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METHODOLOGY

Evaluation of threshold selection  
methods for adaptive kernel density estimation 
in disease mapping
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Abstract 

Background:  Maps of disease rates produced without careful consideration of the underlying population distribu-
tion may be unreliable due to the well-known small numbers problem. Smoothing methods such as Kernel Density 
Estimation (KDE) are employed to control the population basis of spatial support used to calculate each disease 
rate. The degree of smoothing is controlled by a user-defined parameter (bandwidth or threshold) which influences 
the resolution of the disease map and the reliability of the computed rates. Methods for automatically selecting a 
smoothing parameter such as normal scale, plug-in, and smoothed cross validation bandwidth selectors have been 
proposed for use with non-spatial data, but their relative utilities remain unknown. This study assesses the relative 
performance of these methods in terms of resolution and reliability for disease mapping.

Results:  Using a simulated dataset of heart disease mortality among males aged 35 years and older in Texas, we 
assess methods for automatically selecting a smoothing parameter. Our results show that while all parameter choices 
accurately estimate the overall state rates, they vary in terms of the degree of spatial resolution. Further, parameter 
choices resulting in desirable characteristics for one sub group of the population (e.g., a specific age-group) may not 
necessarily be appropriate for other groups.

Conclusion:  We show that the appropriate threshold value depends on the characteristics of the data, and that 
bandwidth selector algorithms can be used to guide such decisions about mapping parameters. An unguided choice 
may produce maps that distort the balance of resolution and statistical reliability.
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Background
Disease maps, an essential component of epidemiological 
surveillance, are used to illustrate the geographic distri-
bution of diseases. Disease outcomes are typically rep-
resented as rates, which are computed by dividing the 
number of disease cases by the population contained 
within some geographic region such as a zip code or 
county. Rates that are computed without careful consid-
eration of the underlying population distribution may be 
unreliable due to the well-known small numbers problem 
[1]. For example, areas with small populations are more 

likely to produce unstable rate estimates compared to 
areas with larger population sizes. Smoothing methods 
including kernel density estimation are commonly used 
to address the problem of unstable rates [1–11].

Kernel Density Estimation (KDE) is a non-parametric 
method that can be used to explore the spatial density of 
point data [1]. In the context of disease mapping, KDE 
methods operate by computing rates within a moving 
spatial window or kernel (typically a circle) placed across 
the entire study area. A ratio of the density of events (i.e., 
cases) and the density of the background (i.e., the pop-
ulation) is calculated within each kernel [12]. Another 
KDE method computes the rate by dividing the number 
of cases that fall inside a kernel by the population that is 
contained within the same kernel [4, 9].
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The size of the kernel, bandwidth, is a crucial param-
eter that influences the degree of smoothing on the map 
in KDE [13–15]. The bandwidth can be either fixed or 
variable (adaptive). For the fixed bandwidth approach, 
the kernel has a fixed-size radius, and all kernels (cir-
cles) have the same radii. In health studies, the fixed 
bandwidth approach may not be suitable since popula-
tions are not evenly distributed across geographic space. 
Moreover, unstable rates may result if the circle falls in 
low population-density areas. Similarly, in the adaptive 
bandwidth approach, the kernel radius grows or shrinks 
to accommodate varying population sizes. The minimum 
population size that is used to define the kernel band-
width, and consequently the degree of smoothing on a 
map, is a user-defined parameter. We will refer to this as 
the threshold value (h).

