; in the pre-S2, ps2Q10R, ps2

R48K/T, ps2A53V and in the S region sQ129R/H, sQ164A/V/

G/D, sV168A and sS174N (p,0.05). In the pre-S1, ps1I48V/T

occurred more frequently in females than males (p,0.05). Isolates

with sV168A occurred more frequently in participants with viral

loads greater than 200 IU per ml (p,0.05). A mutation in ps2M1

of the preS2 abolished the start codon in four isolates. When

comparing the frequency of mutations in HBsAg+ve and HBsAg2ve

individuals, only sS174N occurred more frequently in HBsAg2ve

individuals (p,0.05). sQ129R was the only mutation detected in

the only isolate sequenced from a true occult HBV infection

(SHH107, viral load ,200 IU/ml) [21]. The relevant S region

mutations are shown relative to the ‘a’ determinant (Figure 3).

Molecular analysis of the polymerase region
In the polymerase region, the following mutations occurred

significantly more frequently in HBV isolated from HIV-co-

infected individuals than in isolates of the same cluster on the

Genotyping of HBV from HIV Infected Africans

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e46345



phylogenetic tree: spQ23K, spL28P, spS91I, spP132Q, spQ125E

and rtE1D (p,0.05). The unusual start codon mutation, rtE1D,

was seen in eight isolates, which grouped in the ‘‘Asian’’ cluster

following phylogenetic analysis. This mutation occurred together

with rtS105T+rtH122N in 7 isolates and with rtQ125E in three

isolates. Analysis of 457 sequences from GenBank revealed that

the rtE1D mutation was found in genotype B and G isolates from

Asian countries. Glutamic acid (E) and aspartic acid (D) have

similar chemical structures and properties; therefore this mutation

is not expected to introduce a significant functional change to the

reverse transcriptase polymerase and the isolates are probably

replicative. Three isolates had drug resistant mutations: SHH011

had rtV214A, SHH074 had rtL180M+rtM204V and SHH130

had rtV173L. There was no significant difference in the frequency

of polymerase mutations in HBV from HBsAg+ve and HBsAg2ve

individuals. Only one of three isolates (SHH107) obtained from

true occult infections was sequenced in this region and found to

contain mutations only in the spacer region of the polymerase.

Discussion

Compared to areas of low endemicity, where HIV and HBV are

most likely transmitted at the same time during sexual maturity, in

southern Africa, where both viruses are endemic, HBV infection

occurs before the age of 5 years and these children become chronic

carriers of HBV in adulthood [8]. Therefore, the majority of South

Africans are naturally protected by antibodies to HBV by the time

they acquire HIV at the age of sexual maturity [5]. In a recently

completed study of 298 participants, 231 (77.5%) showed at least

one HBV marker, 134 (45%) were anti-HBs+ve, either alone (11;

3.7%) or together with anti-HBc (123; 41.3%) [20]. However,

immunosuppression, as a result of HIV infection, can lead to HBV

Figure 1. Phylogenetic relationship of complete pre-S1/pre-S2/S sequences (nt 2854–835 from the EcoRI site, numbering according
to GenBank accession #AY233274) of 29 HBV isolates from HIV infected particpants [isolate number in bold, +: HBsAg+ve,
2:HBsAg2ve, del: deletion mutant] to sequences of other African (green) and ‘‘Asian’’ (red) subgenotype A1 HBV isolates obtained
from GenBank established using neighbour-joining. Bootstrap statistical analysis was performed using 1000 data sets and the numbers on the
nodes indicate the percentage of occurrences. Each sequence obtained from GenBank is designated by its accession number and its country of
origin. The characteristic amino acids in S open reading frame are indicated next to the sequences or relevant clades.
doi:10.1371/journal.pone.0046345.g001
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Figure 2. Deletions detected in the pre-S1/pre-S2 region of the HBV belonging to subgenotype A1 and isolated from HIV co-
infected southern Africans. Position 1 corresponds to the EcoRI cleavage site of the HBV genome.
doi:10.1371/journal.pone.0046345.g002

Figure 3. Graphic representation of mutations found within the small envelope protein of the HBV isolated from HIV infected
participants. This is a hypothetical representation [91]. The mutations marked with a star occurred significantly more frequently in HBV isolated
from HIV-co-infected individuals in this study than in strains of the same cluster of the phylogenetic tree (figure 1).
doi:10.1371/journal.pone.0046345.g003

Genotyping of HBV from HIV Infected Africans

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e46345



infection and/or reactivation [51–53], increasing the frequency of

HBV infection in HIV+ve participants with previously resolved

HBV infection. Of the 231 participants exposed to HBV, 53.7%

were HBV DNA2ve (resolved) and 23.8% HBV DNA+ve (current)

[8.7% HBsAg+ve: 15.1% HBsAg2ve] [20]. In the present study we

determined the HBVgenotypes and molecularly characterized the

HBV isolated from these HBV and HIV- co-infected southern

Africans.

