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Abstract

Purpose

To determine the effect of reducing spatial uncertainty by attentional cueing on contrast sen-

sitivity at a range of spatial locations and with different stimulus sizes.

Methods

Six observers underwent perimetric testing with the Humphrey Visual Field Analyzer (HFA)

full threshold paradigm, and the output thresholds were compared to conditions where stim-

ulus location was verbally cued to the observer. We varied the number of points cued, the

eccentric and spatial location, and stimulus size (Goldmann size I, III and V). Subsequently,

four observers underwent laboratory-based psychophysical testing on a custom computer

program using Method of Constant Stimuli to determine the frequency-of-seeing (FOS)

curves with similar variables.

Results

We found that attentional cueing increased contrast sensitivity when measured using the

HFA. We report a difference of approximately 2 dB with size I at peripheral and mid-periph-

eral testing locations. For size III, cueing had a greater effect for points presented in the

periphery than in the mid-periphery. There was an exponential decay of the effect of cueing

with increasing number of elements cued. Cueing a size V stimulus led to no change. FOS

curves generated from laboratory-based psychophysical testing confirmed an increase in

contrast detection sensitivity under the same conditions. We found that the FOS curve

steepened when spatial uncertainty was reduced.

Conclusion

We show that attentional cueing increases contrast sensitivity when using a size I or size III

test stimulus on the HFA when up to 8 points are cued but not when a size V stimulus is

cued. We show that this cueing also alters the slope of the FOS curve. This suggests that at

least 8 points should be used to minimise potential attentional factors that may affect mea-

surement of contrast sensitivity in the visual field.
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Introduction
Contrast, which can be defined as the difference in luminance of an object relative to its back-
ground, provides information regarding the visual scene, which can range from fine detail,
such as reading words on a page, to navigation in the world [1]. Contrast detection begins
when light is absorbed at the photoreceptor before being processed by retinal elements and fur-
ther up in cortical regions by neuronal channels [2–6]. In eye disease such as glaucoma loss of
detector units (e.g. retinal ganglion cells) may result in deficits in contrast detection at different
locations in the visual field [7, 8], and as such, assessment of this ability is useful in the diagno-
sis and management of ocular disease.

One commonly used technique in both laboratory and clinical settings to assess contrast
sensitivity in the visual field is white-on-white standard automated perimetry (SAP) in which a
Goldmann size III stimulus is presented at multiple locations for a brief, constant duration of
200 ms [9]. The advantages of SAP over methods such as confrontation visual fields or kinetic
perimetry is that contrast detection can be measured at many discrete and predetermined
points, and hence visual behaviour and performance at multiple locations across the visual
field can be immediately quantified [9–11].

In SAP, contrast sensitivity is measured by sequentially presenting and testing stimuli at
pseudo-random locations in the visual field, and observers are required to subjectively respond
to when they detect the stimulus. Using this paradigm, it is almost impossible for the observer
to predict where the stimulus will appear [12, 13]. Accordingly, conventional SAP testing pro-
cedures are likely to be affected by spatial uncertainty.

Spatial uncertainty is an extrinsic factor that is inherent to the testing and affects intrinsic
uncertainty and the way in which the observer responds to a stimulus [14]. Spatial uncertainty
can be defined as uncertainty arising from the observer having to allocate visual attention only
to specific regions of the entire visual field, whilst objects appear in other, unattended regions
of the field. However, the limited capacity of spatial attention might mean that only specific
regions of the visual field are attended for processing [15, 16]. This is problematic for visual
field testing as randomly presented elements introduce spatial uncertainty, which in turn
affects the detectability of targets, especially at contrast levels close to threshold [17, 18]. The
degree to which spatial uncertainty affects visual field testing has yet to be systematically
determined.

In visual field testing observers might miss a target on a particular trial because of inatten-
tion and not because it cannot be detected. Accordingly, to overcome spatial uncertainty, the
stimulus contrast must be higher than the threshold limit for detection, and this has been
shown in a number of laboratory-based studies [14, 15, 19–21]. These studies also used cues,
such as visual markers at the spatial location prior to the appearance of the stimulus, to over-
come spatial uncertainty, and this was shown to increase contrast sensitivity at those locations.
More recently, Khuu and Kalloniatis [22] used testing procedures analogous to SAP to show
that spatial uncertainty affects both stimulus detectability and observer criterion bias. Impor-
tantly, these factors contribute majorly to contrast detection performance, and ultimately the
threshold value that is reported by SAP instruments.

There are situations in SAP where spatial uncertainty may be reduced. First, some perime-
ters have the option for retesting individual points, which is clinically useful when singular iso-
lated points appear suspicious. The effect of retesting individual points where spatial
uncertainty is minimised (due to their presentation at a non-random location, which may be
predictable) on the measured threshold is not known. Second, custom test paradigms may use
fewer test points than that of SAP, which may result in less spatial uncertainty, and therefore
might not be immediately comparable to SAP results. Although there are no visual cues
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available on commercial SAP instruments, it is possible for observers to anticipate or to be ver-
bally cued the locations of subsequent stimuli. Therefore, while SAP is the gold standard for
clinical assessment of the visual field, there is considerable interest in addressing factors which
may affect its ability to detect altered visual function in diseased states.