Figure 1 illustrates the spatial distribution of heart dis-
ease mortality rates for males aged 65  years and older 
using data obtained from the Centers for Disease Con-
trol and Prevention (CDC), National Center for Health 
Statistics (NCHS) [16]. We produced this map using the 
adaptive kernel density estimation method with differ-
ent threshold values. As shown in Fig.  1a, when using 
the smallest threshold value (h = 50), the resulting map 
portrays high levels of geographic detail in the estimated 
rate. However, as the thresholds increase, the resulting 
maps show lower levels of geographic detail (Fig. 1b–d). 
Further, maps produced using small threshold values 
tend to display greater fluctuations in rate estimates 
(µ = 1330 per 100,000 population, σ = 639.9 at h = 50). 
In contrast, maps produced using larger threshold values 
tend to show lower levels of fluctuation (µ = 1209.5 per 
100,000 population, σ = 268.4 at h = 1000). The trade-off 
between geographic detail and reliability depends on the 
choice of the threshold value. A value that is too small 
may result in under-smoothing, i.e., high levels of geo-
graphic detail but greater fluctuation in rate estimates 
(Fig. 1a). Conversely, a value that is too large will result in 
over-smoothing, i.e., low levels of geographic detail but 
less fluctuation in rate estimates (Fig. 1d).

The problem of choosing an appropriate smoothing 
parameter—bandwidth or threshold—has been discussed 
in previous studies [1, 4–6, 9, 11–13, 17–20]. Silverman 
[13] and Wand and Jones [20] recommend subjective 
selection of the bandwidth parameter based on visual 
inspection. The process of visual evaluation of the band-
width parameter begins with examining several plots of 
the data and selecting the density that is the “most pleas-
ing” in some sense [20:58]. Although this approach has 
been used by others [12:654], the process can be time-
consuming if many density estimates are required. In 
other cases, mapmakers may not utilize information 

about the structure of the data to inform choice of 
threshold value.

Many bandwidth selectors available for use with non-
spatial data could potentially be adapted for spatial data. 
However, their applicability for the purposes of creating 
disease maps has not been evaluated. Non-spatial band-
width selectors may be grouped into two classes—(a) 
quick and simple, and (b) hi-tech bandwidth selectors 
[20]. Quick and simple bandwidth selectors aim to find 
a threshold value that is reasonable for a wide range of 
data distributions. One such method is the normal scale 
bandwidth selector [20]. This method recommends a 
bandwidth value which can be used as a starting point 
or a “first guess” [20]. The bandwidth is calculated by 
referencing a standard distribution that is derived from 
the data (see Silverman [13] and Wand and Jones [20] for 
details). In contrast, hi-tech bandwidth selectors, which 
are data-driven, seek to find an optimal bandwidth by 
minimizing the mean integrated square error (MISE) of 
the kernel density estimator [20, 21]. For example, plug-
in [22] and smoothed cross-validation [23] bandwidth 
selectors estimate a pre-smoothing parameter based on 
the pairwise differences of the observations obtained 
using the pilot bandwidth value. The pre-smoothing 
parameter is then used to find the optimal bandwidth 
value [20, 25]. These two approaches are highly rated 
for bandwidth convergence and statistical performance 
[23, 24]. Additional information on the theoretical basis 
of these methods are available in Silverman [13], Wand 
and Jones [20], Chiu [21], Wand and Jones [22], Hall and 
Marron [23], Hall et al. [26].

In summary, while automatic bandwidth selections 
methods have been used to produce distributions of non-
spatial data, their suitability for threshold selection in 
disease mapping remains unknown. In this study, we use 
a simulated dataset on heart disease mortality to exam-
ine applicability of applying commonly used automated 
bandwidth selection methods to determine optimal 
threshold values with the objective of producing disease 
maps with high levels of geographic details and statistical 
reliability.

Methods
The methods used in this study are presented in two parts 
(Fig.  2). First, we examine the applicability of the visual 
and subjective methods for choosing a threshold value 
(Objective 1). Initially, since we assume that mapmakers 
will select threshold values based on arbitrary choices 
or some knowledge of the disease, we use values ranging 
from 50 to 10,000. Subsequently, we use bandwidth selec-
tion methods—normal scale (hns), plug-in (hpi), smoothed 
cross-validation (hscv), and median—for comparison. Our 
study uses the 10-year age-stratified population data 
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for males in Texas obtained from the 2010 U.S. Census 
Bureau at the zip code level (Table 1) [27].

