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Abstract: Tannins are a group of polyphenols found in fruits, leaves, trees, etc., well known in
the leather industry and in apples, persimmons and grapes, because of their capacity to interact
with other polyphenols or other components either from the food product or from saliva. Prior to
being able to interact with other compounds, tannins have to be extracted from the food matrix,
which depends on their chemistry, as well as the chemical structure of other components, such as
cell wall material and proteins. Vitis vinifera grapes are commonly grown around the world and
are used in winemaking, providing good quality wines with different levels of tannins responsible
for the final wine’s astringency. Many studies have focused on tannins extractability and retention
with cell wall material, and the reactivity of tannins with proteins in Vitis vinifera grapes and wine,
but there are very few reports for other Vitis species. However, depending on the environmental
characteristics of certain regions, Vitis hybrid grapes are grown and used to produce wines more and
more. This review focuses on the comparison of the chemistry of tannins, and their reactivity with
other macromolecules in Vitis species.

Keywords: Vitis vinifera; Vitis labrusca; interspecific hybrid grapes; polyphenols; reactivity; proteins;
cell wall material

1. Introduction

Tannins are plant polyphenolic secondary metabolites used during Classical Antiquity in the
treatment of animal skins to avoid their putrefaction. Due to the interaction between tannins and
the collagen from the skins, the collagen was stabilized and the animal skins were tanned and
transformed into leather [1]. Since this time, the tanning process, which is the production of leather
from the vegetal source of tannins, continues to be used. Therefore, tannins are molecules able to
interact and precipitate proteins, among other molecules, such as polysaccharides and polyphenols [2].
Hydrolyzable tannins, condensed tannins and phlorotannins are the main groups of tannins that
are found in various parts of the higher plants. As natural products in plants, they act as a natural
barrier against insects, pathogens and animals, because of their ability to react with proteins and their
antioxidant properties [3]. Therefore, tannins contribute to the reduction of cardiovascular diseases
and of some cancer risks.

Depending on their chemical structure, they can be found in specific botanical sources and/or plant
parts. Hydrolyzable tannins are commonly found in wood or stems, while condensed tannins are mostly
found in fruits and leaves, such as grapes and apples or tea leaves. In grapes, hydrolyzable tannins
can be found in the stem and in the skin [4], while condensed tannins are in the stem, skin, flesh and
seeds of the berries [5]. The common grapes grown in the world and used for wine are Vitis vinifera
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grapes. Following the introduction of the North American pest phylloxera and powdery mildew that
devastated the Europe grape industry in 1800s, new resistant hybrid varieties were developed by
crossing French Vitis vinifera with wild American Vitis. The most common wild American varieties
used for breeding were Vitis riparia, Vitis rupestris, Vitis berlandieri and Vitis labrusca, but the latter
provides “foxy-smelling” aromas to the wine produced [6]. Today, these interspecific hybrid grapes
are commonly used in cold regions, because of their resistance to the extreme climate of harsh cold
winters and hot humid summers. Therefore, the prevalence of these varieties is growing in the world,
especially in cold-hardy regions such as in the U.S. Midwest region. The phenolic composition in
grapes and wine is very important, as it allows the determination of the wine color, the evolution
of wine and the final wine perception by the consumers. Wine produced from cold hardy red grape
varieties are often perceived as acidic, due to the high malic acid content [7] and without mouthfeel or
texture, due to the low concentration of tannins in the wine, as well as the different chemical structure
of these tannins in the cold-hardy red grape varieties. The extraction and/or the retention of tannins
from those grapes to the cell wall material, including proteins and polysaccharides, is currently under
investigation and compared with tannins from the Vitis vinifera grape varieties, for which much more
information is provided.

The goal of this review is to provide an overview of the differences between Vitis vinifera and
interspecific hybrid grapes and wine, as well as the chemistry of their tannins. The reactivity of tannins
with proteins and polysaccharides is detailed to provide potential explanations of the limited tannin
extraction in the hybrid cultivar wines.

2. Grape Species

A good understanding of the composition of grapes is needed when discussing tannin extractability
and retention and the final wine quality. In the following section, the berry cell wall structure and
composition in Vitis vinifera and Vitis spp., as well as the chemical composition of those berries,
including organic acids, sugars and anthocyanins, will be discussed.

The basic physical structure of a grape berry is consistent across all species and is comprised of
the skin, pulp, and seeds [8]. The outermost layer of the berry (i.e., the exocarp) is ten to twelve cellular
layers thick and covered by a waterproof, waxy cuticle layer. The pulp (i.e., the mesocarp) is comprised
of three times as many cellular layers compared to the skin, and the cells are twice as large by the end of
the berry growth stage. Vacuoles contain juice account for ninety percent of a mesocarp cell. Cell walls
of the mesocarp are also thinner than cells found in the berry skin, and undergo structural changes
responsible for berry softening from véraison onwards. Within the mesocarp is the innermost part of
the berry, which contains two to four seeds (i.e., the endocarp). A fine layer of cells encases the seeds.
Vascular tissues are located centrally with the function of transportation of nutrients to the seeds and
are bundled like chicken wire just beneath the exocarp to transport sugar from véraison onwards [9].
During berry development and ripening, the cell wall network composed of hemicelluloses, pectins,
cellulose microfibrils and structural proteins undergoes chemical breakdown. Some acidification and
enzymatic hydrolysis of these polysaccharides leads to their solubilization and wall loosening. This is
also accompanied by the formation of phenolic cross-linking between pectins and hemicelluloses
catalyzed by a peroxidase [10,11]. Much more research has been focused on the modification of cell
walls in the mesocarp of grape berries, rather than in the skin or exocarp and the seeds or endocarp.
From a general standpoint, the berry ripening tends to not change the cell wall thickness of mesocarp
cells in Vitis vinifera grapes, but leads to an increase in protein content, especially hydroxyproline
after véraison, an increase in galacturonan content, the backbone of pectins, becoming more soluble
and a decrease in cellulose content [12,13]. Similar observations were also made in Golden Muscat
grape skins (Vitis vinifera × Vitis labrusca) [11]. The skin and pulp cell walls have a different structure
and composition between Vitis vinifera grape varieties. Monastrell berries have firmer pulp and skin
related to a higher cell wall material and neutral sugars content, compared to Cabernet sauvignon
and Syrah berries [14,15]. Cabernet sauvignon, Merlot and Syrah berries have thinner skin cell walls,
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but Syrah berries showed the lowest degree of acetylation of pectins. It has also been observed by
the same authors that the level of enzymes acting on the cell wall degradation were not the same in
the grape varieties, i.e., the activity of two galactosidases in Cabernet sauvignon were higher than in
Monastrell grapes [12,14,15]. It has been concluded that the structure and composition of cell wall
material is different for the Vitis vinifera varieties, which might lead to the differences observed of
phenolic compounds in the respective wines, as explained later in this review.

When producing wine, the soluble solids, including sugars and organic acids from the pulp or
mesocarp, are important parameters used to evaluate the grape maturity. Those chemical characteristics
are also associated with pH of grapes which, in turn, has an influence on the phenolic compounds
such as anthocyanins, responsible for the red grape color and on microbiological stability. In 1966,
10 sugars and 23 organic acids were identified in Thompson seedless grapes (V. vinifera), and their
levels were evaluated in different grapevine parts during development and ripening [16]. The main
monosaccharides found in grape berries are glucose and fructose. They are consumed by yeast,
preferentially glucose, during the alcoholic fermentation process, and the concentration of those sugars
is used by winemakers to estimate the alcohol content in the wine. During berry ripening, the sugar
content increases rapidly, and the accumulation slows down a week before harvest. The glucose to
fructose ratio tends to decrease during ripening, as the level of fructose increases more rapidly than
glucose. In a study from the same author, the glucose to fructose ratio was lower in Vitis labrusca
grapes than in Vitis vinifera, Vitis riparia, and Vitis aestivalis, ranging from 0.47 to 1.12 [7]. Only in
two species, Vitis champinii and Vitis doaniana, was the glucose content higher than the fructose [7].
In a recent study, the ratio was lower in Brianna grapes that have Vitis labrusca in their heritage than
in Frontenac grapes (0.88 and 1.10, respectively) [17]. It has been well established that the increase
in sugar content during berry ripening is associated with the development of aromatic compounds,
as well as with a decrease in acidity. The pH and the titratable acidity are in close relationship with the
solubility of tartaric salts in the wine, the color stabilization and the depolymerization and condensation
reactions with tannins [18,19]. The main organic acids found in grapes are tartaric, malic and citric
acids. Their concentration depends on the grape variety, the harvest date, the climatic conditions,
the viticultural practices, etc. [7,16,17], and is highly related to the pH. During grape berry ripening,
the concentration of organic acids tends to decrease mostly due to a decrease in the malic acid. In a
recently published article, the tartaric acid to malic acid ratio was 0.77, 0.20, 0.38, and 0.56 at harvest in
2016 in Brianna, La Crescent, Frontenac, and Marquette grapes, respectively [17]. It has been observed
that Vitis riparia contains more malic acid than tartaric acid [7], and that other Vitis species tend to
have more tartaric acid than malic acid. In grape must, depending on the content and form of organic
acids, the pH varies from 2.9 to 3.8. These variations of pH induce a change of color in red musts,
because red pigments from grape skins, the anthocyanins, have pH-dependent hues. At a grape must
and wine pH, anthocyanins are predominantly present in the flavylium cation form, but the chalcone
form is also present [20]. The structure of anthocyanins is highly different between Vitis species,
as V. vinifera grape skins are rich in anthocyanin mono-glucoside, especially malvidin-3-O-glucoside,
while interspecific hybrid grape skins are composed of anthocyanin mono- and di-glucosides [21].
Anthocyanins are found in the vacuoles of the cells in the same location as condensed tannins and
monomeric flavanols. Those compounds can interact through a co-pigmentation phenomenon and
form pigmented compounds, such as pigmented tannins or polymeric pigments [21–23]. The formation
of anthocyanin-tannin compounds is responsible for the color stabilization in wine made from V. vinifera
grapes, but little is known about the reactivity of tannins with anthocyanins from hybrid grapes.
Burtch and Mansfield [21] suggested that wine from hybrid grapes is less susceptible to form polymeric
pigments, even though the anthocyanin content is much higher than in wines from V. vinifera grapes.
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3. Chemistry of Tannins

3.1. Hydrolyzable Tannins

Hydrolyzable tannins are readily hydrolyzed by acids, bases, hot water and some enzymes.
Two groups of hydrolyzable tannins exist: gallotannins and ellagitannins. Their name comes from
either the gallic acid or ellagic acid unit obtained after hydrolysis.