The aim of the present study was to systematically investigate the potential influence of spa-
tial uncertainty on contrast sensitivity through verbal cueing. We compared performance
between conditions in which the spatial location of targets presented in the Humphrey Visual
Field Analyzer (HFA) are uncued or cued by providing the observer with prior knowledge
regarding the number of points to be tested and their spatial location through verbal cueing.
We obtained thresholds at 8 different meridians, for stimuli of Goldmann sizes I, III and V,
and with 1, 2, 4 and 8 points, and compared this to an uncued condition, when using the 30–2
full threshold paradigm on the HFA. We expect that size would have some effect on spatial
uncertainty, as it has been shown to affect measurements of contrast sensitivity at different
locations in the visual field [11, 22–25]. The clinical-based testing gives information about the
absolute difference in sensitivity, but cannot determine the frequency-of-seeing (FOS) curves,
which provide information about changes in threshold, and can also act as a surrogate measure
for certainty with its shape and slope parameter [26, 27]. Thus, we subsequently measured the
psychometric functions for a subset of observers across similar conditions, hypothesising that
spatial uncertainty in detecting a smaller test size is greater than when using a larger target, par-
ticularly at peripheral locations at which detectability is already reduced [28, 29].

Methods

Participants
Six observers (3 male, 3 female; mean age: 35.8 years) participated in the clinical-based testing
phase. Two were authors of the study (JP and MK), and the four others were experienced psy-
chophysical observers, but were naïve to the aims of the study. Four of these observers (2 male,
2 female; mean age: 32.3 years) underwent further laboratory-based psychophysical testing in
the second phase. One of these observers designed the experiment (JP) and the other three
observers were naïve to the purpose of the tests. All observers had substantial previous experi-
ence undergoing clinical perimetric testing, which has been shown to be affected by practice
effects [30]. All had normal or corrected to normal visual acuity (range of refractive error:
+1.00D to -4.37D equivalent sphere). All observers had undergone ocular examination that
included fundus examination, optical coherence imaging, and tonometry, which found no
signs of ocular disease. Additionally, all observers gave their written informed consent prior to
participating in the present study. Ethics approval was given by the Institutional Review Board
of University of New South Wales Ethics committee, and the experiment followed the tenets of
the Declaration of Helsinki. Testing was performed with one eye (the other eye was patched)
with natural pupils. The order of testing of each of the sizes was randomised to minimise order
effects. These data were collected over a number of testing sessions to reduce the effects of
fatigue.

Stimulus and Apparatus—HFA-Based Testing
We used the HFA to measure contrast sensitivity at 77 spatial locations (including the fovea) of
the 30–2 testing pattern using the full threshold paradigm and Goldmann sizes I, III and V.
Age and refractive error appropriate trial lenses were used throughout the testing process. The
full threshold paradigm was chosen as other different thresholding paradigms, such as supra-
threshold or SITA, result in altered threshold levels [31, 32]. Thresholds were measured at least
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three times for each observer using the full threshold paradigm, and these values were averaged
to provide an estimate of the contrast detection threshold at each location.

The 30–2 full threshold test results were used as the baseline reference, as we were interested
in examining the role of spatial uncertainty in contrast sensitivity measured with this test,
which is commonly used in clinical assessments. This was also referred to as the uncued condi-
tion, as the 76 points of the 30–2 test pattern (the fovea may be considered inherently cued, as
attention is specifically directed to its location) are presented in a pseudo-random order at dif-
ferent spatial locations, beginning with four seeding points. Hence, spatial uncertainty is maxi-
mal for this pattern when all points are tested.

HFA Cueing Paradigm
The Custom Test function of the HFA, which allows a custom test pattern to be programmed
using Cartesian coordinates (in degrees) in the central 30-degree visual field, was utilised to
generate stimuli for the cued portion of the test where the location and the size of the stimuli
were varied. Testing was conducted by cueing 1, 2, 4 or 8 points at various spatial locations.
The observers were verbally informed of the number of points that would appear and their
respective spatial locations prior to each testing condition. For example, they might be told
that: “One point will appear up and slightly to your right, at your 1 o’clock orientation” for a
1-point cued testing condition. These cueing conditions were tested in a random order. An ini-
tial pilot study was conducted that included 12 and 16 points cued. It was found that the effect
of spatial cueing was minimal by approximately 8 points, i.e. no effect of spatial cueing when
more than 8 points were cued. Therefore, participants were tested up to 8 points cued. How-
ever, if there was no plateau effect found when 8 points were cued, conditions of 12 points or
more cued were conducted until a plateau effect was found, i.e. no difference was found from
when 76 points were tested using the complete 30–2 test pattern described above.