Second, we evaluate the relative performance of dif-
ferent threshold values for disease maps using the same 
dataset (Objective 2). We first generated a Monte Carlo 
simulated dataset of age-specific heart disease mortal-
ity rates among males aged 35  years and older in Texas 
(Table  1). Statewide rates for generating the simulated 
case counts in each age group were obtained from the 

CDC NCHS [16]. Finally, maps produced using both 
approaches (Objectives 1 and 2) are compared.

Methods for objective 1
A total of ten thresholds were used in this study. Six 
thresholds were a series of arbitrary choices—50, 
100, 500, 1000, 5000, and 10,000. These six thresholds 
remained constant for all age groups. The remaining four 
were calculated based on population data aggregated at 

Fig. 1  Geographic distribution of age-specific heart disease mortality rates for males aged 65 years and older, 2009–2013. Maps were created using 
the adaptive bandwidth kernel density estimation method with various bandwidths (h): a h = 50; b h = 100; c h = 500; d h = 1000. (Note: the data 
were obtained from CDC NCHS [16])
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the zip code level using median and three bandwidth 
selectors—the normal scale (hns), the plug-in (hpi), and 
the smoothed cross-validation (hscv). The median thresh-
old was determined by computing the median popula-
tion value across all zip codes. Threshold values from 
the three bandwidth selectors—hns, hpi, and hscv—were 
computed using the ks-package in R [28]. Since these 
four thresholds were calculated based on data, their 

values varied among the age groups. We selected desir-
able threshold options using visual and subjective exami-
nation of the data as suggested by Silverman [13]. This 
involved generating plots of estimated population density 
against the actual population density. For each age group, 
estimated population densities were computed using 
a kernel function with each of the ten thresholds. The 
actual population density was generated from the popu-
lation data using a gamma distribution. We chose the 
gamma distribution for two reasons: it mimics the popu-
lation of the region by age group as shown in Table 1 with 
maximum number of people in the age group 35–44 and 
decreasing gradually to the age group 65+. Secondly, the 
gamma distribution does not allow for negative values in 
the distribution unlike say, a normal distribution where 
all real values are probable. It consists of two positive 
parameters—shape (k) and scale (θ) parameters. These 
two parameters were calculated using mean and stand-
ard deviation of the population data (Eqs. 1 and 2). This 
process was also performed in R using probability density 
function (Eq. 3).

Methods for Objective 1 Methods for Objective 2

Threshold choices
(10 choices)

Arbitrary choices (user defined)
(50, 100, 500, 1000, 5000, 10000)

Calculated choices 
(computed from population data)

(hns, hpi, hscv, median)

Plot estimated population density against actual population density

Examine desirable threshold choices using visual and subjective method 
(Silverman, 1986)

Step 2 Compute 
estimated rates

Average of estimated rates in the 
entire study area ( )
(estimated state rate)

Estimated rates using adaptive KDE 
(ZCTA level)

Measure the accuracy between estimated state rates and simulated 
baseline rates using RMSE

Step 3 Evaluate the 
threshold performance

Illustrate the consistency of 
estimated state rates using boxplot

Actual state rate

(simulated baseline rate)

Step 1 Generate simulated data

Generate a 
point 

pattern of 
population

Generate 
simulated case 

data

Examine the consistency of 
the simulation and justify the 

number of replications

(To examine the applicability of the visual and subjective 
method for choosing a threshold value)

(To evaluate the relative performance of threshold choices)

Stage 1 Stage 2

Stage 3

Pass

Fail

(use for computing 
estimated rates in the 

adaptive KDE

Process flow

Data flow

Note:

Fig. 2  Flow chart of methodology showing the steps using in this study

Table 1  Age-adjusted and  age-specific heart disease 
death rates for  males in  Texas by  age group, 2009–2013 
[16], and  population distribution from  the  2010 U.S. 
Census Bureau [27]

Age Population Range of aggregated 
population at the ZCTA level

Rate (per 
100,000)

35–44 1,722,904 [1, 7925] 33.87

45–54 1,702,639 [1, 7407] 115.15

55–64 1,256,976 [1, 4948] 297.36

65+ 1,135,517 [1, 4792] 1245.93

Total (35+) 5,818,036 [1, 22,555] 351.15
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where k and θ are shape and scale parameters respec-
tively, µ and σ are respectively the mean and the standard 
deviation of the population, Γ(k) is the gamma function, 
and f(x) is the probability density function.