Gallotannins have a core structure of either glucose or less commonly shikimic acid or quinic acid, which
is esterified by up to five gallic acids (Figure 1A). 1-galloyl-β-d-glucose (syn. Glucogallin) is formed in plant
by a glucosyltransferase that catalyzes the esterification of UDP-glucose and gallic acid. Glucogallin then
acts as an acyl donor and acceptor in the biosynthesis of β-1,6-digalloyl-glucose, β-1,2,6-trigalloyl-glucose,
β-1,2,3,6-tetragalloyl-glucose, andβ-1,2,3,4,6-pentagalloyl-glucose. Galloyl groups may be further esterified
by gallic acid through depsidic bonds and up to thirteen groups, i.e., trideca-galloylglucose, which has
been found in Chinese sumach tannin extracts [24,25]. In Tara extracts, 5-mono-galloyl-quinic,
4,5-di-galloyl-quinic, 3,4,5-tri-galloyl-quinic and 1,3,4,5-tetra-galloylquinic have been found as the core
structure that can be esterified by more gallic acids via depsidic bonds [26,27]. Galloylshikimic is much
less common, but the 3-O-galloylshikimic has been identified in Erodium cicutarium herb [28].

Ellagitannins are widely found in fruits, seeds, wood, etc., and are the product of oxidation of
penta-galloylglucose (Figure 1B). The hexahydroxydiphenoyl (HHDP) and nonahydroxydiphenoyl
(NHDP) moieties formed by oxidative biaryl-coupled (C-C coupling) between galloyl residues,
are esterified to an open-chain glucose in position 4 and 6 and in position 2, 3 and 5 respectively
(Figure 1B) [29–31]. The most common ellagitannins are castalagin and vescalagin found in oak
barrel [32]. Ellagitannins tend to form dimers in solution called roburins found in wine aged in oak
barrel. As these compounds are readily hydrolyzable, castalin, and vescalin, which are the NHDP
moiety esterified to an open-chain glucose, as well as ellagic acid, can be released after the hydrolysis
of castalagin and vescalagin respectively.

3.2. Condensed Tannins

Condensed tannins or proanthocyanidins are oligomers and polymers of flavan-3-ol. Flavanols are
composed of a carbon backbone of C6-C3-C6, and are comprised of two aromatic rings A and B and a
pyran ring, the heterocycle C [33]. Monomers of flavan-3-ols are commonly called catechins, and can
be distinguished by the stereochemistry of the asymmetric carbons C2 and C3, the presence of galloyl
groups, and the level of hydroxylation on the B-ring. Di-hydroxylation at C3′ and C4′ of the B-ring
is a catechol type which corresponds to (+)-catechin and (−)-epicatechin, and the tri-hydoxylation
on the B-ring corresponds to (+)-gallocatechin and (−)-epigallocatechin. The 2R configuration at
C3 is more common than the 2S [3]. The condensation reaction occurring between the carboxy
group of a gallic acid and the hydroxyl group on C3 of catechins generates catechin gallates, such as
(−)-epicatechin-3-O-gallate and (−)-epigallocatechin-3-O-gallate found in tea and grapes. The so-called
proanthocyanidins have the ability to release anthocyanidins after cleavage of interflavan bonds
under acidic and oxidative conditions [33–35]. Thirteen categories of proanthocyanidins are known,
based upon their level of hydroxylation on the A- and B-ring, as well as at C3 [33]. Proanthocyanidins
or condensed tannins are characterized by the nature of the constitutive units, i.e., the nature of the
monomer of flavanols, by the type of interflavan bonds binding the monomers, and by the average
number of the constitutive units, i.e., the mean degree of polymerization (mDP) (Figure 1C–E).
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Figure 1. Chemical structure of hydrolyzable tannins, gallotannins (A); and ellagitannins (B); and 
condensed tannins including trimer of catechin and epicatechin linked in C4-C6 (C); tetramer 
composed of epicatechin gallate, epicatechin, epigallocatechin and catechin (D); and crown 
procyanidin consisting in a tetramer of epicatechin linked in C4-C6 and C4-C8 (E). 

  

Figure 1. Chemical structure of hydrolyzable tannins, gallotannins (A); and ellagitannins
(B); and condensed tannins including trimer of catechin and epicatechin linked in C4-C6 (C);
tetramer composed of epicatechin gallate, epicatechin, epigallocatechin and catechin (D); and crown
procyanidin consisting in a tetramer of epicatechin linked in C4-C6 and C4-C8 (E).

The nature of the constitutive units varies according to the source, such as (+)-catechin and
(−)-epicatechin that are commonly found in fruits, while (+)-gallocatechin and (−)-epigallocatechin
are more common in leaves [36,37]. Constitutive units include extension units that are monomers
connected to two other units, and terminal units, which are connected to only one unit in the molecule.



Molecules 2020, 25, 2110 6 of 24

In some fruits, such as apple, the (+)-catechin is only found as a terminal unit while (−)-epicatechin
can be found as extension and/or terminal units. (−)-epicatechin is the most abundant constitutive
unit found in fruits [38,39]. Flavanol monomers are linked through carbon–carbon linkages between
the pyran C-ring of one monomer and the aromatic A-ring of another monomer, either in C4-C8 or
C4-C6 fashion called B-type (Figure 1C–E), or in C4-C8 or C4-C6 B-type linkage with an additional
ether linkage at C2-O-C7 or C2-O-C5, called A-type [37]. The mDP corresponding to the average
number of constitutive units can provide an estimation of the molecular mass of proanthocyanidins
after an acid–catalysis reaction in presence of a nucleophile. By heating the acidic medium, the linkages
are cleaved, and a carbocation is formed at the C4 of the extension unit, while the terminal unit is
released. The carbocation then reacts with the nucleophile, either a benzylthioether or phloroglucinol
or thioglycolic acid, to form an extension unit linked to a nucleophile. After reaction, the extension
units and terminal units are identified and quantified to calculate the mDP, and then used to estimate
the molecular mass of proanthocyanidin, based on the molecular mass of the constitutive units. So far,
this method is a commonly used method for the characterization of constitutive units, concentration,
and mDP of condensed tannins, but it only provides an estimation, as the reaction is never complete
depending on the conformation of the tannin, as well as the type of linkages, such as A-type linkages
that are more resistant to the acid-catalyzed reaction. It has also been pointed out that the nucleophile
might react in other positions, rather than C4 and that oxidized proanthocyanidins and pigmented
tannins, which are tannins bound to anthocyanins, do not react the same way with the acid-catalysis
and the nucleophile. Recently, Zeng et al., [40] discovered a new cyclic procyanidin tetramer, which did
not release a flavan-3-ol terminal unit after acid-catalysis in presence of phloroglucinol. This “crown
procyanidin tetramer” is composed of four epicatechin units linked in C4-C8 and C4-C6 [40] (Figure 1E).

4. Tannins in Grape and Wine

4.1. Biosynthesis of Tannins in Grape

Condensed tannins are biosynthesized in plants through the phenylpropanoid pathway that also
produces hydroxycinnamic acids, flavones, flavonols, and anthocyanins. Flavan-3-ol monomers and
anthocyanidins, the anthocyanin aglycone, are synthesized from flavan-3,4-diols (leucoanthocyanidins).
The leucoanthocyanidin reductase converts the leucocyanidin into catechin and an epimerase converts
it to epicatechin. The epicatechin monomer is also produced from the conversion of cyanidin through
an anthocyanidin reductase. The polymerization of flavan-3-ol is still not identified and two hypotheses
are suggested: a non-enzymatic mechanism by which flavan-3-ol monomer is added to another unit
by nucleophilic displacement [41], and an enzymatic mechanism involving a polyphenol oxidase
catalyzing the condensation of monomers into oligomers and polymers [42,43]. The concentration
of condensed tannins in grape berries is positively correlated to the level of leucoanthocyanidin and
anthocyanidin reductases. In general, skin and seed tannins accumulate from flowering to véraison,
and then their concentration decreases during berry maturation, due to either a reduction of their
extractability resulting from the reaction of tannins with proteins, polyphenols, and polysaccharides
from the cell walls and/or oxidation reactions [44–46].

4.2. Tannins in Grape

The concentration of condensed tannins in grapes varies according to the variety and the
ripening conditions.