Subgenotype A1 was found to be the most prevalent sub-

genotype in rural South African HIV-infected individuals. In

agreement with others, who found a predominance of genotype A

of HBV in HIV infected individuals [54,55], we found that the

ratio of genotype A to non-A (97% to 3%) was higher in the HBV/

HIV co-infected individuals compared to mono-infected individ-

uals. Previous genotyping showed a 75%:25% ratio of genotype A

to D in South African mono-infected asymptomatic carriers and

liver disease participants [39] and HBsAg2ve blood donors [56],

whereas this was higher in HBsAg+ve blood donors (90%:10%).

Discordant results between the genotypes deduced when the BCP/

PC region and when the S region was sequenced were obtained for

isolate SHH0167 (table 1). It is possible that this participant was

infected with both genotypes A and D or with a genotype A/D

recombinant, which has been shown to occur in South Africa [40].

The only way that this could be differentiated would be by

carrying out full genome amplification to identify the recombinant

and/or cloning to identify the mixed population.

Upon phylogenetic analysis, the HBV isolates were found in

both African and ‘‘Asian’’ clusters (Figure 1), intimating a high

diversity in the strains circulating in the rural cohort residing in a

relatively small geographical region. This high diversity may be

indicative of the high mobility of populations to and from this

region. The cohort site, in the Shongwe region, is close to the

borders with Swaziland and Mozambique. High levels of

migration from these surrounding countries [57], may lead to

higher risk of sexually transmitted infections including HBV and

further increased genetic variability of HBV. A number of

mutations occurred significantly more frequently in HBV isolated

from HIV-co-infected individuals in this study than in strains of

the same cluster of the phylogenetic tree (figure 1). This was

probably as a result of the immunosuppression, which can alter the

evolutionary rate of the virus [58]. The isolates from the African

cluster showed greater variation than the ‘‘Asian’’ cluster, which

comprised mostly Asian subgenotype A1 isolates, with some South

African and Somalian isolates. This concurs with the hypothesis

that subgenotype A1 has been endemic in the African population

for a long period of time [1].

The HBeAg negativity found in 44/49 Shongwe participants

(89,7%) could be accounted for by the following HBV mutations:

the basic core promoter mutations A1762T/G1764A, which can

down-regulate transcription of precore mRNA [59]; the Kozak

sequence mutants that affect HBeAg translation [60]; precore start

codon mutations that abolish HBeAg expression [61], the G1862T

mutation,which interferes with post-translational modification of

the HBeAg-precursor [49,62], and the classical G1896A stop

codon mutation with C1858T [63]. The 1762T/1764A mutations

have been closely related to progression of chronic liver disease

[41,64,65] and together with T1753C, found in five Shongwe

HBV isolates, have been described as markers for HCC [66–68].

The G1862T mutation occurred in HBV from HBsAg2ve

participants but not in HBV from HBsAg+ve participants

(p,0.05). This mutation causes intracellular retention of the

HBeAg precursor, aggresome formation and impaired secretion of

HBeAg [49]. It is possible that the intracellular retention of the

HBeAg interferes with the expression of HBsAg, leading to

HBsAg-negativity.

Pre-S/S sequence data were analyzed in an attempt to explain

the high HBsAg-negativity, which was a feature of this rural cohort

of HBV/HIVco-infected individuals [20]. Five HBV strains

isolated from HBV/HIV co-infected participants had pre-S

deletions. Only one of the five participants from which these

strains were isolated was HBsAg2ve. All five had pre-S2 deletions,

ranging in size from 11 to 22 amino acids, with one isolate having,

in addition, a 10 amino acid pre-S1 deletion. Deletion mutants in

the pre-S region have been previously found to occur more

frequently in HIV-coinfected individuals [69] and in HCC

patients [70]. Deletion mutants in the pre-S region have been

reported to cause overproduction and accumulation of LHBs

protein in the endoplasmic reticulum (ER), which causes

significant ER stress that may induce DNA damage and genomic

instability and hence play a possible role in hepatocarcinogenesis

[71,72]. The pre-S mutants may contribute to viral oncogenesis by

transcriptional activation of the viral promoter elements [73]. A

higher oncogenic potential of pre-S2 deletions has been found

compared with that of pre-S1 deletion mutants [74], with pre-S1

deletion mutants displaying different phenotypes to pre-S2

deletion mutants, when transfected in Huh-7 cells [75].