Methods for objective 2
Step 1: Methods to generate simulated data
The aim of this step was to generate simulated case data. 
This step comprised of three stages:

1.	 Generate a point pattern of male populations by age 
at the ZCTA level

	 The data used in this process are (1) male popula-
tion data stratified by age as shown in Table  1, and 
(2) a ZIP Code Tabulation Areas (ZCTAs) carto-
graphic boundary file obtained from Topologically 
Integrated Geographic Encoding and Referencing 
(TIGER) [29]. Note that the ZCTAs are created by 
the U.S. Census Bureau and approximate the spa-
tial boundaries of postal zip code service areas [30]. 
The age-stratified population data were joined to the 
ZCTA cartographic boundary file in ArcGIS 10.2. 
Then, the random point generation tool in ArcGIS 
10.2 was used to create a point distribution, where 
each point (xi,s) represents a simulated individual 
in age group i residing in ZCTA s. The age group 
i ∈ I where I = {35−44, 45− 54, 55− 64, 65+}.

2.	 Generate simulated cases from a point pattern of 
male populations obtained from stage 1To classify a 
simulated individual as a case, a random number was 
assigned to each point in the random point pattern 
generated from stage 1. The random number was 
generated from a uniform distribution on the interval 
(0, 1) under the assumption that each person has an 
equal probability of being designated as a case. The 
probability that a simulated point, xi,s, would be clas-
sified as a case (ci,s) was determined using observed 
age-specific heart disease mortality rates (Table  1). 
For example, the observed age-specific heart disease 
death rate for males aged 35–44  years old in Texas 

(1)k =

(µ
σ

)2

(2)θ =
σ 2

µ

(3)f (x) =
1

θkΓ (k)
xk−1e−x/θ

was 33.87 per 100,000 (0.0003387) (Table 1). If a ran-
dom number generated was in the range 0.0000001 
to 0.0003387, it was classified as a simulated case. 
This process was replicated 100 times to produce 100 
different instances of the case distribution—i.e., a 100 
simulated maps of heart disease mortality could be 
produced from this data. For each simulated dataset 
(l, where l = 1, 2, …, 100), state rates, called simulated 
baseline rates, were computed for each age group as 
well as for all-groups combined. The rate (yi,l) was 
computed using:

where Ci,l was the total number of simulated cases 
for age group i at the lth simulation, and Pi was the 
total population for age group i.

3	 Examine the consistency of the simulation and justify 
the number of replications.  For each age group, we 
examined the consistency of the simulated baseline 
rates ( yi,l ) and justified the number of replications 
using a scatter plot of the running root mean squared 
error (RMSEM) against the total number of replica-
tions [31]. The RMSE is a function of the average 
difference between the simulated baseline rates and 
the true value, i.e., CDC’s heart disease mortality rate 
(Table 1) using the following formula:

where L was the total number of replications, yi,l was 
the simulated baseline rate of age group i at lth simu-
lation, and Yi was the true rate of age group i. Fig-
ure 3 illustrates that the magnitude of the difference 
between the simulated baseline rate and the true 
value (RMSE) stabilizes as L increases. In this study, 
when L > 50, the stable state was achieved for all age 
groups. In this study, we used 100 replications. Based 
on recommendations by Natesan [32], we also exam-
ined (1) the coverage rate, and (2) bias of interval 
estimates (Table  2). Coverage rate is defined as the 
percentage of statistical estimate intervals that con-
tain the true values. Bias of interval estimates is com-
puted as the percentage of the statistical estimate 
intervals that overestimate and underestimate the 
true value [32]. While the coverage rates for the 95% 
interval estimates are typically expected to be around 
95%, our results show that they were extremely low—
less than 20% for all age groups (Table 2). However, 
as the percentages of over- and under-estimates are 