4.2.1. Vitis vinifera

In Vitis vinifera grapes, condensed tannins are found in stems, skins, flesh and seeds but their
chemical structure, concentration, and mDP varies depending on the berry parts and the variety.
Only some precursors of hydrolyzable tannins such as gallic acid, ellagic acid, galloyl-glucose,
and di-galloyl-glucose have been found in Vitis vinifera grapes [4].
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The bunch stems of Castelao Frances and Touriga Francesa contain at harvest between 28 and
35.8 mg of proanthocyanidin/g of stem fresh weight [47]. In Merlot stems, tannins represents about
5 g/kg of stem fresh weight [5]. Stem tannins are composed of (−)-epicatechin as the main extension
unit and (+)-catechin as the main terminal unit. A very low proportion of (epi)gallocatechin was found
in the Merlot grape stem tannin only as an extension unit, and the proportion of gallates was close to
15% in these stems [5]. The mDP of tannin in stems varies from 5 to 9 [5,47].

Condensed tannins from V. vinifera grape skins accounts for about 3 to 110 mg/g berry dry weight
and are composed of (-)-epicatechin as the main extension unit, followed by (−)-epigallocatechin,
(−)-epicatechin-3-O-gallate and (+)-catechin as extension units and as terminal units (Table 1).
The (−)-epicatechin and (−)-epicatechin-3-O-gallate were not found as terminal units in Syrah and
Merlot skins [22,48]. During berry ripening, the proportion of (−)-epigallocatechin as an extension unit
increased and the (+)-catechin as the terminal unit decreased. This is associated with an increase in the
mDP from 4.5 in green berries to 27 in red berries. The mDP of skins has been calculated to be about 33
in Merlot and 31 in red Shiraz berries [48,49]. Recently, a crown procyanidin tetramer composed of
(−)-epicatechin has been identified in wine, and only in skins of Cabernet sauvignon, and was absent
from seeds and the bunch stem [40].

In V. vinifera grape seeds, the condensed tannin concentration is much higher than in skins
varying between 11 to 140 mg/g berry dry weight in Cabernet sauvignon and Merlot, and tend to
be stable during berry ripening from véraison to harvest maturity. In contrast with the constitutive
units in grape skins, epigallocatechin as an extension unit was not found in any V. vinifera grape seeds.
Epicatechin was also the main extension and terminal unit found in seeds, and the proportion of these
subunits varied during berry ripening. The proportion of (−)-epicatechin as a terminal unit tend to
decrease during ripening from veraison to harvest maturity, while the (+)-catechin as a terminal unit
increases in Syrah grapes but the opposite has been observed in Cabernet sauvignon grapes [50,51].
The mDP in V. vinifera grape seeds varies between 3.8 and 11 in Cabernet sauvignon at harvest maturity
and in Syrah after véraison [50,51]. During grape maturation, the mDP of tannins in grape seeds
decreases starting with a maximum of 5.9 at fruit-set in Cabernet sauvignon to a minimum of 3.8 at
harvest maturity [51].

These variations of tannin composition and concentration in V. vinifera grapes have been
attributed to variety, climatic conditions, and viticultural practices such as leaf removal post fruit-set,
which increases the temperature of the berry and leads to a higher production of condensed tannins in
Merlot grapes [52].

4.2.2. Hybrids

The concentration of tannins in V. spp. grape seeds and skins has been measured by the protein
precipitation method using bovine serum albumin and compared to V. vinifera grapes (Table 2) [55,56].

The total tannin concentration (skin + seed) in grapes from V. spp. was much lower than in V. vinifera
grapes (0.71 mg/g berry versus 1.27 mg/g berry as (+)-catechin equivalent in French–American hybrid
grapes, such as Baco noir, Maréchal Foch, Leon Millot, and De Chaunac and in V.vinifera grapes such as
Pinot noir, Cabernet sauvignon, Merlot, and Cabernet franc, respectively). Similar concentrations were
observed in Frontenac, Marquette, and St Croix grapes (0.49 mg/berry as (+)-catechin equivalent) [56].
The concentration of tannins in seeds was much lower at harvest than at véraison, but was higher than
in skins from French–American hybrid grapes (about 0.20 mg/g berry of skin tannins and 0.60 mg/g
berry of seed tannins). This is in comparison to about 0.50 mg/g berry of skin tannins and 1.40 mg/g
berry of seed tannins in V. vinifera grapes. These concentrations varied significantly depending on the
grape variety, e.g., Maréchal Foch contains a higher grape skin and seed tannin content than Frontenac.
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Table 1. Tannin concentration and composition in Vitis vinifera grape skins and seeds, including mean degree of polymerization (mDP), terminal constitutive units
(Term) and extension (Ext) units. Cat, catechin; Epi, epicatechin; EcG, Epicatechin gallate; EGC, Epigallocatechin; nd, not detected.

Vitis vinifera Term (%) Ext (%)

Variety Ripening Stage Tannin Concentration
(mg/g berry) mDP Cat Epi EcG Cat Epi EcG EGC References

Skin

Merlot harvest maturity 33 2.05 0.5 0.5 2.4 60.1 3.45 31 [48]

Cabernet sauvignon
fruit-set 7.3 30 2.77 0.39 0.15 2.07 56.8 5.52 32.27

[49]harvest maturity 1 28 2.52 1.01 0.5 3.03 44.4 4.04 44.4

Shiraz
fruit-set 5.9 29 2.85 0.43 0.19 4.1 58.3 9.74 24.4

harvest maturity 1 31 2.58 0.41 nd 4.13 47.5 7.22 38.18

Albarossa harvest maturity 11.3 13.8 5.5 1.42 0.34 20.13 58.06 4.35 10.2

[53]Barbera harvest maturity 7.1 14.8 4.73 1.86 0.18 22.97 58.83 3.85 7.58

Nebbiolo harvest maturity 19.2 24.2 3.47 0.62 0.04 17.08 48.15 2.83 27.79

Uvalino harvest maturity 16 21.5 3.57 0.98 0.09 18.01 47.87 3.86 25.61

Pinot noir
at véraison 1.61 20.1

[54]
harvest maturity 0.76 27 2.6 61.5 1.4 34.5

Seed

Cabernet sauvignon
fruit-set 11.2 5.9 79.63 14.89 5.46 12.01 86.95 1.03 0

[51]
harvest maturity 33.5 3.8 58.57 37.12 4.3 10.83 85.56 3.6 0

Syrah
after véraison 22 11 23.5 44.6 31.9 4.8 93 2.2 0

[50]
harvest maturity 20 8 34.5 41.5 24 5.4 92.2 2.4 0

Albarossa harvest maturity 53 5.2 6.08 8.1 4.40 14.74 51.56 14.51 0

[53]Barbera harvest maturity 58.4 4.1 9.7 10.6 4.37 14.75 44.93 15.64 0

Nebbiolo harvest maturity 73.9 4.1 10.55 8.89 4.98 11.96 50.4 13.21 0

Uvalino harvest maturity 82.5 5.6 7.34 5.74 4.67 5.62 64.1 12.53 0

Pinot noir
at véraison 5.76 8.8 0

[54]
harvest maturity 2.7 6.9 12.3 76.8 10.9 0
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Table 2. Tannin concentration in grape skin and seed of interspecific hybrid grapes, expressed as mg/g
berry or mg/berry (+)-catechin equivalent.

Interspecific Hybrid
Grape Variety

Total Tannin
Content

Skin Tannin
Content

Seed Tannin
Content References

Frontenac 0.29 mg/berry 0.03 mg/berry 0.26 mg/berry

[56]Marquette 0.66 mg/berry 0.12 mg/berry 0.54 mg/berry

St Croix 0.43 mg/berry 0.24 mg/berry 0.19 mg/berry

Baco noir 0.63 mg/g berry 0.18 mg/g berry 0.45 mg/g berry

[57]Maréchal Foch 0.96 mg/g berry 0.25 mg/g berry 0.76 mg/g berry

Leon Millot 0.81 mg/g berry 0.22 mg/g berry 0.59 mg/g berry

Even though some studies have focused on tannin content in Vitis spp., little is known about
the chemical structure of those tannins. Curko et al., 2012 [58] compared the composition of
proanthocyanidins in seeds from V. vinifera grapes and American Vitis spp., and observed that
the percentage of galloylation of seed tannins in V. doaniana and V. champinii was significantly high.
The flavanol monomers in American Vitis spp. grape skins were identified as catechin gallate and
epicatechin gallate and the tannins had a higher percentage of galloylated forms (~3%) than in
Vitis vinifera grape skins [4]. The mDP of tannins in American spp. grape skins has been reported to
vary between 4 and 17. In grape seeds, the differences in mDP varied between 5 and 12 in American
and hybrids but were more comparable to the mDP in Vitis vinifera grape seeds [4]. In grape seeds
from some hybrid grapes such as Seyval, only traces of dimer-gallates and trimers have been observed
compared to other hybrids [59]. More recently, dimeric and oligomeric procyanidins were found in
lower quantities in Vitis cinerea compared to in Vitis vinifera grape seeds, but not as low as in American
Vitis grape seeds.

In comparison to Vitis vinifera grapes, wild American grapes contains 1000 times higher ellagic
acid, a precursor of hydrolyzable tannins in their skins. Narduzzi and co-workers [4] identified for
the first time the presence of gallic acid, galloyl-glucose as well as oligomeric hydrolyzable tannins
including HHDP-galloyl-glucose in wild American grape skins.

The composition and concentration of tannins in Vitis vinifera and other Vitis species are highly
different in skins compared to seeds, and tend to be lower in Vitis interspecific hybrid varieties.
Therefore, the concentration and composition of tannins found in wines is usually lower in Vitis spp.
than in Vitis vinifera wines.

