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Abstract: A novel and simple optical biosensor to detect triglycerides (TGs) has been successfully
constructed by using pectin hydrogel membrane as the indicator pH and chromoionophore ETH
5294 (CI), with lipase as the catalyst. The enzymatic working system against TGs releasing H+ ions
will affect the color absorbance of CI. The characterization results show that a TG biosensor has the
optimum condition and sensitivity at the phosphate buffer concentration of 50 mM, pH 7, and enzyme
loading of 60 µg. The biosensor works at the tripalmitin (TP) concentration range of 100–400 mg/dL.
With the sensitivity of 0.001 (∆A/(mg/dL)), the biosensor response reaches stability after five minutes,
and the limit of detection (LOD) of the TG optical biosensor is 15 mg/dL. Relative standard deviation
(RSD) in a reproducibility test was 2.5%, with a 15-day lifespan.

Keywords: triglyceride optical biosensor; pectin; chromoionophore

1. Introduction

A triglyceride (TG), also known as a type of biolipid, is a triester of glycerol bound to three fatty
acids, with varying saturation degrees between 0 and 6 [1]. TGs play an important role in cellular
metabolism as an energy source for dietary lipid transportation [2]. In the human body, TGs are a health
indicator, where their normal serum concentration range is from 40 to 150 mg/dL [3]. Elevated TG
concentrations in the body may result in cardiovascular and coronary heart diseases [4–7]. Therefore,
due to this health concern, more effective ways to determine TG concentrations in food, beverage,
and cosmetic products must be studied.

At present, with the rapid advancement of science and technology, cutting-edge equipment has
been developed for the detection of TGs. These include colorimetry [8,9], spectrophotometry [10–14],
chromatography [15,16], fluorometry [17], titrimetry [18], nuclear magnetic resonance [19],
and enzymatic colorimetry [20]. Nevertheless, most of this mainstream equipment operates in a time-
consuming and expensive fashion, not to mention requiring highly skilled technicians. Therefore,
a simple and selective avant-garde method for TG analysis is in high demand. Biosensors have received
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considerable attention from researchers for qualitative TG analysis of late. Scientists are particularly
interested in looking into employing electrochemical analysis techniques [21–23], using multienzyme
working systems [24,25] to develop these biosensors.

Previous electrochemical TG biosensor design has included TG measurement based on pH change
from the hydrolysis of triglycerides by enzymes [26,27]. However, the change of pH in a potentiometric
system will be highly affected by the presence of interference ions in a sample. Hence, we have chosen
to construct an optical biosensor instead, so that this flaw will be eliminated, and our biosensor will be
unaffected by ionic interferences.

In the construction of a biosensor, the immobilizing matrix plays an important role in maintaining
biosensor stability during an analyte reaction and imparting a longer shelf life. A biosensor matrix
can be constructed from synthetic and inorganic polymers, such as silicon [28–30] and polyvinyl
chloride [31]. However, membranes from synthetic materials possess inefficient permeability, and in
the long run are detrimental to the environment. Hence, biopolymeric materials like pectin [32] will
be an excellent choice for a biosensor matrix. Biopolymers are superior in terms of biocompatibility,
capability of enzyme absorption, thermal stability, and not to mention environmentally friendliness.
Pectin, for instance, has been recognized for its hydrogel properties, which can facilitate the interaction
of the active compounds and analytes within the matrix [32,33].

In this research, we report the development of a triglyceride, optical, bio-enzymatic biosensor,
using pectin hydrogel membrane as its enzyme immobilizing matrix and containing chromoionophore
ETH 5294 (CI) as a pH indicator. The hydrogel membrane is prepared with pectin, crosslinked with
CaCl2 and CI as the first layer. The second layer consists of lipase enzymes immobilized via entrapment,
which acts as the specific biocatalyst for TG hydrolysis. The products of TG hydrolysis by lipase are
glycerol and fatty acids.