The abovementioned procedures were tested using Goldmann size I, III and V stimuli, as pre-
vious studies have shown that less variability in thresholds measured using larger stimuli com-
pared to smaller stimuli [27, 33, 34]. This is hypothesised to be due to differences in spatial
certainty [27, 33, 34]. Thus, each observer had a total of at least nine full threshold visual field
results (at least three per size). Test points chosen for the cueing procedure were at two eccentric
locations: approximately 9.5° and 22.8° from fixation, as shown in Fig 1, which we refer to in the
text as “mid-peripheral” and “peripheral” locations respectively, for simplicity. The mid-periph-
eral and peripheral locations were tested separately. The peripheral most points of the 30–2 test
pattern have been shown to display the greatest variability [35], and may be affected by lens rim
artefacts [36]. Therefore, the second outermost ring of points was selected, as these are also utilised
in the 24–2 paradigm, typical of clinical practice. These two eccentricities were chosen to study
the effects of spatial uncertainty and distance from fixation on contrast sensitivity. The Cartesian
coordinates in degrees for these points are as follows: (-9,+21), (+9,+21), (-21,+9), (+21,+9), (-21,-
9), (+21,-9), (-9,-21) and (+9,-21). The mid-peripheral points tested were along the same meridian
as that of the peripheral points, with Cartesian coordinates: (-3,+9), (+3,+9), (-9,+3), (+9,+3), (-9,-
3), (+9,-3), (-3,-9) and (+3,-9). When cueing these points, combinations were chosen to maintain
substantial difference between them, rather than having them proximal to each other. These pat-
terns were rotationally symmetrical about fixation. For example, a 2 points cued condition could
include a combination of (-3,+9) and (+3,-9), which included points directly opposite to each
other. Fig 1 also shows possible combinations of points cued: one possible combination of 2 points
cued is marked by “1” and “2”, and one combination of 4 points cued in this Figure occurs at loca-
tions marked by “1”, “2” and “4”. A rotationally symmetrical combination of 2 points cued in this
Figure would at locations marked “4”, for example.
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We measured at least twenty-five thresholds for each cued condition (e.g. 1-point cued had
twenty-five thresholds in total amongst all locations tested), with at least three thresholds
obtained at each test location. Reliability indices, in-built gaze tracking on the HFA, and exter-
nal monitoring of fixation via the instrument’s camera were also monitored. Observers had

Fig 1. A schematic of the HFA 30–2 testing pattern. This is representative of the right eye examination, where the black boxes represent the area of the
blind spot. There are 8 possible locations for the peripheral (dark grey boxes) and mid-peripheral (light grey boxes) conditions. The numbers depict examples
of how the points are cued. For example, when 1 point is cued, then square 1 is cued; when 2 points are cued, then squares 1 and 2 are used; when 4 points
are cued, then squares 1, 2 and 4 are used; when 8 points are cued, then squares 1, 2, 4 and 8 are used. For example, using this schematic, when one point
was cued in the “peripheral” condition, the observer would be told: “One point will appear up and slightly to your right, at approximately 1 o’clock, in the
periphery”. These spatial locations were rotated and varied so that each of the locations was presented during different cueing sessions.

doi:10.1371/journal.pone.0150922.g001
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false positive, false negative and fixation loss rate of less than 5% in both baseline testing and
combined cued testing, with no difference found between uncued and cued conditions, consis-
tent with the work of Shaw [37], who showed that attending to multiple sources of information
improves sensitivity without significantly altering the false alarm rate.

Stimulus and Apparatus–Laboratory-Based Testing
Stimuli were white circular spots of light presented on a white-gray background (10 cd/m2) for
200 ms (see: Fig 2A and 2B). We used three stimulus sizes, equivalent to that of the Goldmann
sizes I, III and V on the HFA (0.11°, 0.43° and 1.73° in diameter respectively). These stimuli
were presented at meridians (from right horizontal in clockwise fashion) of 0°, 45°, 90°, 135°,
180°, 225°, 270° and 315°, and at eccentricities of 12.7° (Fig 2A) and 29.7° (Fig 2B). These loca-
tions were slightly more eccentric compared to that of Experiment 1, as we were not limited by
the grid-like pattern of the HFA. This allowed for the determination of whether the effect per-
sists at different eccentricities, particularly farther in the periphery, hypothesising that if the
effect of cueing is apparent and robust, it will also appear at different eccentricities, and that
such an effect is not instrument-specific. A black fixation mark (0.06° x 0.06°, Weber Contrast
-0.2) was placed at the centre of the screen, upon which the participant was instructed to fixate
during the trial. Stimuli were generated on an iMac computer using custom written software in
MATLAB (Mathworks, version 7), and were presented on the iMac monitor driven at a frame

Fig 2. A schematic of the experimental stimulus and example procedure when one point to the observer’s left hand side is cued (A), and the
stimulus locations presented in the “mid-periphery” 12.7° (inner ring) and “periphery” 29.7° (outer ring) conditions.

doi:10.1371/journal.pone.0150922.g002
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rate of 60 Hz. A head and chin rest was used to ensure a constant viewing distance. These
observers exhibited good reliability during the testing phase using the HFA (with fixation loss,
false positive and false negative rates of<5%), and so fixation was monitored externally by the
examiner. For the 12.7° test eccentricity, we used a viewing distance of 30 cm. Due to the tech-
nical limitations of having a flat-screen monitor instead of a projection system as in the HFA,
we had to halve the working distance to 15 cm for the 29.7° eccentricity. To mitigate the optical
effects of trial lens, all subjects wore contact lenses to correct for refractive error and working
distance.