(4)yi,l =
Ci,l

Pi

(5)RMSEM
i,L =

√√√√1

L

L∑

l=1

(
yi,l − Yi

)2
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more-or-less equal, we can conclude that the simula-
tion was unbiased. 

Step 2 Methods to compute estimated rates
For each age group i at the lth simulation, estimated rates 
were computed using the KDE method with aggregated 
simulated cases as the numerators, and the population 
data as the denominators. The KDE method was applied 
to all ten threshold values. This process was performed 
using the Web-based Disease Mapping Analysis Program 
(WebDMAP) [33] and custom code written in Python. 
As a result, 100 estimated rates were produced for each 
threshold and for each age group i. These rates, which 

were obtained at the ZCTA level, were aggregated to the 
state level (called estimated state rate, ŷi,l).

Step 3 Methods to evaluate threshold performance
To evaluate the relative performance of each thresh-
old choice, the estimated state rates ( ̂yi,l ) resulting from 
different thresholds were compared to the simulated 
baseline rates in each age group i (yi,l from Eq.  4). The 
root-mean-square-error (RMSE) was employed to meas-
ure the accuracy of the estimated state rates in estimating 
the simulated baseline rates using the following formula:

where RMSEi,t was the RMSE of age group i and thresh-
old t, ŷi,t,l was the estimated state rate of age group i and 
threshold t at the lth simulation, and yi,l was the simu-
lated baseline rate of age group i at the lth simulation. 
Further, to illustrate the consistency of the rates com-
puted from each threshold ( ̂yi,t,l ), a box-plot was gener-
ated to display the variation of 100 estimated state rates 
for each age group.

(6)RMSEi,t =

√√√√ 1

100

100∑

l=1

(
ŷi,t,l − yi,l

)2
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Fig. 3  The running RMSE between the simulated baseline rates and the true value as a function of the number of replicates (L) for all age groups

Table 2  Summaries of  characteristics of  simulated 
baseline rate distribution

Age group Mean SD Coverage 
rate (%)

Over-
estimated 
(%)

Under-
estimated 
(%)

35–44 33.92 1.40 17 50.6 49.4

45–54 115.17 2.52 11 49.4 50.6

55–64 297.60 4.49 20 56.2 43.8

65+ 1245.93 10.21 16 47.6 52.4

35+ 351.12 2.27 14 52.3 47.7
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Results and discussion
The impact of threshold choice on population density 
estimates
The calculated thresholds for the three selectors—plug-
in (hpi), smoothed cross-validation (hscv), normal scale 
(hns)—and median are shown in Table 3. The hpi and hscv 
selectors result in the smallest threshold values. In con-
trast, the hns and median selectors are approximately 4 
and 8 times larger, respectively for the age groups 55–64, 
65  years and older, and the overall population (aged 
35 years and older). Further, the hns and median selectors 
are also approximately 5 and 7 times larger for the two 
youngest groups—35 to 44 and 45 to 54. These results 
indicate that for the same data, different bandwidth selec-
tors provide different threshold values. For this data, the 
hpi and hscv recommendations produce maps that provide 
greater geographic detail (lower levels of smoothing), but 
also larger fluctuations in estimated rates. Conversely, the 
other two bandwidth selectors produce greater levels of 
smoothing, but fewer fluctuations in rates.

In Fig.  4, the density curves for populations obtained 
after applying each threshold (hpi, hscv, hns, median, and 
six arbitrary choices—50, 100, 500, 1000, 5000, 10,000) 
are compared to the actual population distribution (see 
Methods—Objective 1). For each chart, the X-axis repre-
sents population with a bin size of 200 and the Y-axis is 
the density of ZCTAs.