The enzymatic reaction is known to produce H+ ions from fatty acids, leading to a pH change that
causes the CI to be protonated. CI changes color from pink (deprotonated form) to blue (protonated
form) on the pectin hydrogel membrane surface, and can be observed with a UV-VIS spectrophotometer.
To the best of our knowledge, there is no research reporting triglyceride determination using a biosensor
based on optical calculations. The design of the TG optical biosensor is illustrated in Figure 1.
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Figure 1. Triglyceride optical biosensor, developed from immobilized lipase enzymes via entrapment
and adsorption on the pectin hydrogel membrane surface.
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2. Materials and Methods

2.1. Materials and Instruments

Chemicals used in this research include CI, monopotassium dihydrogen phosphate (KH2PO4),
dipotassium phosphate (K2HPO4) from Fluka (Steinhem, Germany) and Candida antartica lipase b
enzyme from Aspergillus oryzae (~9 U/Mg), as well as Glycerol tripalmitin (TP) ≥ 85%, pectin, absolute
ethanol (C2H5OH), and calcium chloride (CaCl2) from Sigma Aldrich (St Louis, MO, USA).

The absorbance signal from the biosensor was determined by a Shimazu 1800 UV-VIS
spectrophotometer (Kyoto, Japan) and pH buffer controlled with a Thermo Orion Star A2115 pH
meter (Waltham, MA, USA). The pectin membrane surface morphology was analyzed with a Zeiss
Merlin/Merlin/Gemini’2 Compact/Supra 55VP (Carl Zeiss, Jena, Germany) field emission scanning
electron microscopy (FESEM).

2.2. Reagent and Solution

The CI reagent was prepared by dissolving 0.4 mg CI in 1 mL ethanol and mixing for 10 min until
homogenous. Potassium phosphate buffer solution (PBS) was prepared by mixing monopotassium
dihydrogen phosphate (KH2PO4) with dipotassium hydrogen phosphate (K2HPO4). The TP stock
solution was prepared by diluting TP stock solution with PBS 10 mM at pH 7. Enzyme lipase solution
is prepared by dissolving 2 mg lipase in 1000 µL PBS 10 mM (pH 7), stored in a freezer at 4 ◦C. The 2%
hydrogel membrane solution is prepared by mixing 2 grams of pectin into 100 mL CaCl2 solution
0.1 M. CaCl2 0.1 M solution is prepared by dissolving CaCl2 into PBS 0.01 M solution at pH 7 and
heating at 60 ◦C for 30 min while stirring until homogenous.

2.3. Preparation of Triglyceride Optical Biosensor and Biosensor Response Optimization

Our TG optical biosensor was prepared as illustrated by Hasanah et al. [33], with modifications.
The TG optical biosensor had two layers: the bottom layer was the pH optical sensor, consisting
of CI contained in a pectin membrane (Pectin/CI); meanwhile, the upper layer consisted of lipase
enzyme solution. The bottom layer was obtained by dissolving 1 mL pectin 2% and the addition of
400 µL CI solution, which was mixed for 10 min until homogenous. A total of 55 µL of this pectin
membrane/CI solution was added onto the surface of a plastic sheet, creating a circle 8 mm in diameter,
and was left to dry overnight at room temperature (25 ◦C). Next, 30 µL lipase enzyme solution was
coated onto the dried pectin membrane/CI layer and stored in refrigerator for 24 h at 4 ◦C. Before use,
the pH optical sensor was first converted into its deprotonated form, using TP and PBS 1 M buffer at
pH 9. All parameters were conducted using three replicate biosensors. In addition, this biosensor was
designed as a disposable, and will not be reused. The biosensor also does not require immersion in a
sample, and it only involves dropping small amount of sample (40 µL) onto the surface of the biosensor.

The effect of PBS buffer concentration on the TG biosensor is determined by varying PBS
concentrations of 10, 50, and 100 mM at pH 7 and TP concentration from 100–500 mg/dL, measured at
a wavelength of 615 nm.