4.3. Tannins in Wine

Condensed tannins are found mostly in red wines because of the maceration time and skin contact
that is typically employed in red wine making over white wine making, providing a better extraction
of tannins from skins and seeds to the wine. The tannin concentration in red wines varies from 50 mg/L
in wine from V. riparia and V. labrusca grapes to 4 g/L in wine from V. vinifera [60] (Table 3). In some dry
white wines, a concentration of tannins from 100 to 300 mg/L can be found, which can be related to the
quality of juice settling.

As previously shown by Aron and Kennedy [64], the extraction of proanthocyanidins increased
significantly during alcoholic fermentation, e.g., the tannin content in Pinot noir must and wine
increased from 200 to 1000 mg/L after 6 and 21 days of fermentation, respectively. Similarly, the mDP
of tannins extracted from must after 6 days of fermentation was 3.89 and increased to 5.89 after 21 days
of fermentation. In Table 4, a summary of the effect of the winemaking process on the content and size
of tannins from V. vinifera and interspecific hybrid wines is shown. Skin tannins are readily extracted
due to skin breaking, and the presence of alcohol during fermentation and maceration. It leads to a
diffusion and an extraction of tannins and anthocyanins from grape skins into the alcoholic medium,
wine [39,65]. Ethanol produced by yeasts during alcoholic fermentation from grape sugars lead to
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a reorganization and solubilization of the grape seed lipids, which favor the extraction of tannins
from seeds. This latter extraction takes more time and is slower than the extraction of tannins from
skins due to the physical structure of seeds [65]. It has been previously observed that in wine the
chemical structure of tannins are epigallocatechin-rich tannins extracted from grape skins, rather than
epicatechin-3-O-gallate-rich tannins from seeds [66]. The extraction of tannins into wines is also
highly dependent on their molecular weight, related to their solubility, as well as the cell wall material
including polysaccharides and proteins surrounding them in grape cells.

Table 3. Tannin concentrations measured by protein precipitation (or * methylcellulose precipitation)
of wines made from Vitis vinifera and hybrid grape varieties.

Variety Tannin Concentration (mg/L) References

Pinot Noir 358 [61]

Cabernet Sauvignon
357 [57]

2270 (epicat. equiv) * [62]

Merlot
717 [63]

259

[57]

Lemberger 158

Sangiovese 174

Cabernet franc 183

Baco noir 49

Maréchal Foch 83

Corot noir 113

Marquette 358 (epicat. equiv.) * [62]

Noiret 354 [57]

Table 4. Effect of wine production on wine tannin content and mean degree of polymerization (mDP)
in Vitis vinifera and hybrid grape varieties. ND, not determined.

Variety Winemaking Process Tannin
Content (mg/L) mDP References

Pinot noir
6 days after fermentation 200 3.89

[64]
21 days after fermentation 1000 5.89

Cabernet sauvignon

6 days after maceration 560 11.59

[67]

20 days after maceration 1310 13.86

no cold soak,
23 days after maceration 1230 12.68

cold soak,
23 days after maceration 1510 13.34

Grenache
no flash détente 30.8 6.3

[68]flash détente, 95 ◦C for 6 min,
pressure > 100 mbar 383 4.1
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Table 4. Cont.

Variety Winemaking Process Tannin
Content (mg/L) mDP References

Merlot

no microwave-assisted extraction,
after 5 days crush 100 ND

[63]
microwave-assisted extraction,

after 5 days crush 210 ND

no microwave-assisted extraction,
after 14 days crush 500 ND

microwave-assisted extraction,
after 14 days crush 650 ND

Maréchal Foch

must, hot press at 65 ◦C 152.1 3.92

[23]

wine, hot press at 65 ◦C 103.9 3

must, 24 h cold soak 17 3.72

wine, 24 h cold soak 86.8 3.08

Corot noir

must, hot press at 65 ◦C 158.4 5.3

wine, hot press at 65 ◦C 72 3.69

must, 24 h cold soak 39.7 3.72

wine, 24 h cold soak 145.7 3.88

Marquette
must, hot press at 65 ◦C 156.3 4.66

wine, hot press at 65 ◦C 75 3.22

4.3.1. Vitis vinifera

In V. vinifera, the tannin content in wines increase with the increase in alcohol level, temperature,
the addition of enzymes and the combination of some of those parameters. The level of tannins in red
wine made from 50% destemmed clusters was higher than wine made from 100% destemmed clusters,
showing that tannins from stems can be extracted during maceration [69].

Procyanidin dimers tend to be extracted from grape skins and seeds during maceration and
alcoholic fermentation after 3 to 4 days, as observed in Tempranillo musts and wines by Berrueta et al.,
2020 [70]. The extraction of tannins increases with an increase in the maceration period, due to a longer
skin contact time. In Cabernet sauvignon, Pinot noir, Merlot, Syrah, and Tempranillo, an increase in
skin contact time from 4 days to 10 days or 36 days increased the levels of total polymeric phenols
and tannins, as well as the extraction of larger molecules of tannins [70–73] (Table 4). As previously
explained, tannins extracted from grape skins have a larger proportion of epigallocatechin compared to
epicatechin-3-O-gallate, which is mostly extracted from grape seeds, and the skin tannins are commonly
extracted first followed by the seed tannins.

Thermovinification [74,75] and flash release [68,76,77] techniques have also been examined in
terms of their enhancement of tannin extraction. Thermovinification, along with pulsed electrical-field
and enzyme treatment, were all shown to have higher rates of phenolic extraction over a control
fermentation [74]. Overall, the thermovinification treatment had a higher concentration of phenolics
and specifically flavonols in must, but did not show significant increase in tannin content in wines.
For these experiments, thermovinification treatment was performed on crushed grapes at 70 ◦C
for 30 min. Flash release treatment, which combines thermovinification treatment, followed by
an ultra-low-pressure environment, has also been shown to have a major impact on tannin
extraction. A report from Morel-Salmi et al. demonstrated that this treatment caused an increase in
proanthocyanidin concentration for several cultivars (Grenache, Mourvèdre and Carignan), with the
mDP reported to be very similar between control and treated wines [68] (Table 4). Further experiments
into the effect of the thermovinification portion of the treatment revealed that a longer heat treatment
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(9 min at 95 ◦C vs. 6 min at 95 ◦C) increased the extraction of proanthocyanidins into the must,
however, this result was short-lived, and after 1 day of fermentation, the proanthocyanidin concentration
was the same for both flash release treatments. Pinot Noir and flash release treatments have also been
investigated [76]. Overall, there was an increase in flavan-3-ol concentration in must and directly after
fermentation for treated samples. However, after a maturation in bottle at 4 ◦C for 6 months, the flash
release treated wines had less flavan-3-ol content than the control. Despite this result, the authors claim
that the amount of flavan-3-ols extracted (including monomers and proanthocyanidins) is greater than
previously reported to be extracted from Pinot Noir wines.

Non-thermal methods have been also used on Vitis vinifera musts to improve tannins extraction.
Microwave-assisted extraction is a method commonly used in the food industry that showed an
improvement of tannin extraction in Pinot noir wines, but not in Cabernet sauvignon or Merlot
wines [78,79]. In a recent study carried out by Cassassa et al., 2019 [63] on the use of microwaves
for the extraction of tannins in unripe, ripe, and fully ripe Merlot grapes, this technique showed a
higher tannin content in wines after microwave-assisted extraction compared to the control, but the
phenolic extraction was higher in unripe grapes. These results were similar to some thermovinification
treatments, suggesting that cell wall materials are affected by those treatments, which likely reduces
the extraction of tannins.

4.3.2. Hybrids

In Brazilian red wine made from Maximo hybrid grapes (a cross between V. vinifera cv. Syrah
and Seibel 113432), the total level of phenolic compounds was higher than in the wines made from
V. labrusca grapes, such as Isabella or Ives [61]. Similar results for the concentration of tannins in
French–American hybrid wines were observed by several researchers [23,57,62]. The concentration of
tannin in Baco noir, De chaunac and Maréchal Foch, as well as in Marquette and Frontenac, was much
lower than in V. vinifera wines (Table 3). Nicolle et al., 2019 [80] observed that in red wine made from
Frontenac grapes, the tannin concentration varied from 149.2 mg/L (+)-catechin equivalent after 4 days
of maceration to 217.7 mg/L (+)-catechin equivalent after 15 days of maceration when measured by the
protein precipitation method.

The lower concentration of tannins in wine has been attributed to the ability of tannins from grape
skins and seeds to bind with proteins and cell wall material. The reactivity of tannins will be presented
in the next section. Some studies focused on the application of winemaking treatments already used
on V. vinifera musts, in order to improve the tannin content in hybrid wines. However, as a result of a
lack of knowledge on the tannin chemistry from those V. spp. grapes, the advantages of the different
winemaking techniques have not been optimized.

Manns and co-workers [23] processed hybrid grape juice with different traditional treatments,
such as the addition of bentonite, heating, and flash freezing, and compared these with V. vinifera
(Table 4). A decrease in the protein content was observed for all those treatments, but it was not
related to any increase in the tannin concentration in Maréchal Foch wines in contrast to Cabernet
franc. The use of macerating enzymes (pectinase and protease) after crushing on Maréchal Foch musts
did not show any increase in its tannin content and mDP (between 2.8 and 3.0). The same authors
studied the effect of the addition of exogenous grape tannin extract on the tannin content and size in
hybrid red wines and observed a low increase in tannins in Maréchal Foch wines, with no change of
the mDP after the addition of a high concentration of exogenous tannins. This could be explained by
the very low percentage of tannins contained in commercial grape tannin extracts (maximum up to
38% by weight) [81].