The actual population density (Fig. 4 column A) tends 
to follow a gamma distribution (the black line) for all 
age groups, which indicates that the population is not 
evenly distributed. Thus, many ZCTAs have low popula-
tions, and the number of ZCTAs with large populations 
is small. This is indicated by a long tail to the right of the 
distribution. Figure 4 column B illustrates the population 
density estimates computed from all ten thresholds. For 
all age groups, the population density estimates com-
puted from thresholds, h = 50, 100, hpi, and hscv, provide 
similar density curve characteristics. The density esti-
mates have a sharp peak and closely match the actual 
gamma distribution. The resulting density curves from 
these four thresholds contain fluctuations at the tail end 

of the distribution. This suggests that these four thresh-
olds may be too small for all age groups. For maps pro-
duced using these threshold values, the Washington State 
Department of Health guidelines [34] suggest extreme 
caution with interpretation since the population (denom-
inator) values are less than 100. In fact, the guidelines rec-
ommend interpretation with caution for maps produced 
using populations less than 300. Thus, thresholds, h ≤ 100 
may not be an appropriate choice to use. In this paper, we 
included values lower than 100 to evaluate the impact of 
choices that may be considered undesirable. This is also 
true of hpi and hscv for age specific groups in this study. In 
contrast to these small thresholds, larger thresholds pro-
vide more smoothed estimates and will not capture ade-
quate geographic detail on a map. For example, h = 5000 
and 10,000, may be too large for all age groups since the 
density curve estimates are almost flat (Fig. 4 column B).

While six thresholds result in similar density curve 
characteristics for all age groups and may be considered 
too small (h = 50, 100, hpi, and hscv) or too large (h = 5000 
and 10,000), the remaining thresholds—hns, median, 500, 
and 1000—provide slightly different density curve char-
acteristics between age 35 years and older and other age 
groups. For the age groups 35–44, 45–54, 55–64, and 
65 years and older, the population density estimates com-
puted from h = hns, median, and 500 (arbitrary choice) 
provide similar density curve characteristics. Thus, 
when h = hns, the density estimates are smoother and the 
fluctuations in the tails cease to exist. When threshold 
values increase (h = median and 500), the density esti-
mates retain the modal structure of h = hns but are more 
smoothed. This density curve characteristic is the most 
desirable compared to the others as it offers a reasonable 
compromise between smoothing of the mode and tail.

The thresholds for age 35  years and older that fit this 
characteristic are h = hns, 500, and 1000. Although thresh-
olds h = 500 and hns fall in the most desirable character-
istic for all age groups, their density curve characteristics 
between age 35  years and older and other age groups 
are slightly different. When h = 500, the density curve is 
smoother than h = hns for the age groups 35–44, 45–54, 

Table 3  Descriptive results and calculated thresholds stratified by age group

Age groups Total population Range No. of ZCTAs Calculated thresholds % ZCTAs with specified 
minimum population

hpi hscv hns Median ≤ 100 (%) ≤ 300 (%)

35–44 1,722,904 [1, 7925] 1911 53 56 280 327 32 48

45–54 1,702,639 [1, 7407] 1910 57 55 255 399 28 45

55–64 1,256,976 [1, 4948] 1906 44 41 177 342 30 48

65+ 1,135,517 [1, 4792] 1902 41 40 156 330 28 48

Total (35 +) 5,818,036 [1, 22,555] 1920 200 189 837 1411 14 25
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Fig. 4  Density curves overlaid on population distribution (age > 35; ZCTA level). Column A describes the gamma distribution. Column B describes 
threshold choices
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55–64, and 65 years and older. In contrast, h = hns offers 
a smoother density curve than h = 500 for age 35  years 
and older. Moreover, when h = 1000, the resulting density 
curve retains the same modal structure as h = hns and 500 
(which may be considered as a desirable choice for age 
35  years and older), but may be too large for other age 
groups since the density curves are even more smoother 
and almost flat. Differences in population size and dis-
tribution between age 35 years and older and other age 
groups are probably the reason. This explanation also 
applies to h = median, which may be considered as one of 
desirable choices for age-specific groups but may be too 
large threshold for ages 35 years and older.