TG biosensor response optimization against the pH change was determined using PBS 50 mM
and a TP concentration of 100–500 mg/dL, at a range of pH 6–8.

In order to evaluate the effect of lipase enzyme concentration against the TG biosensor, the lipase
concentration was varied between 20–100 µg at a TP concentration of 400 mg/dL in PBS buffer 50 mM,
at pH 7.

The response time of the TG biosensor was determined by measuring the biosensor response
every minute for 10 min at 400 mg/dL TP concentration
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2.4. Triglyceride Optical Biosensor Performance Characterization

The performance of the TG optical biosensor probe was evaluated using a few parameters,
including dynamic linear range, the limit of detection (LOD), storage stability of the TG biosensor,
and its reproducibility.

The dynamic linear range of the TG optical biosensor was constructed against increasing TP as
the triglyceride, with concentrations in the range of 100 mg/dL to 500 mg/dL in 50 mM PBS at pH 7.
This was followed by the LOD, where three blank absorbance values were taken and calculated based
on the equation.

LOD = 3SD/S

where SD is the standard deviation of the blank values and S is the slope of the plotted concentration
of TP from 100–400 mg/dL versus absorbance using an optimized biosensor.

Next, in order to evaluate the storage stability of this TG biosensor, 50 TG biosensors are produced
and stored in a refrigerator at 4 ◦C. The biosensors were measured periodically, where during each
measurement, three biosensors were used. These biosensors were tested with a TP concentration of
400 mg/dL in 50 mM PBS pH 7 for 25 days.

The reproducibility of the TG biosensor is evaluated by measuring 10 TG biosensors and calculating
their relative standard deviation (RSD) and sensitivity values.

3. Results and Discussion

3.1. Characterization of Pectin Hydrogel Membrane

Pectin hydrogel membrane is made with a CaCl2 crosslinker. Ca2+ ions can induce pectin to be
crosslinked when CaCl2 is inserted into pectin solution, thus forming a gel. The obtained hydrogel
membrane is colorless, and morphological observation with scanning electron microscopy (SEM) shows
that the pectin membrane is homogenous, giving it a smooth surface, which is important for the absorbance
value consistency (Figure 2a). On the other hand, CI is added into the pectin hydrogel membrane as an
indicator, with lipase enzyme acting as the catalyst for TG biosensor. As seen in Figure 2b, the morphology
of a pectin hydrogel membrane changes when lipase is present on the membrane surface.

An X-ray diffraction (XRD) analysis was performed to confirm the amorphous structure of pure
pectin and the pectin hydrogel membrane. Here, the peaks for pectin were at 2θ ≈ 39 and 43, with the
intensities of 68 and 256, respectively. Meanwhile, the peaks obtained for pectin hydrogel membrane
were at 2θ ≈ 39 and 43, and the intensity decreased to 45 and 153, respectively. This can be ascribed
to the more amorphous characteristic of the pectin hydrogel membrane compared to pure pectin.
The diffractogram is displayed in Figure 2c. The elastic properties of the pectin hydrogel membrane
were based on the result of a visual inspection, and are suitable as optical sensor matrices.
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Figure 2. Characterization of pectin hydrogel membrane: (a) SEM morphology of pectin hydrogel
membrane (pectin + CaCl2 + CI); (b) SEM morphology of a triglyceride (TG) optical biosensor
membrane (pectin + CaCl2 + CI + lipase); (c) Crystallinity diffractogram of pure pectin and pectin
hydrogel membrane.

3.2. The Response of a Triglyceride Optical Sensor Using a Pectin Hydrogel Membrane

The construction of the TG optical biosensor consisted of the preparation of a pH optical
sensor [26,32] that was modified with the addition of a lipase enzyme. Lipase will catalyze the
transformation of a TG into a fatty acid, which will be detected by the pH optical sensor.