Norton and co-workers [62] hypothesized that the concentration of tannins in hybrid red wines
might be increased by blending—before fermentation—a low-tannin hybrid cultivar-Marquette, with a
high-tannin V. vinifera cultivar-Cabernet sauvignon. However, the final tannin content was lower than
predicted, potentially due to the high level of proteins in those wines. Due to a lack of information about
the composition of tannins in grapes and wines from V. spp., it is still difficult to understand the reason of
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a decrease in tannin content in grape skins during berry ripening, and of an increase in the concentration
during winemaking. Tannins can be highly reactive with cell wall material, including polysaccharides
and proteins from grapes, as will be discussed in the section below. Hypotheses on this lower tannin
content in wines from hybrids include:

(1) A lower solubility of tannins due to their chemical structure, as it has been previously shown that
oligomeric tannins tend to form aggregates and be less soluble than polymeric tannins [82].

(2) A lower tannin extraction and higher retention in grape skins either due to:

- the reactivity of tannins with cell wall material in grapes reducing their extractability for
quantitative and qualitative analysis [83], or

- the reactivity with plant enzymes or other proteins [84], or other phenolic compounds, such
as anthocyanins, commonly mono- and di-glucosides in hybrid grapes [21].

5. Reactivity of Tannins

5.1. Interactions between Macromolecules and Tannins in Vitis vinifera and Interspecific Hybrids

During the growing season and fruit development, polyphenols in the cell vacuoles are separated
from other macromolecules, such as polysaccharides and proteins in the grape cell walls. This implies
that any attractive interaction occurs during or after extraction of the tannins into the must/wine
matrix with polysaccharides, proteins that are soluble within that matrix, or complexed to remaining
cellular structures. The reactivity of tannins from V. vinifera wines with salivary proteins, such as
proline-rich proteins, has been extensively studied, as it is the first step in the mechanism of astringency
that commonly leads to the mouth drying sensation of red wines [85–91]. Recent research has also
focused on the interactions between cell wall material (CWM) and tannins in V. vinifera, to improve the
understanding on the extraction or retention of tannins during winemaking. CWM is comprised of both
polysaccharides and proteins, is cultivar dependent, and is challenging to fully characterize [92,93].
For the interspecific hybrids, most work has focused specifically on protein interaction with tannin,
since these cultivars have been shown to have a large concentration of soluble protein compared to
V. vinifera (hybrid juice-175.75 mg/L, V. vinifera juice-146.2 mg/L; hybrid wine-93.96 mg/L, V. vinifera
wine-15.95 mg/L) [57].

Non-covalent interactions between tannins and other macromolecules commonly involve
hydrophobic interactions and hydrogen bonds (Figure 2), as well as electrostatic interactions,
depending on the structure of the macromolecules and the environmental matrix. π-π stacking
also exists between the aromatic rings of polyphenol and protein, but has a much lower binding
energy and is therefore not as common as hydrogen bonds or hydrophobic interactions (Figure 2).
Hydrophobic interactions are described as the strong attraction of hydrophobic surfaces and
groups in water [94]. Hydrogen bonding occurs when a hydrogen atom, covalently bonded to
an electronegative atom, interacts non-covalently, but quite strongly with a separate electronegative
atom [95]. Most proteins and tannins have multiple binding sites where these types of interactions
are possible, and, similarly to hydrophobic interactions, their respective structures will influence the
strength and number of these types of bonds.

5.2. Effect of the Structure of Macromolecules

Plant cell walls are characterized as a network of polysaccharides with proteins, and some minor
compounds such as phenolic acids and minerals. This network provides the rigidity and elasticity to
plant cells during their development and includes cellulose microfibrils, hemicelluloses, and pectins as
the polymers of saccharides and some extensins: glycoproteins associated with pectins. In order to
improve the understanding of the interactions between tannins and cell wall material in grapes and
wine, model studies from Le Bourvellec and Bindon groups with extracted CWM and purified tannin
from apples and grapes have been used [46,96–99]. The apparent affinities of specific polysaccharides
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from CWM, as well as starch, have also been investigated, with procyanidins extracted from apple, pear,
and grapes with different structure and size. Starch and pectins showed the highest affinities with highly
polymerized and galloylated procyanidins. The apparent affinities between those polysaccharides and
procyanidins were ranked as follows: pectin >> xyloglucan > starch > cellulose [97,99,100].
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Pectins tend to form a gel type network, and it was hypothesized to have strong interactions
with the procyanidins, due to a large number of hydrophobic regions and the “hydrophobic cavities”
formed. The overall structure and conformational organization of the polysaccharides was suggested to
play a large role in the apparent affinities (pectin-gel with hydrophobic cavities, cellulose-microfibrils,
xyloglucans-globular, starch-porous granules). A more in-depth look into the effect of the pectin
structure and procyanidins from apples has also been reported [99]. Pectins are very complex
polysaccharides from plant cell walls that are composed of two main regions: the smooth,
also called homogalacturonans and the hairy, including rhamnogalacturonans type I and type II.
Homogalacturonans are characterized by a backbone of galacturonic acids more or less acetylated and/or
methylated. Watrelot et al., 2013 [99] have shown that highly methylated homogalacturonans (degree of
methylation of 70%) had the highest affinity for larger procyanidins, due to hydrophobic interactions
and hydrogen bonds. In contrast to smooth regions, hairy regions, specifically rhamnogalacturonans II,
had much lower affinities for procyanidins, due to the lateral side sugar chains limiting the accessibility
of procyanidins into the “hydrophobic cavities” of the pectins [100].

During fruit development and ripening, the network, the physical state, and composition of
polysaccharides from CWM change, as well as their ability to interact with tannins. In over-ripened
pears, the pectic hairy regions lose their lateral side chains, which increases the porosity of flesh cell
walls, and leads to a higher affinity with procyanidins [101]. These authors observed that the strength
of associations of CWM from different fruit parts with tannins decreases as follows: Parenchyma cells >

Flesh > Stone cells > Skins. Bindon et al., 2012 [102] also observed that the affinity for proanthocyanidin
to skin CWM increases during grape ripening, as the skin CWM may change configuration during
ripening, with an increase in porosity and other molecular restructuring. The same authors [103]
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examined the extraction of proanthocyanidins from different grape sources (skins vs. seeds) when
mesocarp was included or not during the extraction. They concluded that mesocarp preferentially
bound seed tannin over skin tannin, and that anthocyanins influenced the extraction of tannins.
The authors suggested that a higher juice: solids ratio for red wine fermentations may be beneficial to
increase the overall extraction of tannins by minimizing effects of a concentration gradient of tannin.

As mentioned above, the plant cell wall materials are also composed of proteins that can interact
with tannins during processing, but extensive research on the affinities between proteins and tannins
has been carried out on proline-rich proteins (PRPs) commonly found in saliva, as they are highly
related to the red wine astringency perception. It has been shown that proline residues provide
interaction points with polyphenols through hydrophobic interactions and hydrogen bonds, similar to
CWM-tannin interactions (Figure 2). Aromatic rings of tannins can interact through hydrophobic
stacking with the pyrrolidine ring of proline and form hydrogen bonds with the preceding amino acid
amide bond [2,104]. The proline residue also allows the protein to retain an open conformation by
preventing hydrogen bonding between amino acid residues of the protein [105,106].

Basic amino acids carry positive charges at the pH of grape juice and wine. These positively charged
residues, lysine, histidine, or arginine, can interact with tannins through electrostatic interactions.
While it has been suggested that hydrophobic interactions play a large role in the association of tannins
and proteins, histidine-rich proteins from saliva have been shown to more strongly interact with
tannins than PRPs [107,108]. Protein conformation also plays a role in tannin-protein interactions.
The affinity between a helicoidal protein (poly-l-proline) and a procyanidin of an mDP of 8 was higher
than with a globular protein, bovine serum albumin [109]. However, under high tannin concentration
or with large tannins, the interaction with globular proteins can be significant [105].

Proteins in grapes are present in the cell cytoplasm, as well as part of the cell wall structure.
The main proteins present in several hybrid cultivars have been identified as chitanase, thaumatin-like
protein, and β-endoglucanase, which are classified as functional and necessary for metabolism and
energy production [84]. These proteins are classified as pathogenesis related proteins, and are also
the proteins implicated in white wine haze of Vitis vinifera [55,110,111]. A recent report identified
over 100 proteins in Sauvignon Blanc grapes following extraction, trypsin digestion and LC-MS/MS
experiments [112]. While there was some overlap with the location of certain proteins in respect to the
skin, pulp, and seed tissues, the majority of identified proteins were found in both skins and pulp (38),
in pulp and seeds (15), and in skins and seeds (11).

5.3. Effect of the Structure of Tannins

Several variables of tannin structure are important in understanding interactions between tannins
and macromolecules. These include types of constitutive units, the types of linkages connecting these
units, the mean degree of polymerization (mDP) or size of the tannins, and conformation of longer
chain tannins. In grapes, these variables depend on grape species and cultivar, and can be affected by
the conditions of the growing season as previously explained.

The stereochemistry of the pyran ring of the flavan-3-ol units has an effect on the binding potential
and aggregation of tannins to proteins [113,114]. A study showed that monomeric (+)-catechin,
epicatechin-3-O-gallate, and epigallocatechin-3-O-gallate produced an aggregate haze when exposed
to poly-l-proline, however, monomeric (−)-epicatechin and (−)epigallocatechin did not [87]. In this
experiment, the (+)-catechin concentration needed to be significant, in order to allow for soluble
complexes to aggregate through interaction of the exposed flavan-3-ol unit and become insoluble.
The galloylated monomers are suggested to have the ability to interact with two protein units each
in a bilateral fashion, and subsequently cause aggregation, similarly to (+)-catechin. The reason that
the non-galloylated monomers did not cause an insoluble aggregate to form, was hypothesized to be:
(1) the interaction did not cause insolubilization of the complexes; or (2) the non-galloylated monomers
were more soluble than the galloylated monomers, and therefore interacted less with the proline-rich
proteins. Isothermal titration calorimetry was also used to evaluate these monomers, along with
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oligomers with a mDP of 3.85 with poly(l-proline) [115]. The larger oligomers were observed to have
a higher association constant with the salivary protein, which was explained by a larger entropic
contribution. This change in entropy comes from the increase in hydrophobic interactions and the loss
of water molecules on the protein surface. This is in agreement with previous studies that showed that
larger tannins will have a greater affinity to fining proteins [116].