These findings suggest that thresholds that produce 
desirable characteristics for one group may not necessar-
ily work for other groups possibly due to differences in 
population size and distribution. For producing disease 
maps that incorporate the population age structure, e.g., 
directly age-adjusted maps, the mapmaker must be care-
ful not to choose different threshold values for each age 
strata as this could lead to the use of inconsistent spa-
tial supports. Generally, spatial supports must be con-
sistently applied across the entire map [35–37]. In such 
circumstances, the mapmakers may choose a threshold 
value that best fits a majority of the age groups.

Table 4 summarizes the characteristics of density curve 
estimates from various thresholds by age groups. The 
thresholds that provide the most desirable density curve 
characteristics are h = hns, median and 500 for age groups 
35–44, 45–54, 55–64, and 65 years and older and h = hns, 
500, and 1000 for age 35 years and older. This is consist-
ent with the recommendation of Silverman [13], to use 
values that best replicate the population distribution. 
Additional considerations may include a comparison of 

the estimated rates, obtained from various threshold esti-
mators, to the actual state rates.

Impact of threshold choice on the distribution of rate 
estimates
Figure 5 illustrates the distribution of the estimated state 
rates ( ̂yi,l ) of each threshold from 100 repetitions. Since 
hpi and hscv provided almost identical values for all age 
groups, only hpi was used in this study. For each chart, 
the X-axis represents the thresholds that were used to 
compute the estimated rates ordered from the small-
est to the largest, and the number in the bracket is the 
RMSE of each threshold (RMSEi,t from Eq. 6). The Y-axis 
shows heart disease mortality rates (per 100,000 popula-
tion) obtained from the simulated dataset, and each dot 
represents the estimated state rate for each simulation 
( ̂yi,l ). The simulated baseline rate (yi) and the crude rate 
are also included in each chart for reference. A crude rate 
was computed as the average of the ratio of simulated 
cases to population for each individual ZCTA. Note that 
the scale of the Y-axis is different for each chart—this was 
done to account for the large differences in heart disease 
risk between age groups (e.g., the average heart disease 
death rates for age groups 35–44 and 65 years and older 
are 33.87 and 1245.93 per 100,000 population, respec-
tively). Also, the crude rate (second boxplot in each 
panel in Fig. 5) shows greater variation in estimated rates 
compared to all other boxplots. Moreover, the results 
show that the variation in rates decreases as thresholds 
increase. The smaller box plots indicate that the esti-
mated state rates for each map resulting from each simu-
lation tends to be more consistent, and vice versa.

For the age group from 35 to 44 (Fig. 5a), the median 
rate (the middle line in the boxplot) obtained for each 
threshold is similar. However, the width of the boxes 

Table 4  Characteristics of the population density curve estimates from various thresholds stratified by age groups

Desirable 
characteristics

Density curve characteristics Age groups

35–44 45–54 55–64 65+ 35+

Most
↓
Least

Density curve is smoother, and fluctuations in the tail ceases to exist hns hns hns hns 500

Median Median Median Median hns
500 500 500 500 1000

Density curve closely matches to the actual gamma distribution and contains 
fluctuations at the tail

100 100 100 100 hpi
hscv

The highest density estimates of density curve is greater than that of the actual 
gamma distribution, and the density curve contains high fluctuations at the 
tail

50 50 50 50 50

hpi hpi hpi hpi 100

hscv hscv hscv hscv
Density curve is smoother and difficult to distinguish between the mode and 

tail
1000 1000 1000 1000 Median

Density curve is flat and cannot distinguish between the mode and tail 5000 5000 5000 5000 5000