Procedure
Participants were instructed to maintain central fixation, and after a period of 300 ms, the pre-
sentations began. The stimuli were presented for 200 ms, after which the background was
shown for up to 1 s, during which the subject could respond. If a response was entered, the
next stimulus was presented; if not, then after 1 s, the next stimulus was shown. There was no
auditory cue to signal the onset of stimulus presentation, to replicate the conditions of the
HFA. We cued the number of points that would appear and their location in each trial, for
example: “one point at the left-hand side”; or “four points appearing up, down, left and right”.
We cued 1, 2, 4 or 8 points, since we had found that using the HFA there was almost no effect
of attentional cueing on contrast sensitivity when 8 points were cued. The task of the observers
was to indicate whether they saw a stimulus by pressing a button on a computer keyboard.
They did not have to indicate if they did not see the spot.

We utilised Method of Constant Stimuli (MoCS), presenting stimuli at, at minimum, nine
possible contrast levels for each combination of stimulus size and eccentricity. Due to the
length of time required to measure the FOS curve for each location, we only measured the
responses obtained from one stimulus location: the nasal (i.e. left horizontal, or 180° condition)
location. Hence, within each block of trials, the nine contrast levels of the nasal location were
presented 10 times for a total of 90 trials. At each other test location for conditions involving
more than one point cued, we randomly presented trials there to maintain division of attention.
Since we did not measure the FOS curves at these locations, we presented the stimuli at higher
contrast levels, as attention would not be adequately captured if approximately half of the trials
were below threshold at those locations, which MoCS assumes [38]. We converted the output
dB value obtained from the HFA in the clinical testing phase to Weber contrast levels to obtain
an approximate starting threshold contrast level individually for each subject, as there were
individual variations in contrast sensitivity with size and location. From this contrast level, we
chose at least four contrast levels above and at least four contrast levels below to present, modu-
lating it according to stimulus size. During the pilot phase of testing, we further refined the
contrast levels obtained for each subject, such that the contrast level initially converted from
the results of the HFA were slightly different in the psychophysical experiment. We also found
that under some conditions, more than four contrast levels above or below were required to
reach a plateau, and increased the number of contrast levels accordingly (S1 Table).

Statistical Analysis
For the clinical-based testing phase, we determined the difference in the thresholds between
cued and its uncued (“baseline”) conditions at each spatial location. A Kolmogorov-Smirnov
test with Dallal-Wilkinson-Lilliefor P value found that the differences in threshold for each
cueing condition (e.g. 1 point cued, 2 points cued) were normally distributed. We averaged the
differences across all spatial locations for each cued condition and plotted the difference in
threshold (y) as a function of number of points cued (x). Positive values along the y-axis
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indicate that the cued condition lead to greater contrast sensitivity (i.e., lower contrast detec-
tion thresholds) relative to the uncued baseline conditions. A y-value of 0 indicates there is no
difference between cued and baseline. The error bars in these graphs represent 1 Standard
Error of the Mean. A one-phase decay nonlinear regression curve (of the form y = Y0.e

(-K.x),
where Y0 represents the y-intercept of the fitted curve, i.e. when x = 0, and K is the rate con-
stant) was fitted to this data with the plateau constrained to asymptote towards 0.0 (GraphPad
Prism version 6).

For the laboratory-based testing phase, we plotted the proportion seen as a function of con-
trast (log Weber contrast ΔL/L) for each of the six combinations of stimulus size and location,
within which each number of points cued condition was included. We fitted FOS curves using
a sigmoidal nonlinear regression curve with variable slope (GraphPad Prism version 6). We
extracted the EC50 and the slope, since using MoCS paradigm utilised a threshold frequency at
50% seen; hence EC50 represented the threshold value in our experiment. We did not combine
individual data for analysis, except where absolute differences were used, for which we fitted
one-phase decay nonlinear regression curves.

Results

HFA-Based Testing
To examine the effect of cueing, we first determined the difference in threshold between the
particular points tested in the cued conditions and the corresponding points in the uncued
condition. Then, these threshold differences were separately averaged for different stimulus
sizes and spatial locations. We plot the combined data for all 6 observers for the difference in
threshold between cued and uncued conditions as a function of number of points cued in Fig 3
(individual data are shown in S1 and S2 Figs). We first show the average threshold difference
for different test sizes (different symbols) for peripheral (Fig 3A) and mid-peripheral testing
locations (Fig 3B). Repeated-measures two-way ANOVA was conducted for the combined data
set from all six observers to examine the effect of number of points cued (factor 1, four levels)
and stimulus size (factor 2, three levels). In the peripheral location, there was a significant effect
of stimulus size (F(2,40) = 237.2, p<0.0001), number of points cued (F(3,20) = 91.37),
p<0.0001), and significant interaction (F(6, 40) = 69.66, p<0.0001). There were similar signifi-
cant findings in the mid-periphery, for the effects of size (F(2,40) = 99.82, p<0.0001) and num-
ber of points cued (F(3,20) = 106.6, p<0.0001). There was also a significant interaction effect
(F(6,40) = 21.62, p<0.0001), which indicated that the effect of cueing was dependent on stimu-
lus size.

The exponential functions in Fig 3 (see Fig 3 caption for best fit parameters) appeared to fit
the data well when a size I stimulus was used (peripheral: R2 = 0.93; mid-peripheral: R2 = 0.91).
The functions for size III showed good fit with the peripheral data (R2 = 0.94), but the fit was
poorer for the mid-peripheral condition (R2 = 0.79). In these data, we found a relative increase
in contrast sensitivity when one point was cued, decaying exponentially until 8 points were
cued. The size V results did not follow an exponential decay, as there was essentially no effect
of cueing on its thresholds. We attempted a linear regression fit for the data, which fit the data
better, but showed an essentially straight line (peripheral: R2 = 0.91; mid-peripheral: R2 = 0.36).