Also important is the type of interflavan linkage: C4-C8 vs. C4-C6. Dimers with C4-C8 linkages
were shown to have higher activity towards protein than dimers with C4-C6 [113]. The greater affinity
for C4-C8 linked oligomers is postulated to be due to improved conformation for favorable interaction
over the C4-C6 linked oligomers.

In general, there have been several reports that confirm that CWM adsorbs proanthocyanidins
with a higher molecular weight [46,117]. One report, however, stated that, as the length of the
proanthocyandin chain increased the affinity for skin derived CWM decreased [96]. When examining
CWM and the adsorption of proanthocyanidin, a large body of work has been published from Bindon
and co-workers at the AWRI [46,83,96,102,103,117–121]. While many of these experiments concluded
that CWM derived from the flesh component of grapes had a higher affinity for proanthocyanidin
adsorption, it was also observed that the larger the proanthocyanidin, the higher the affinity for the
CWM. Even though skin proanthocyanidins typically have a larger mDP, contrary to the previous
statement, the Bindon team also observed a higher affinity for seed proanthocyanidin for CWM (of flesh
or skin) [117]. The seed proanthocyanidins that were adsorbed were of a higher molecular weight,
supporting the first study.

The size of tannins or mDP is positively correlated with protein precipitation, with molecules
of higher mDP having an increased ability to precipitate proteins [105]. The reason behind this is
due to the increase in the number of functional groups available on the tannin to interact with a
protein. For example, the tannin-protein reactivity of procyanidin dimer B3 with commercial BSA is
double that of the monomer (+)-catechin [113]. In the same line of reasoning, increasing the degree of
galloylation of tannins has been shown to have an increase in protein precipitation. By enhancing the
hydrophobic interactions with increased π-π interactions, the complexes can interact more strongly
(Figure 2). Examples of this include experiments where (−)-epicatechin or (−)-epigallocatechin
do not precipitate with salivary proteins or gelatin, however, (−)-epicatechin-3-O-gallate or
(−)-epigallocatechin-3-O-gallate will cause precipitation with the aforementioned proteins [122].
It has also been shown that increasing the number of hydroxyl groups on the flavan-3-ol backbone
(i.e., from (−)-epicatechin to (−)-epigallocatechin) will increase the interactions and overall binding to
proteins [123].

5.4. Effect of the Grape and Wine Matrix

The environment of a wine fermentation has a great impact on the extraction and retention of
tannins from red grape skins and seeds. Some chemical and physical factors contribute to the extraction
of tannins, including pH, ethanol concentration, and temperature. Researchers have also examined
the physical or chemical removal of CWM and proteins, in order to enhance tannin extraction and
retention in both V. vinifera and hybrid cultivars. Since different grape cultivars can have very different
concentrations of matrix components, it is difficult to develop a defined protocol for all fermentations,
in order to control or maximize tannin extraction.

It has been established that proteins have a stronger affinity for tannins when the pH of a solution
is near the pI of the protein [124]. A recent example showed that pH had a significant effect on the
ability of protein and tannin to interact and precipitate [125]. Protein-tannin complexes precipitated
more readily at a pH that corresponded to the pI of the protein (the globular protein-Bovine Serum
Albumin was under investigation). This result is consistent with the understanding that the solubility
of proteins is lowest at the pI, and that the 3-dimensional structure is weakened, leading to a more
open structure that is available for increased interactions.
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Solubility of tannins is important in a grape or wine matrix, due to changing concentrations of
ethanol. The effect of ethanol on the extraction of tannins from grapes to wine has been explained
above, but its effect on protein-tannin interactions is not fully understood. It has been shown that the
higher the solubility of tannins in water, as compared to n-octanol, the weaker the interaction with
proteins, due to the lack of hydrophobic interactions [82,126].

A series of reports have been published in support of a model developed for the extraction of
phenolics from red grapes during winemaking, based on experimental data [127–131]. The model was
developed as a function of temperature and ethanol concentration, and takes into consideration the
release of phenolics, the adsorption of phenolics onto grape material, and the decrease in anthocyanin
over time. In a study supporting this model, it was found that increasing both temperature and ethanol
concentrations increased the equilibration rate for the adsorption of proanthocyanidin to CWM, as well
as a preference for large molecular weight proanthocyanidins across all conditions [131]. A subsequent
report suggested that proanthocyanidin-CWM interaction may be irreversible at lower temperatures,
and reversibly adsorbed/desorbed at higher temperatures [131]. The researchers noted that the larger
molecular weight proanthocyanidins were more readily desorbed. An early report in this collection
of work investigated the temperature influence of the cap and must during a Cabernet sauvignon
fermentation on tannin extraction from skins or seeds [127]. Skin and seed phenolic compounds were
extracted differently under increased temperature conditions. The skin tannins were extracted at a
higher rate, but overall, the concentration did not increase, whereas the seed tannins were extracted
at a higher rate and did see increases to their overall extraction. Interestingly the increase in must
temperature was found to have a greater effect than the increase in cap temperature.

6. Conclusions

Based upon previous research of V. vinifera varieties, winemakers are applying different methods
to extract more tannins during red winemaking, especially in hybrid wines, either by removing CWM,
or proteins.

A recent report using Monastrell grapes saw the grapes crushed, pomace separated, juice settled
(similar to white or rose pre-fermentation), pomace re-introduced, and maceration/fermentation carried
out under standard conditions [132]. This study aimed to remove excess CWM and polysaccharides
from the fermentation. The study reported a 43% increase in tannin, as compared to a control
fermentation with no settling of juice. The types and sizes of tannins were concluded to be similar in
both wines, although there was a greater quantity of them in the wine produced from settled juice.

Another set of experiments performed on Frontenac grapes evaluated several winemaking
techniques to promote tannin extraction by reducing interactions with CWM and proteins [80].
Must was heated or bentonite treated to remove protein, as well as pomace inclusion or exclusion
during the fermentation. Wines were also macerated for an extended period of time, in order to
allow more tannin to be extracted. The authors concluded that cold-maceration prior to fermentation,
followed by pomace removal during fermentation, is beneficial for tannin retention for this hybrid,
however they also suggested that a 3 g/L addition of enological tannins to heat treated must was also
necessary, to improve on the final wine’s astringency.

In this review, we have highlighted the differences between tannins in grapes and wine made from V.
vinifera or interspecific hybrids. The variability of tannins due to species, variety, climate, and viticultural
practices makes understanding tannin behavior in grapes and wine difficult. Further work into the
composition of the CWM of interspecific hybrids is necessary to understand if and how these
components are involved in the reduced extraction and poor retention of tannins in the subsequent
wines. Future studies should focus on both V. vinifera and interspecific hybrid red cultivars, identifying
and enumerating the polysaccharides and proteins present in grapes and wines, and determining what
impact they are specifically having on tannin extraction during fermentation and retention in finished
wines. In the case of interspecific hybrids where there is good correlation between low wine tannin
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and high wine protein concentrations, mitigation techniques need to be investigated further, to allow
winemakers to maximize tannin extraction without sacrificing other factors of wine quality.

Funding: This research received no external funding. The APC was funded by the Midwest Grape and Wine
Industry Institute and the College of Agriculture and Life Sciences.

Acknowledgments: The authors would like to thank Somchai Rice for her contribution in editing this review.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Falcao, L.; Araujo, M.E.M. Vegetable Tannins Used in the Manufacture of Historic Leathers. Molecules 2018,
23, 1081. [CrossRef]

2. Baxter, N.J.; Lilley, T.H.; Haslam, E.; Williamson, M.P. Multiple Interactions between Polyphenols and
a Salivary Proline-Rich Protein Repeat Result in Complexation and Precipitation. Biochemistry 1997,
36, 5566–5577. [CrossRef] [PubMed]

3. Haslam, E. Plant Polyphenols: Vegetable Tannins Revisited; CUP Archive: Cambridge, UK, 1989.
4. Narduzzi, L.; Stanstrup, J.; Mattivi, F. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics

Study of Grape Composition. J. Agric. Food Chem. 2015, 63, 6823–6834. [CrossRef] [PubMed]
5. Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic Composition of Grape

Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [CrossRef] [PubMed]
6. Rice, A.C. Chemistry of Winemaking from Native American Grape Varieties. In Chemistry of Winemaking;

Webb, A.D., Ed.; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1974;
Volume 137, pp. 88–115. ISBN 978-0-8412-0208-5.

7. Kliewer, W.M. Concentration of Tartrates, Malates, Glucose and Fructose in the Fruits of the Genus Vitis.
Am. J. Enol. Vitic. 1967, 18, 87–96.

8. Ollat, N.; Verdin, P.; Carde, J.-P.; Barrieu, F.; Gaudillère, J.-P.; Moing, A. Grape berry development: A review.
J. Int. Sci. Vigne Vin 2002, 36, 109–131. [CrossRef]

9. Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008;
ISBN 978-0-12-373646-8.