Although, with the exception of sS174N, there was no

significant difference between the frequency of the mutations in

the S region from HBsAg+ve and HBsAg2ve participants, there

were a number of mutations that could account for the inability to

detect HBsAg. These included ps1F25L, ps1I48V, ps1V88L/A in

the pre-S1 region, ps2M1I, ps2Q10R, ps2R48K/T, ps2A53V in

the pre-S2 and sY100C, sP120T/A, sQ129R/H, sE164D and

sS174N in the S region (figure 3). Pre-S1 residues 21–96 contain

the virus neutralising epitope and a hepatocellular binding site,

and the preS2 residues 1–11 and 21–47 have been shown to

mediate HBV attachment to hepatocytes [76]. Therefore muta-

tions in these regions may lead to conformational changes in the

LHBs and MHBs, which may result in HBsAg negativity.

ps2Q10R is in the major pre-S2 antigenic region known to carry

numerous B cell, T-helper cell and cytotoxic T-lymphocyte

epitopes [77] and may therefore reduce the binding ability of

the antibodies to the epitope and interfere with their neutralising

effect. sY100C has previously been detected in subgenotype A1

isolated from occult hepatitis participants [70,71] and has been

associated with HBsAg-negativity in blood donors [78]. sP120T,

which also leads to an rt128N mutation in the polymerase, has

been detected in participants with severe hepatitis following

lamivudine (LAM) and HBIg treatment [79] and can partially

restore the replicative capacity of LAM-resistant HBV in vitro [80].

sP120T and sQ129R/H fall within the ‘a’ determinant and would

therefore affect its antigenic ability and infectivity [81]. sQ164A,

has been shown to reduce the antigenicity of HDV particles [81]

and sE164D, with the concomitant rtV173L, a lamivudine escape

mutant [82], has reduced affinity for anti-HBs antibodies in vitro,

similar to that of the classical G145R [83].

Of interest was the presence of previously identified reactivation

markers [84]. The reactivation markers V168A occurred together

with S174N, which was only found in isolates from HBsAg2ve but

not HBsAg+ve participants. HBV with V168A occurred more

frequently in participants with higher viral loads. These have

previously been detected in a serologically-negative HBV/HIV co-

infected patient following a symptomatic HBV reactivation [84].

The S region mutations detected in the present study differed

from those detected previously in HBsAg2ve blood donors, with

true occult HBV infection and low viral loads of subgenotype A1

[56]. The HBV mutants in the present study had viral loads
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.200 IU/ml, escaped detection by HBsAg assays and probably

arose during reactivation or were transmitted to these unvacci-

nated individuals, in the absence of an immune response or

exogenous selective pressure such as vaccination or ART. The

presence of minority populations in the quasispecies expressing

wild-type HBsAg may account for the fact that these mutations

were also isolated from HBsAg+ve individuals. This possibility is

being investigated using ultra-deep pyrosequencing.

Even though the participants in the present study had not

initiated ART, ten percent, 3 of 29 isolates sequenced, had drug

resistance mutations rtV173L, rtL180M+rtM204V and rtV214A,

respectively. Mutants rt173L and rt180M have been shown to

restore viral replication in the presence of LAM, whereas rt204V

results in reduced replication in in vitro transfection studies [85,86].

In South Africa, rtM204I has been detected in therapy-naı̈ve

HBV/HIV co-infected individuals [87] and rtM204V in treated

HBV mono-infected participants [88]. All the mutations described

occurred in genotype A. Compared to other genotypes, genotype

A in HBV-HIV co-infected participants has been shown to be

more prone to immune/vaccine escape mutants, pre-S mutants

associated with immune suppression, drug associated mutations

and HCC [69,89,90].

In conclusion, the study showed that subgenotype A1 predom-

inates in HBV/HIV co-infected individuals from rural South

Africa. Subgenotype A1 HBV isolates had mutations that can

affect HBeAg-expression at the transcriptional, translational and

posttranslational levels and these mutations can account for the

HBeAg negativity seen in the majority of HBV/HIV infected

individuals in this cohort. Although there were no significant

differences between all S region mutations occurring in HBV from

HBsAg+ve and HBsAg2ve individuals, pre-S region mutations and

deletions, and ‘a’determinant or immune/vaccine escape mutants

may account for HBsAg negativity seen in some participants.

Moreover, these mutants may escape detection by standard

commercial serological tests currently used in South African health

services. HBV infection will remain undetected unless nucleic acid

testing, which can detect HBV DNA in the presence or absence of

HBsAg in the serum, is implemented. Deletion mutants, previously

shown to occur in HBV from HCC patients, were detected in the

present study. These could be a risk factor for the development of

HCC in HIV patients, whose lifespan is being increased and

immune system reconstituted following the introduction of ART.

Thus more studies are necessary to functionally characterize these

deletion mutants. Furthermore, the presence of mutants resistant

to LAM, prior to the initiation of LAM-containing ART, has

important implications and repercussions, and highlights the need

for the inclusion in the treatment regimen of tenofovir (TDF), to

which these mutants are sensitive. This study has provided

important information on the molecular characteristics of HBV in

HIV-infected South Africans prior to the initiation of ART. Our

findings have important clinical relevance in the management of

HBV and HIV co-infection in our unique setting, where

subgenotype A1 HBV is hyperendemic and usually transmitted

horizontally in childhood, before HIV infection occurs in

adulthood.
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