Fig 3C–3E show the difference in threshold between cued and baseline as a function of
number of points cued for peripheral and mid-peripheral testing, separated by stimulus size I,
III and V. Repeated-measures two-way ANOVA was conducted for the combined data set
from all six observers to examine the effect of number of points cued (factor 1, four levels) and
location tested (factor 2, two levels) on contrast thresholds. This analysis confirmed that chang-
ing the number of points cued had a significant effect (F(3,20) = 140.3, p<0.0001) when testing
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with a size I stimulus, whereby testing with one point cued increased contrast sensitivity by
over 2 dB relative to baseline. There was no significant effect due to location of testing using
stimulus size I (F(1,20) = 0.09304, p = 0.7635), indicating that the effect of cueing was the same
for both peripheral and mid-peripheral testing locations (Fig 3C). For stimulus size III, this
analysis confirmed that there was a significant effect due to changing the number of points
cued (F(3,20) = 109.4, p<0.0001) and changing the location of testing from peripheral to mid-
peripheral (F(1,20) = 42.92, p<0.0001) (Fig 3D). These factors also demonstrated significant
interaction (F(3,20) = 11.36, p = 0.0001), which shows that for stimulus size III, the effect of
number of points cued is dependent on the location being tested. For stimulus size V, there was
no significant effect due to number of points cued (F(3,20) = 2.711, p = 0.0723) or location of
testing (F(1,20) = 1.174, p = 0.2914).

Fig 3. Combined data (n = 6) for the difference in threshold between cued and uncued conditions (dB) as a function of the number of points cued.
The same data set was plotted in two ways: by stimulus location (A, B) and by stimulus size (C-E). For all graphs, solid lines represent the best-fit one-phase
nonlinear regression through those points, and error bars represent the range. The top row represents the functions sorted by peripheral (A) and mid-
peripheral (B) stimulus location, and within each graph, we present size I (black circles), size III (open squares) and size V (open triangles) results separately.
The bottom row represents the functions sorted by stimulus size: size I (C), size III (D) and size V (E), and within each graph, we present peripheral (black
circles) and mid-peripheral (grey squares) separately. The resultant equations for the peripheral conditions were: size I, y = 3.574e-0.558x; size III, y = 3.482e-
0.675x; and size V, y = -0.014x + 0.172 (linear regression was utilised for size V). The resultant equations for the mid-peripheral conditions were: size I,
y = 3.124e-0.452x; size III, y = 1.709e-0.570x; and size V, y = -0.009x + 0.187 (linear regression was utilised for size V).

doi:10.1371/journal.pone.0150922.g003
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Laboratory-Based Psychophysical Testing
The individual FOS curves are depicted in S3–S6 Figs, plotting proportion seen as a function of
log contrast (in dB, ΔL/L, where ΔL is the difference between the luminance of the stimulus
from the background L). The dB output from the HFA is a measure of attenuation, rather than
luminance; hence the direction of effect is opposite, i.e. an increase in dB found with the HFA
is indicative of increased sensitivity to a more attenuated stimulus, whilst in an increase in dB
in laboratory-based testing represents a required increase in stimulus intensity for detection
(thus, lesser sensitivity). The black curves represent one point cued, blue two points, yellow
four points, and red eight points. The top row (A-C) for each Figure shows the results for the
12.7° eccentricity and the bottom row (D-F) for the 29.7° condition. For all four observers,
there was a leftward shift of the black curve for size I stimuli at both eccentricities, relative to
the other curves; similarly, there was a small leftward shift of the black curve for size III stimuli
presented at the 29.7° eccentricity. For size III stimuli at the 12.7° eccentricity and for size V sti-
muli at both eccentricities, there was no apparent difference in the positions of the curves.
There were also some visible differences in the relative shape of the curves: the size I curves
appeared to be flatter overall in comparison to size III and V results. Notably, the size V results
displayed relatively steep FOS curves across all conditions.

Table 1 shows the EC50 and slope results obtained from the sigmoidal nonlinear regression
fits for the mid-peripheral (A) and peripheral (B) condition. Fig 4A–4E shows the difference

Table 1. The EC50 and slope values obtained from the nonlinear regression analysis for each condition in the mid-peripheral (A) and peripheral
(B) conditions. The conditions are separated by stimulus size and the number of points cued, and are presented individually for each subject, due to the dif-
ferent contrast levels used. Hence, we also report the subject's age and gender (footnote). Using MoCS, we considered the EC50 point as the threshold, i.e.
50% frequency of seeing. Hence, we report EC50 as threshold values (in dB) in this table.