10. Lamport, D.T.A. 13—Structure and Function of Plant Glycoproteins. In Carbohydrates: Structure and Function;
Preiss, J., Ed.; Academic Press: Cambridge, MA, USA, 1980; pp. 501–541. ISBN 978-0-12-675403-2.

11. Huang, X.-M.; Huang, H.-B.; Wang, H.-C. Cell walls of loosening skin in post-veraison grape berries lose
structural polysaccharides and calcium while accumulate structural proteins. Sci. Hortic. 2005, 104, 249–263.
[CrossRef]

12. Nunan, K.J.; Sims, I.M.; Bacic, A.; Robinson, S.P.; Fincher, G.B. Changes in Cell Wall Composition during
Ripening of Grape Berries. Plant Physiol. 1998, 118, 783–792. [CrossRef]

13. Yakushiji, H.; Sakurai, N.; Morinaga, K. Changes in cell-wall polysaccharides from the mesocarp of grape
berries during veraison. Physiol. Plant. 2001, 111, 188–195. [CrossRef]

14. Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E.
Differences in morphology and composition of skin and pulp cell walls from grapes (Vitis vinifera L.):
Technological implications. Eur. Food Res. Technol. 2007, 227, 223. [CrossRef]

15. Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Changes in
skin cell wall composition during the maturation of four premium wine grape varieties. J. Sci. Food Agric.
2008, 88, 420–428. [CrossRef]

16. Kliewer, W.M. Sugars and Organic Acids of Vitis vinifera. Plant Physiol. 1966, 41, 923–931. [CrossRef]
[PubMed]

17. Riesterer-Loper, J.; Workmaster, B.A.; Atucha, A. Impact of Fruit Zone Sunlight Exposure on Ripening
Profiles of Cold Climate Interspecific Hybrid Winegrapes. Am. J. Enol. Vitic. 2019, 70, 286–296. [CrossRef]

18. Kontoudakis, N.; Esteruelas, M.; Fort Marsal, M.F.; Canals, J.-M.; Freitas, V.; Zamora, F. Influence of the
heterogeneity of grape phenolic maturity on wine composition and quality. Food Chem. 2011, 124, 767–774.
[CrossRef]

http://dx.doi.org/10.3390/molecules23051081
http://dx.doi.org/10.1021/bi9700328
http://www.ncbi.nlm.nih.gov/pubmed/9154941
http://dx.doi.org/10.1021/acs.jafc.5b01999
http://www.ncbi.nlm.nih.gov/pubmed/26158394
http://dx.doi.org/10.1021/jf991171u
http://www.ncbi.nlm.nih.gov/pubmed/10775352
http://dx.doi.org/10.20870/oeno-one.2002.36.3.970
http://dx.doi.org/10.1016/j.scienta.2004.09.002
http://dx.doi.org/10.1104/pp.118.3.783
http://dx.doi.org/10.1034/j.1399-3054.2001.1110209.x
http://dx.doi.org/10.1007/s00217-007-0714-9
http://dx.doi.org/10.1002/jsfa.3102
http://dx.doi.org/10.1104/pp.41.6.923
http://www.ncbi.nlm.nih.gov/pubmed/16656357
http://dx.doi.org/10.5344/ajev.2019.18080
http://dx.doi.org/10.1016/j.foodchem.2010.06.093


Molecules 2020, 25, 2110 19 of 24

19. Kontoudakis, N.; González, E.; Gil, M.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Influence of Wine pH
on Changes in Color and Polyphenol Composition Induced by Micro-oxygenation. J. Agric. Food Chem. 2011,
59, 1974–1984. [CrossRef]

20. Brouillard, R.; Dubois, J.-E. Mechanism of the structural transformations of anthocyanins in acidic media.
J. Am. Chem. Soc. 1977, 99, 1359–1364. [CrossRef]

21. Burtch, C.; Mansfield, A.K. Comparing Red Wine Color in V. vinifera and Hybrid Cultivars; Cornell University:
Geneva, NY, USA, 2016; p. 6.

22. Kennedy, J.A.; Hayasaka, Y.; Vidal, S.; Waters, E.J.; Jones, G.P. Composition of Grape Skin Proanthocyanidins
at Different Stages of Berry Development. J. Agric. Food Chem. 2001, 49, 5348–5355. [CrossRef]

23. Manns, D.C.; Lenerz, C.T.M.C.; Mansfield, A.K. Impact of Processing Parameters on the Phenolic Profile
of Wines Produced from Hybrid Red Grapes Maréchal Foch, Corot noir, and Marquette. J. Food Sci. 2013,
78, C696–C702. [CrossRef]

24. Armitage, R.; Haworth, E.; Haslame, R.D.; Searle, T. Gallotannins 6 Turkish Gallotannin. J. Chem. Soc.
1962, 3808. [CrossRef]

25. Pizzi, A.; Pasch, H.; Rode, K.; Giovando, S. Polymer structure of commercial hydrolyzable tannins by
matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J. Appl. Polym. Sci. 2009,
113, 3847–3859. [CrossRef]

26. Haslam, E.; Haworth, R.D.; Mills, S.D.; Rogers, H.J.; Armitage, R.; Searle, T. 359. Gallotannins. Part II.
Some esters and depsides of gallic acid. J. Chem. Soc. Resumed 1961, 1836–1842. [CrossRef]

27. Venter, P.; Pasch, H.; de Villiers, A. Comprehensive analysis of tara tannins by reversed-phase and
hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry.
Anal. Bioanal. Chem. 2019, 411, 6329–6341. [CrossRef] [PubMed]

28. Fecka, I.; Cisowski, W. Tannins and Flavonoids from the Erodium cicutarium Herb. Z. Für Naturforschung B
2005, 60, 555–560. [CrossRef]

29. Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism,
functions and health. Food Res. Int. 2011, 44, 1150–1160. [CrossRef]

30. Niemetz, R.; Gross, G.G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 2005,
66, 2001–2011. [CrossRef]

31. Quideau, S. Chemistry and Biology of Ellagitannins: An Underestimated Class of Bioactive Plant Polyphenols;
World Scientific: Singapore, 2009; p. 374.

32. Cadahía, E.; Varea, S.; Muñoz, L.; Fernández de Simón, B.; García-Vallejo, M.C. Evolution of Ellagitannins in
Spanish, French, and American Oak Woods during Natural Seasoning and Toasting. J. Agric. Food Chem.
2001, 49, 3677–3684. [CrossRef]

33. Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008,
52, 79–104. [CrossRef]

34. Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev.
1998, 56, 317–333. [CrossRef]

35. Porter, L.J. 11—Tannins. In Methods in Plant Biochemistry; Harborne, J.B., Ed.; Plant Phenolics; Academic Press:
Cambridge, MA, USA; Volume 1, pp. 389–419.

36. Bruyne, T.D.; Pieters, L.; Deelstra, H.; Vlietinck, A. Condensed vegetable tannins: Biodiversity in structure
and biological activities. Biochem. Syst. Ecol. 1999, 27, 445–459. [CrossRef]

37. Hemingway, R.W.; Karchesy, J.J.; Branham, S.J. Chemistry and Significance of Condensed Tannins; Springer US:
Boston, MA, USA, 1989; ISBN 978-1-4684-7511-1.

38. Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.-F. Polyphenol Profiles of French Cider Apple
Varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853. [CrossRef]

39. Kennedy, J.A. Grape and wine phenolics: Observations and recent findings. Cienc. Investig. Agrar. 2008,
35, 107–120. [CrossRef]

40. Zeng, L.; Pons-Mercade, P.; Richard, T.; Krisa, S.; Teissedre, P.-L.; Jourdes, M. Crown Procyanidin
Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against
Amyloid—Induced Toxicity. Molecules 2019, 24, 1915. [CrossRef] [PubMed]

41. Liu, C.; Wang, X.; Shulaev, V.; Dixon, R.A. A role for leucoanthocyanidin reductase in the extension of
proanthocyanidins. Nat. Plants 2016, 2, 1–7. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/jf103038g
http://dx.doi.org/10.1021/ja00447a012
http://dx.doi.org/10.1021/jf010758h
http://dx.doi.org/10.1111/1750-3841.12108
http://dx.doi.org/10.1039/jr9620003808
http://dx.doi.org/10.1002/app.30377
http://dx.doi.org/10.1039/jr9610001836
http://dx.doi.org/10.1007/s00216-019-01931-x
http://www.ncbi.nlm.nih.gov/pubmed/31222409
http://dx.doi.org/10.1515/znb-2005-0513
http://dx.doi.org/10.1016/j.foodres.2011.04.027
http://dx.doi.org/10.1016/j.phytochem.2005.01.009
http://dx.doi.org/10.1021/jf010288r
http://dx.doi.org/10.1002/mnfr.200700137
http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x
http://dx.doi.org/10.1016/S0305-1978(98)00101-X
http://dx.doi.org/10.1021/jf990563y
http://dx.doi.org/10.4067/S0718-16202008000200001
http://dx.doi.org/10.3390/molecules24101915
http://www.ncbi.nlm.nih.gov/pubmed/31109031
http://dx.doi.org/10.1038/nplants.2016.182
http://www.ncbi.nlm.nih.gov/pubmed/27869786


Molecules 2020, 25, 2110 20 of 24

42. Bogs, J.; Downey, M.O.; Harvey, J.S.; Ashton, A.R.; Tanner, G.J.; Robinson, S.P. Proanthocyanidin Synthesis and
Expression of Genes Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase in Developing
Grape Berries and Grapevine Leaves. Plant Physiol. 2005, 139, 652–663. [CrossRef] [PubMed]

43. Rousserie, P.; Rabot, A.; Geny-Denis, L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape
Seeds? J. Agric. Food Chem. 2019, 67, 1325–1343. [CrossRef] [PubMed]

44. Cheynier, V. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S.
[CrossRef]

45. Cadot, Y.; Miñana-Castelló, M.; Chevalier, M. Anatomical, Histological, and Histochemical Changes in
Grape Seeds from Vitis vinifera L. cv Cabernet franc during Fruit Development. J. Agric. Food Chem. 2006,
54, 9206–9215. [CrossRef]

46. Bindon, K.A.; Smith, P.A.; Kennedy, J.A. Interaction between Grape-Derived Proanthocyanidins and Cell
Wall Material. 1. Effect on Proanthocyanidin Composition and Molecular Mass. J. Agric. Food Chem. 2010,
58, 2520–2528. [CrossRef]

47. Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolution of Catechins and Oligomeric Procyanidins
during Grape Maturation of Castelão Francês and Touriga Francesa. Am. J. Enol. Vitic. 2001, 52, 230–234.