The response of the pH optical sensor at pH 5–9 has a sensitivity of 0.056 (R2 = 0.0986), where the
color change of CI takes place against the change of pH, as reported by Hasanah et al. [33]. This becomes
the basis for TG determination of this optical biosensor, as a pH change will occur when lipase
hydrolyzes TPs into fatty acids. The CI will undergo a change in color proportional to the increasing
TP concentration as a result of this pH change, as shown by Figure 3.
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on a pectin hydrogel membrane.

3.3. The Effect of Buffer Concentration, pH, and Loading Enzyme Concentration against the Response of a
Triglyceride Optical Biosensor

As mentioned earlier, the upper layer of this TG biosensor consisted of a lipase enzyme solution.
TP, a triglyceride, was used as the substrate for this biosensor’s characterization. A lipase enzyme will
catalyze TG hydrolysis into fatty acids and glycerol [28]. The released acid results in a decrease in pH,
leading to a color change on the pectin hydrogel membrane from pink to blue. The absorbance of this
color change can be measured at λmax = 615 nm.

In addition, the pH change also depends on the strength of the ionic buffer [19,20]. The effect of
buffer concentration against biosensor response is observed with PBS concentrations from 10–100 mM.
The TG biosensor response against various PBS concentrations at pH 7 is shown in Table 1. A phosphate
buffer with a concentration of 50 mM gives the best linearity and sensitivity compared to other
concentrations. In this case, buffer concentration of 50 mM is the most suitable condition for lipase
activation. Therefore, a phosphate buffer of 50 mM was selected as the buffer concentration for the
next optimization.
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Table 1. The effect of buffer concentration against sensitivity and determination coefficient (R2) of the
TG biosensor at 615 nm.

Buffer Concentration
(mM)

TP Concentration
(mg/dL)

Sensitivity
(∆A/mg/dL)

Determination
Coefficient (R2) (n = 4)

10 100–400 0.0007 0.9612
50 100–400 0.001 0.9807

100 100–400 0.0008 0.9585

The effect of environmental pH against the TG optical biosensor response at TP concentrations of
100–500 mg/dL has been evaluated, in order to determine the optimum pH of biosensor’s performance.
Previous studies have reported that lipase works best at an optimal pH of between 6 and 8 [6,34].

Table 2 shows an increase of the biosensor response at pH 6–7, but a decrease at pH 7.5 and 8.
The decrease in biosensor sensitivity is caused by the change in the conformation of the enzyme binding
sites, thus decreasing their function in degrading triglycerides [33]. In this study, the best sensitivity
was given by pH 7—hence, pH 7 is used for the upcoming characterization of the TG biosensor.
This optimum pH is similar to studies reported before, which used amperometry and electrochemical
methods [35,36]. However, a different optimum pH is reported by Narang et al. [37]. This difference can
be caused by a different membrane matrix, type of substrate, enzyme, and immobilization method [38].

Table 2. The effect of pH buffer against the sensitivity and determination coefficient (R2) of the TG
biosensor at 615 nm.

pH Buffer TP Concentration
(mg/dL)

Sensitivity
(∆A/mg/dL)

Determination
Coefficient (R2) (n = 4)

6 100–400 0.0006 0.9579
6.5 100–400 0.0008 0.9665
7 100–400 0.001 0.9809

7.5 100–400 0.0007 0.9513
8 100–400 0.0005 0.9165

The biosensor response also depends on the number of immobilized enzymes within the matrix.
The increase of enzyme has shown to increase the biosensor response. The profile of enzyme
loading is shown in Figure 4. The biosensor response increased with enzyme concentrations of 20
to 60 µg, but decreased in response to enzyme loading above 60 µg. The increase causes the rate
of TP hydrolysis into fatty acids to intensify as well. On the other hand, the decrease of biosensor
response is due to the extreme pH change caused by a reaction, which inactivates the enzyme binding
sites [39]. The dwindling response can also be ascribed to the excessive enzyme that inhibits substrate
diffusion [38,40]. The highest response was obtained at enzyme lipase loading of 60 µg.Biosensors 2019, 9, x FOR PEER REVIEW 7 of 12 
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3.4. Characterization of Triglyceride Optical Biosensor