A—Mid-periphery

Stimulus size Size I Size III Size V

Number of points cued n = 1 n = 2 n = 4 n = 8 n = 1 n = 2 n = 4 n = 8 n = 1 n = 2 n = 4 n = 8

Subject 1 Threshold (dB) 1.16 2.37 2.59 2.82 -7.98 -7.65 -7.75 -7.70 -13.67 -13.67 -13.81 -13.69

slope 0.82 0.53 0.41 0.47 0.74 0.61 0.62 0.61 4.86 4.42 3.96 5.08

Subject 2 Threshold (dB) 1.40 2.48 2.96 2.88 -6.65 -6.43 -6.36 -6.21 -14.08 -14.04 -14.03 -13.93

slope 0.57 0.43 0.37 0.44 0.64 0.58 0.66 0.43 0.76 1.14 0.70 0.85

Subject 3 Threshold (dB) 5.60 6.56 7.02 7.20 -2.10 -2.00 -1.58 -1.67 -10.70 -10.58 -10.33 -10.48

slope 0.45 0.31 0.38 0.35 0.50 0.54 0.44 0.43 0.60 0.79 0.65 0.47

Subject 4 Threshold (dB) 2.74 3.23 3.89 4.22 -5.72 -5.23 -5.37 -5.33 -13.77 -13.66 -13.66 -13.69

slope 0.88 0.76 0.47 0.48 0.42 0.42 0.43 0.49 0.87 1.70 1.70 1.27

B—Periphery

Stimulus size Size I Size III Size V

Number of points cued n = 1 n = 2 n = 4 n = 8 n = 1 n = 2 n = 4 n = 8 n = 1 n = 2 n = 4 n = 8

Subject 1 Threshold (dB) 6.42 7.31 8.10 8.01 -4.28 -3.64 -3.63 -3.56 -10.11 -9.94 -10.06 -9.96

slope 0.81 0.56 0.55 0.53 0.60 0.59 0.41 0.41 1.28 0.97 1.06 0.90

Subject 2 Threshold (dB) 5.20 6.25 6.72 6.88 -3.33 -2.66 -2.52 -2.51 -10.48 -10.61 -10.40 -10.46

slope 0.69 0.62 0.55 0.57 0.69 0.43 0.36 0.35 1.34 1.18 1.25 1.01

Subject 3 Threshold (dB) 6.58 7.72 8.18 8.39 -1.41 -0.84 -0.62 -0.69 -7.67 -8.11 -7.85 -7.85

slope 0.57 0.46 0.46 0.45 0.73 0.71 0.60 0.44 0.47 0.57 0.53 0.57

Subject 4 Threshold (dB) 4.97 5.73 6.91 7.04 -4.60 -4.01 -3.99 -3.92 -10.20 -10.10 -10.14 -10.01

slope 0.41 0.47 0.29 0.31 0.44 0.38 0.50 0.37 0.48 0.50 0.49 0.51

Subject 1: 26 year-old male; Subject 2: 25 year-old female; Subject 3: 57 year-old male; Subject 4: 20 year-old female

doi:10.1371/journal.pone.0150922.t001
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plot of EC50 values between 1, 2 and 4 points cued, and 8 points cued, which we considered
the reference due to the plateau found using the HFA, plotted in a similar fashion to that of Fig
4, again separated by eccentricity (Fig 4A and 4B) and stimulus size (Fig 4C–4E). These were
combined between the observers as these represented the absolute difference between values.
Repeated-measures two-way ANOVA was applied for the combined data set to examine the
effect of number of points cued (factor 1, three levels) and location tested (factor 2, two levels).
There was a significant effect for number of points cued (F(2,9) = 106.9, p<0.0001), increasing
contrast sensitivity by approximately over 1.5 dB, but no effect due to eccentricity for size I sti-
muli (F(1,9) = 3.930, p = 0.079). The analysis for size III data confirmed a significant effect due
to changing the number of points cued (F(2,9) = 41.87, p<0.0001) and when changing stimulus
eccentricity (F(1,9) = 11.26, p = 0.0084). The magnitude of effect was smaller for size III than

Fig 4. We plotted the absolute difference in threshold (in dB) between 8 points cued, which was considered the reference, and 1 point, 2 points and
4 points cued. Threshold was plotted as a function of number of points cued. Similar to Fig 3, the same data set was plotted in two ways: by stimulus location
(A, B) and by stimulus size (C-E). The points here represent the average of the 4 observers, as these were absolute difference and thus could be combined.
For all graphs, solid lines represent the best-fit one-phase nonlinear regression through those points, and error bars represent the range. The top row
represents the functions sorted by peripheral (A) and mid-peripheral (B) stimulus location, and within each graph, we present size I (black circles), size III
(open squares) and size V (open triangles) results separately. The horizontal dotted line (y = 0) indicates no difference between the number of points cued
and the reference of 8 points cued. The resultant equations for the mid-peripheral (12.7°) conditions were: size I, y = 3.897e-0.939x; size III, y = 1.397e-1.289x;
and size V, y = -0.027x + 0.131 (linear regression was utilised for size V). The resultant equations for the peripheral (29.7°) conditions were: size I, y = 4.061e-
0.815x; size III, y = 4.487e-1.814x; and size V, y = -0.014x + 0.096 (linear regression was utilised for size V).

doi:10.1371/journal.pone.0150922.g004
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for size I. For size V stimuli, there was no significant difference due to stimulus size (F(2,9) =
1.098, p = 0.3744) or eccentric location (F(1,9) = 0.0091, p = 0.9262).