48. Souquet, J.-M.; Cheynier, V.; Brossaud, F.; Moutounet, M. Polymeric proanthocyanidins from grape skins.
Phytochemistry 1996, 43, 509–512. [CrossRef]

49. Hanlin, R.L.; Downey, M.O. Condensed Tannin Accumulation and Composition in Skin of Shiraz and
Cabernet Sauvignon Grapes during Berry Development. Am. J. Enol. Vitic. 2009, 60, 13–23.

50. Kyraleou, M.; Kallithraka, S.; Theodorou, N.; Teissedre, P.-L.; Kotseridis, Y.; Koundouras, S. Changes in
Tannin Composition of Syrah Grape Skins and Seeds during Fruit Ripening under Contrasting Water
Conditions. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1453. [CrossRef] [PubMed]

51. Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape Flavonoid Evolution and
Composition Under Altered Light and Temperature Conditions in Cabernet Sauvignon (Vitis vinifera L.).
Front. Plant Sci. 2019, 10. [CrossRef] [PubMed]

52. Yu, R.; Cook, M.G.; Yacco, R.S.; Watrelot, A.A.; Gambetta, G.; Kennedy, J.A.; Kurtural, S.K. Effects of Leaf
Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in
a Hot Climate. J. Agric. Food Chem. 2016, 64, 8118–8127. [CrossRef] [PubMed]

53. Guaita, M.; Bosso, A. Polyphenolic Characterization of Grape Skins and Seeds of Four Italian Red Cultivars
at Harvest and after Fermentative Maceration. Foods 2019, 8, 395. [CrossRef]

54. del Rio, J.L.P.; Kennedy, J.A. Development of Proanthocyanidins in Vitis vinifera L. cv. Pinot noir Grapes and
Extraction into Wine. Am. J. Enol. Vitic. 2006, 57, 125–132.

55. Springer, L.F.; Chen, L.-A.; Stahlecker, A.C.; Cousins, P.; Sacks, G.L. Relationship of Soluble Grape-Derived
Proteins to Condensed Tannin Extractability during Red Wine Fermentation. J. Agric. Food Chem. 2016,
64, 8191–8199. [CrossRef]

56. Rice, S.; Koziel, J.A.; Dharmadhikari, M.; Fennell, A. Evaluation of Tannins and Anthocyanins in Marquette,
Frontenac, and St. Croix Cold-Hardy Grape Cultivars. Fermentation 2017, 3, 47. [CrossRef]

57. Springer, L.F.; Sacks, G.L. Protein-Precipitable Tannin in Wines from Vitis vinifera and Interspecific Hybrid
Grapes (Vitis ssp.): Differences in Concentration, Extractability, and Cell Wall Binding. J. Agric. Food Chem.
2014, 62, 7515–7523. [CrossRef]
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American Vitis spp. In Proceedings of the Oeno2011: Actes de colloques du 9e symposium international
d’oenologie de Bordeaux, Bordeaux, Fance, 15–17 June 2011; p. 126.

59. Fuleki, T.; Ricardo da Silva, J.M. Catechin and Procyanidin Composition of Seeds from Grape Cultivars
Grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [CrossRef]

60. Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Flavan-3-ols and Condensed Tannin. In Understanding Wine
Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 117–126. ISBN 978-1-118-73072-0.

61. Biasoto, A.C.T.; Netto, F.M.; Marques, E.J.N.; da Silva, M.A.A.P. Acceptability and preference drivers of red
wines produced from Vitis labrusca and hybrid grapes. Food Res. Int. 2014, 62, 456–466. [CrossRef]

62. Norton, E.L.; Sacks, G.L.; Talbert, J.N. Nonlinear Behavior of Protein and Tannin in Wine Produced by
Cofermentation of an Interspecific Hybrid (Vitis spp.) and vinifera Cultivar. Am. J. Enol. Vitic. 2020, 71, 26–32.
[CrossRef]

http://dx.doi.org/10.1104/pp.105.064238
http://www.ncbi.nlm.nih.gov/pubmed/16169968
http://dx.doi.org/10.1021/acs.jafc.8b05768
http://www.ncbi.nlm.nih.gov/pubmed/30632368
http://dx.doi.org/10.1093/ajcn/81.1.223S
http://dx.doi.org/10.1021/jf061326f
http://dx.doi.org/10.1021/jf9037453
http://dx.doi.org/10.1016/0031-9422(96)00301-9
http://dx.doi.org/10.3390/molecules22091453
http://www.ncbi.nlm.nih.gov/pubmed/28862687
http://dx.doi.org/10.3389/fpls.2019.01062
http://www.ncbi.nlm.nih.gov/pubmed/31798597
http://dx.doi.org/10.1021/acs.jafc.6b03748
http://www.ncbi.nlm.nih.gov/pubmed/27728974
http://dx.doi.org/10.3390/foods8090395
http://dx.doi.org/10.1021/acs.jafc.6b02891
http://dx.doi.org/10.3390/fermentation3030047
http://dx.doi.org/10.1021/jf5023274
http://dx.doi.org/10.1021/jf960493k
http://dx.doi.org/10.1016/j.foodres.2014.03.052
http://dx.doi.org/10.5344/ajev.2019.19032


Molecules 2020, 25, 2110 21 of 24

63. Casassa, L.F.; Sari, S.E.; Bolcato, E.A.; Fanzone, M.L. Microwave-Assisted Extraction Applied to Merlot
Grapes with Contrasting Maturity Levels: Effects on Phenolic Chemistry and Wine Color. Fermentation 2019,
5, 15. [CrossRef]

64. Aron, P.M.; Kennedy, J.A. Compositional investigation of phenolic polymers isolated from Vitis vinifera L.
Cv. Pinot noir during fermentation. J. Agric. Food Chem. 2007, 55, 5670–5680. [CrossRef] [PubMed]

65. González-Manzano, S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Extraction of flavan-3-ols from grape seed and
skin into wine using simulated maceration. Anal. Chim. Acta 2004, 513, 283–289. [CrossRef]

66. Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Ricardo da Silva, J.M. Monomeric,
Oligomeric, and Polymeric Flavan-3-ol Composition of Wines and Grapes from Vitis vinifera L. Cv. Graciano,
Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [CrossRef]

67. Yacco, R.S.; Watrelot, A.A.; Kennedy, J.A. Red Wine Tannin Structure–Activity Relationships during
Fermentation and Maceration. J. Agric. Food Chem. 2016, 64, 860–869. [CrossRef]

68. Morel-Salmi, C.; Souquet, J.-M.; Bes, M.; Cheynier, V. Effect of Flash Release Treatment on Phenolic Extraction
and Wine Composition. J. Agric. Food Chem. 2006, 54, 4270–4276. [CrossRef]

69. Suriano, S.; Alba, V.; Tarricone, L.; Di Gennaro, D. Maceration with stems contact fermentation: Effect on
proanthocyanidins compounds and color in Primitivo red wines. Food Chem. 2015, 177, 382–389. [CrossRef]

70. Berrueta, L.A.; Rasines-Perea, Z.; Prieto-Perea, N.; Asensio-Regalado, C.; Alonso-Salces, R.M.;
Sánchez-Ilárduya, M.B.; Gallo, B. Formation and evolution profiles of anthocyanin derivatives and tannins
during fermentations and aging of red wines. Eur. Food Res. Technol. 2020, 246, 149–165. [CrossRef]

71. Watson, B.; Price, S. Pinot Noir Processing Effects on Wine Color and Phenolics 1994-1995; Oregon Wine Research
Institute: Corvallis, OR, USA, 1995.

72. Reynolds, A.; Cliff, M.; Girard, B.; Kopp, T.G. Influence of fermentation temperature on composition and
sensory properties of Semillon and Shiraz wine. Am. J. Enol. Vitic. 2001, 52, 235–240.

73. Yokotsuka, K.; Sato, M.; Ueno, N.; Singleton, V. Colour and Sensory Characteristics of Merlot Red Wines
Caused by Prolonged Pomace Contact. J. Wine Res. 2000, 11, 7–18. [CrossRef]

74. El Darra, N.; Turk, M.F.; Ducasse, M.-A.; Grimi, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Changes in
polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field,
enzymes and thermovinification pretreatments. Food Chem. 2016, 194, 944–950. [CrossRef] [PubMed]

75. de Andrade Neves, N.; de Araújo Pantoja, L.; dos Santos, A.S. Thermovinification of grapes from the Cabernet
Sauvignon and Pinot Noir varieties using immobilized yeasts. Eur. Food Res. Technol. 2014, 238, 79–84.
[CrossRef]

76. Samoticha, J.; Wojdyło, A.; Chmielewska, J.; Oszmiański, J. The effects of flash release conditions on
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