10,000 10,000 10,000 10,000 10,000
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shrinks towards the center in both the upper and lower 
quartiles when thresholds increase. This indicates that 
the estimated state rates are more consistent. Further, 
the boxplots tend to be similar in structure for thresh-
olds greater than 300 (hns ≥ h ≥1000), in which desir-
able thresholds are included. The patterns of boxplots 
in Fig. 5b (45–54 age group), Fig. 5c (55–64 age group), 

and Fig.  5d (65  years and older) follow similar trends 
while the boxplots for age group 35 years and older fol-
low slightly different trends (Fig. 5e). Thus, although the 
overall width of each boxplot decreases with increasing 
threshold, the median values also decline as thresholds 
increase.

The inconsistency of estimated state rates for small 
threshold values is probably due to the small numbers 

Fig. 5  The distribution of estimated state rates of each threshold from 100 repetitions: a Aged 35 to 44 years; b Aged 45 to 54 years; c Aged 55 to 
64 years; d Aged 65 years and older; e Aged 35 years and older
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problem, specifically when h ≤ 100. This is to be expected 
since the threshold values (h) used to compute the esti-
mated rates in this study are the minimum population 
size (denominator). Using small threshold values can 
result in unstable and unreliable rate estimates in spatial 
units with small population sizes. These unstable rates 
can affect the estimated state rates since they are aggre-
gated from the smaller spatial units—ZCTA in this study. 
These results also suggest that h ≤ 100 may not be an 
appropriate choice to use.

Impact of threshold choice on disease maps
As indicated in Table 4, threshold values obtained using 
hns, median, and h >500 provided the most desirable 
density curve characteristics for the age stratifications 
used in this study. Further, h >500, hns, and h >1000 pro-
vided the most desirable density curve characteristics 
for ages 35  years and older. For these cases, although 
the RMSE values are not noticeably different (indicated 
in the x-axis of Fig. 5), differences in boxplot widths, as 
well as their corresponding IQR, suggest different levels 
of consistency in average rate estimates (Fig.  5). This is 

particularly true for the 35+ age group in Fig. 5e. When 
producing disease maps, there is a need to balance the 
amount of geographic detail portrayed on the map and 
accuracy of estimated rates. While the RMSE suggests 
similar degrees of accuracy between the maps pro-
duced using the three desirable thresholds, the remain-
ing key factor to consider in selecting an appropriate 
threshold is the degree of geographic variation. When 
the geographic variation is the highest priority, hns may 
be the most desirable threshold choice for all age groups 
since it provides the greatest variation (more geographic 
detail) among the candidate thresholds, but still produces 
accurate rates (Fig.  6). Moreover, compared to arbitrary 
choices, the hns provides a consistent way to estimate the 
appropriate threshold value.

Conclusion
Determining the appropriate threshold value is essen-
tial for disease mapping because it affects the degree of 
smoothing that occurs on the map. While the utility of 
automatic bandwidth selection methods has been studied 
and discussed for use with non-spatial data, a discussion 

Fig. 6  Geographic distribution of age-specific heart disease mortality rates for males aged 35 years and older. Maps were created using the 
adaptive KDE method with simulated cases as numerators, population data as denominator, and threshold choices (h) derived from the bandwidth 
selector methods and arbitrary choices
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of their application in disease mapping is limited. In this 
research, we compare methods for selecting threshold 
values using existing bandwidth selectors for a synthetic 
dataset on heart disease mortality among males aged 
35 years and older in Texas. The results suggest that hns 
is the most desirable threshold for all age-specific groups 
and the overall population because it provides greater 
spatial variation in maps while maintaining accuracy in 
estimated rates. While this is true only for the simulated 
case data used in this study, our findings underscore the 
importance of carefully choosing the threshold values to 
use in disease mapping. In this paper, we outline how a 
mapmaker may use automatic bandwidth selection meth-
ods to inform decisions about threshold values.
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