We found a good fit with the exponential decay function, similar to the results from the
HFA, for size I stimuli at 12.7° (R2 = 0.94) and 29.7° (R2 = 0.92) test locations, and size III sti-
muli at 29.7° (R2 = 0.98) locations. As expected, the fit was relatively poorer for size III at the
12.7° location (R2 = 0.60). As with the HFA result, linear regression appeared to fit the size V
data better (R2 = 0.99 for 12.7°, and R2 = 0.93 for 29.7°).

In Fig 5, we show the difference plot of slope values between 1, 2 and 4 points cued, and 8
points cued, using the same method as above, separated by eccentricity (Fig 5A and 5B) and
stimulus size (Fig 5C–5E), but combined across all four observers. A difference of 0 indicates
no change in slope value; hence, the Figure depicts that when fewer points were cued, there was
a trend towards a greater slope value, representing greater certainty. There was also a greater
magnitude of difference seen at peripheral testing locations with cueing. Repeated measures
two-way ANOVA found that number of points cued (F(2,9) = 6.543, p = 0.018) was a signifi-
cant factor, but location was not (F(1,9) = 0.879, p = 0.373) for size I. For size III, number of

Fig 5. We plotted the difference in slope values between 8 points cued, which was considered the reference, and 1 point, 2 points and 4 points
cued.Difference in slope was plotted as a function of number of points cued. Similar to Figs 3 and 4, the same data set was plotted in two ways: by stimulus
location (A, B) and by stimulus size (C-E). The points here represent the average of the 4 observers, as these were absolute difference and thus could be
combined. Error bars represent the SEM. The top row represents the functions sorted by peripheral (A) and mid-peripheral (B) stimulus location, and within
each graph, we present size I (black circles), size III (open squares) and size V (open triangles) results separately.

doi:10.1371/journal.pone.0150922.g005
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points cued was not a significant factor (F(2,9) = 1.169, p = 0.354), but location was significant
(F(1,9) = 5.162, p = 0.049). For size V, there was no significant effect of number of points cued
(F(2,9) = 0.518, p = 0.613) or location (F(1,9) = 0.220, p = 0.651).

Discussion
The pseudo-random nature of stimuli presentation in clinical SAP results in a measurement
that attempts to quantify the contrast sensitivity threshold at multiple spatial locations in the
visual field, but in doing so, introduces spatial uncertainty as a parameter affecting that mea-
surement. Our results demonstrate that verbally cueing the location and number of points for
size I, or equivalent, stimuli increased contrast sensitivity, but did not affect the results for size
V stimuli. In the case of size III stimuli, the location of the presentation also affected the magni-
tude of improvement in performance. Taken together, these results are consistent with previ-
ous studies using similar [22] or slightly different paradigms [14, 15, 19, 39], which have
shown that cueing certain stimulus properties facilitates improvement in detection ability. The
effect of cueing was found to diminish with increasing number of elements cued, eventually
returning to baseline performance following an exponential decay [40], consistent with previ-
ous studies on working memory showing that observers can accurately recall the visual details
of three or four elements [41, 42], and allocation of attention to multiple spatial locations [39]
and set sizes [43]. The lack of effect with size V stimuli is consistent with previous suggestions
that larger stimuli are less subject to the effects of attention and variability [27, 44], as stimulus
size has been described to be a guiding attribute for visual attention [45], visual search tasks
[46] and task difficulty [19, 43].

We found that cueing made a bigger difference in the peripheral region compared to mid-
peripheral region when using a size III stimulus. One possible reason for this is the rate of
change sensitivity across the visual field. Sensitivities across the visual field have been found to
differ according to stimulus size, which is commonly depicted in cross-section form resembling
a ‘hill of vision’ [11, 23, 25, 47]. For example, a size I stimulus displays a relatively steep ‘hill’,
signifying a greater rate of change of sensitivity with increasing eccentricity. One explanation
for constant effect of cueing at peripheral and mid-peripheral test locations for size I may be
due to a peak in the level of spatial uncertainty at both eccentricities used in the present experi-
ment. In comparison, a size V stimulus undergoes minimal change; previous studies have
shown a flatter ‘hill’ [11, 22, 25], which may be related to the lesser uncertainty seen in our
results. A size III stimulus, however, has a relatively flat ‘hill’ up to the mid-periphery, then dis-
plays a steeper change in the periphery, and this may therefore manifest as differences in the
magnitude of increase in sensitivity at different eccentricities.

The two predominant theories on the mechanism of cueing affecting sensitivity at near-
threshold levels are signal enhancement and uncertainty reduction [14, 48–50]. For example,
uncertainty reduction improves sensitivity by reducing the effects of noise or distractor stimuli
through foreknowledge of the target location [16, 18, 20]. The results of this study may be
explained by uncertainty reduction as the paradigm we have used reduced spatial uncertainty
through attentional cueing, and because we presented targets at multiple possible locations
[51]. This appears consistent with Pelli’s [16] models on contrast detection and uncertainty fac-
tors, as extrinsic factors in the present study have been reduced with cueing and intrinsic fac-
tors through the use of experienced observers. The results of the laboratory-based testing also
appear to be consistent with the work of Lasley and Cohn [52], who showed a positive accelera-
tion in the psychometric function when spatial uncertainty is introduced; this is seen in the
gradual slope in the uncertain conditions in our results. Our results can be also explained by
postulations that visual attention is analogous to the eye having its own spotlight [53, 54] or
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telescopic zoom lens [55–57], in that attentional focus is localised to a small area. Increased
division of attention then leads to an exponential decrease in sensitivity [55].