The response time of a biosensor indicates how fast it reacts to the change of external environment.
The response time of this triglycerides biosensor is measured at a TP concentration of 400 mg/dL in
PBS 50 mM solution (pH 7). The determination of the response time was conducted every minute,
as shown in Figure 5. The maximum time response is exhibited in the fifth minute, where afterward,
the biosensor does not show any response changes. Therefore, it can be concluded that the optimal
response time of this triglyceride biosensor is 5 min. The quicker the response time, the more effective
the biosensor. Response time can be affected by several factors, such as diffusion, enzymatic activities,
loading enzyme, and enzyme immobilization mechanism [41].
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The determination of the biosensor lifespan is necessary to identify its stability and durability
during usage. The biosensor is made with the same concentration, where 400 mg/dL of TP was added
and dissolved in 50 mM PBS at pH 7. The lifespan was evaluated for 30 days. The results show that
biosensor absorbance decreased 7.4% after 10 days of storage, 10.2% after 15 days of storage, and 24.2%
after 25 days of storage. Therefore, it can be concluded that this TG biosensor can be used for up to
15 days of storage. The results of this lifespan study are shown in Figure 6.Biosensors 2019, 9, x FOR PEER REVIEW 8 of 12 
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3.5. Determination of Linearity, the Limit of Detection, and Reproducibility

After all parameters that build this biosensor had been characterized, the linearity and limit of
detection of this biosensor were finally determined. The biosensor response after the addition of TP
from 100 mg/dL to 500 mg/dL can be observed in Figure 7a. The response of biosensor against TP
increases linearly with an increasing concentration of TP. The increase of substrate in the biosensor
membrane surface triggers the increase of TP degradation into fatty acids, thus causing color change
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on the hydrogel membrane from pink to blue. The response of the optical biosensor reaches a constant
rate of 500 mg/dL, because the occupied binding sites of the enzyme have reached saturation.
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Figure 7. TG biosensor response against TP concentration: (a) Calibration curve of the TG biosensor;
(b) Lineweaver–Burk plot of pectin hydrogel membrane-based TP concentration that is immobilized by
enzyme and CI.

An approximate linear response of TG biosensor was determined at the range of 100–500 mg/dL of
TP concentration, with 0.001 sensitivity (100–400 mg/dL) and R2 = 0.981 (n = 4). The limit of detection
(LOD) is defined as the lowest TP concentration where there is no change in optical biosensor response.
The LOD of the TP is estimated to be 15 mg/dL.

The kinetic parameter of the enzymatic reaction can be calculated through a Lineweaver–Burk plot,
based on the experimental data. The Michaelis–Menten (Km) constant calculated from Lineweaver–Burk
plot was 677 mg/dL (7.6 mM), and the Vmax = 1.12 (Figure 7b). Some researchers have reported that the
Km value varies with the type of substrate and lipase immobilization matrix. Minakshi and Pundir [42]
reported that the Km value for lipase immobilized in the aryl amine matrix for the determination of
a TG, using a plastic strips, was 11.6 mM. Furthermore, Narang et al. [29] determined the Km value
of lipase in the polyvinyl chloride (PVC) matrix for the amperometric TG biosensor to be valued at
5.0 mM.

The reproducibility of a TG biosensor is measured by using 20 biosensors made with the same
concentration and measured at the same time. The results indicate that this biosensor has a good
reproducibility, as shown by the RSD value, which reached 2.5%. This biosensor also exhibits good
linearity, with more than R2 = 0.9.
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4. Conclusions

A TG optical biosensor based on a pectin hydrogel membrane and CI was successfully established.
All parameters required for the construction of this parameter have been optimally determined,
resulting in an excellent linear response range towards TP in the TG concentration range of human
blood serum. This biosensor is competent in detecting TGs promptly, and displays outstanding
precision. This TG biosensor will be developed further to be used on real blood serum. We strongly
believe the concept that this biosensor carries can also be used to design other biosensors that can
detect more health indicators.
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