Our results have a number of possible clinical implications. A 2 dB change is a substantial
change in threshold static perimetric testing. Artes et al. [31] have shown that at an average
sensitivity of approximately 30 dB there is an estimated test-retest variability of 2 dB using
SITA Standard paradigm on the HFA. An error of 2 dB due to attentional cueing therefore
approximately represents the top 5 percentile of test-retest variability. Furthermore, the algo-
rithm used in the full threshold paradigm in the HFA is a 4–2 staircase procedure, where
threshold is taken as the last 2 dB reversal. Our results could not be explained by test-retest var-
iability alone–or practice effects, as our subjects were highly experienced observers and peri-
metric subjects, as the standard deviation of our HFA data spanned approximately 0.25 dB–
substantially below the 2 dB test-retest variability; therefore, we suggest that spatial uncertainty
contributes to variability in addition to that of test-retest variability.

We hypothesise that there is unlikely an effect of cueing due to pseudo-random order of
SAP, as, after the first four seeding points, there are 16 possible “surrounding” points that can
be tested: well above the number of elements where we found a plateau effect. As testing pro-
gresses, the number of possible locations for stimuli to appear increases, thus further increasing
spatial uncertainty. In particular, we found that cueing effects for size III stimuli are affected by
test location: peripheral eccentricities appeared to be subject to greater spatial uncertainty, and
may therefore result in greater variability in thresholds obtained in the peripheral visual field
[35].

Practically, retesting individual points in SAP (for example, in the commercially available
Medmont Perimeter) in which a Goldmann size III is utilised, our results suggest that at least 8
points should be retested to minimise the potential effect of attentional cueing. In addition,
custom visual field test patterns should also utilize at least 8 points for the same reason. How-
ever, more observers drawn from the general population need to be tested to determine the
true clinical implications of attentional cueing.

The present study employed a small number of experienced observers with normal vision
that, while sufficient to confirm the effect of spatial uncertainty on contrast detection thresh-
olds, is insufficient to make generalizations to a larger, normal population. Future studies
might also examine a greater number of normal observers inexperienced at the psychophysical
task to extrapolate these results to the general population, and to determine the effects, if any,
of practice on the cueing effect, as training may affect certainty.

The effects of attentional cueing may also differ in those with visual field deficits. For exam-
ple, previous studies have previously shown that variability may be increased in defective
regions of the visual field in patients with disease like glaucoma [26, 58, 59]. The FOS curves in
regions of field loss have been shown to be different in comparison to equivalent regions tested
in normal subjects: there is an increase in threshold, as well as a relative flattening of the FOS
curve. The flattening of FOS curves in glaucoma is thought to indicate increased variability
[26], most likely due to underlying progressive cellular loss, whereas size V stimuli offset this
uncertainty in glaucoma patients by reducing the signal-to-noise ratio [27]. Future studies
could examine whether attentional cueing could alter the variability in thresholds and shape of
the FOS curve in patients with glaucoma or other diseases affecting the visual field, and these
results may differ with varying depth of field loss.

More rigorous psychophysical testing at locations that are finely-tuned to directly match the
HFA test locations, could determine whether differences in cueing effect exist, and whether
this effect changes in a location-specific manner, such as points that are more adjacent to each
other. Although a visual cue is unavailable using clinical perimetry instruments, a future
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experiment comparing the effects of verbal and visual cues would be informative, as these have
been shown to have different characteristics such as span and ageing effects [60].

Supporting Information
S1 Fig. Individual data for the difference in threshold between cued and uncued conditions
(dB) as a function of the number of points cued for peripheral test locations. Error bars rep-
resent 1 SEM. Size I (black circles), size III (open squares) and size V (open triangles) results
are presented separately. Solid lines represent the best-fit one-phase nonlinear regression
through those points.
(TIF)

S2 Fig. Individual data for the difference in threshold between cued and uncued conditions
(dB) as a function of the number of points cued for mid-peripheral test locations. Error
bars represent 1 SEM. Size I (black circles), size III (open squares) and size V (open triangles)
results are presented separately. Solid lines represent the best-fit one-phase nonlinear regres-
sion through those points.
(TIF)

S3 Fig. The frequency-of-seeing (FOS) curves for subject 1, which plot proportion seen as a
function of log contrast (in dB, ΔL/L). The top row (A-C) consists of the curves for the mid-
peripheral condition, and the bottom row (D-F) consists of the curves for the peripheral condi-
tion. The left, middle and right curves are the results for size I, size III and size V respectively.
The results for 1 point, 2 points, 4 points and 8 points cued are represented by the colours
black, blue, red and yellow respectively. These results represent the averaged result of 20 trials
for each contrast level.
(TIF)

S4 Fig. The FOS curves for subject 2, plotted as per the method in S3 Fig.
(TIF)

S5 Fig. The FOS curves for subject 3, plotted as per the method in S3 Fig.
(TIF)

S6 Fig. The FOS curves for subject 4, plotted as per the method in S3 Fig.
(TIF)

S1 Table. Weber contrast levels used for each subject under each size and location condi-
tion.
(TIF)
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