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Genome-centric analysis of short and long
read metagenomes reveals uncharacterized
microbiome diversity in Southeast Asians

Jean-Sebastien Gounot1,9, Minghao Chia1,9, Denis Bertrand1,9, Woei-Yuh Saw2,3,
Aarthi Ravikrishnan1, Adrian Low 4, Yichen Ding4, Amanda Hui Qi Ng1,
Linda Wei Lin Tan 5, Yik-Ying Teo2,5,6,10 , Henning Seedorf 4,7,10 &
Niranjan Nagarajan 1,8,10

Despite extensive efforts to address it, the vastness of uncharacterized ‘dark
matter’ microbial genetic diversity can impact short-read sequencing based
metagenomic studies. Population-specific biases in genomic reference data-
bases can further compound this problem. Leveraging advances in hybrid
assembly (using short and long reads) and Hi-C technologies in a cross-
sectional survey, we deeply characterized 109 gut microbiomes from three
ethnicities in Singapore to comprehensively reconstruct 4497 medium and
high-quality metagenome assembled genomes, 1708 of which were missing in
short-read only analysis and with >28× N50 improvement. Species-level clus-
tering identified 70 (>10% of total) novel gut species out of 685, improved
reference genomes for 363 species (53% of total), and discovered 3413 strains
unique to these populations. Among the top 10most abundant gut bacteria in
our study, one of the species and >80% of strains were unrepresented in
existing databases. Annotation of biosynthetic gene clusters (BGCs) uncov-
ered more than 27,000 BGCs with a large fraction (36–88%) unrepresented in
current databases, and with several unique clusters predicted to produce
bacteriocins that could significantly alter microbiome community structure.
These results reveal significant uncharacterized gut microbial diversity in
Southeast Asian populations and highlight the utility of hybrid metagenomic
references for bioprospecting and disease-focused studies.

While estimates for microbial diversity on Earth vary widely, studies
suggest that there are nearly a million prokaryotic species of which
only around 20,000 have been cultured1,2. The use of culture-free
metagenomic techniques has therefore been key to unravel this ‘dark
matter’ of genetic diversity on Earth. Microbial communities in a wide-
range of biospheres have been explored, including terrestrial3, aquatic4

and extreme environments5, as well as plant, animal and human-
associated microbiomes6. Improvements in metagenomic assembly
workflows7–11 and computing resources have further enabled the
assembly of these large datasets to construct metagenome-assembled

genomes (MAGs) that serve to augment isolate-based reference gen-
ome databases12,13. Despite this, existing databases only represent
approximately 48,000 species with genome sequences, and the accu-
racy and completeness of short-read based MAGs is frequently lower
than isolate-based references2.

Human gut metagenomes represent an area of intense scientific
interest due to their association with various cancers, metabolic,
immunological and neurological disease conditions14,15. Metagenome-
wide association studies frequently rely on the completeness of
reference genomes to correctly assign short reads to taxa, and link
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microbial genes and function to diseases16. In particular, existing stu-
dies suggest that theremight be key population-specific differences in
metagenomic associations with various diseases17–19. The availability of
a large number of short-read metagenomic datasets (e.g., >20,000 for
human gut in public repositories) has spurred the generation of MAG
reference collections based on short-read assembly13,20–22. While these
studies have added an impressive collection of genomes to existing
databases, it is unclear yet if they are representative of the genetic
diversity seen in gut metagenomes around the world. In addition,
recent advances in sequencing assays (e.g., Hi-C23, read cloud24),
hybrid25 and long-readmetagenomic analysis26 have sought to address
the shortcomings of short-read metagenomics, and opened the pos-
sibility that long-read based MAGs can provide near-complete gen-
omes rivaling isolate genomes in quality. As access to genome
sequencing becomes democratized and gut metagenomes are
explored in understudied populations such as those in Southeast Asia,
the strategy and value for establishing population-specific MAG
references remains an open question.

Leveraging the availability of a healthy Singaporean adult cohort
comprising three ethnicities (Chinese,Malay and Indian), two of which
(Chinese and Malay) represent significant populations in Southeast
Asia, we deeply characterized 109 gut metagenomes with state-of-the-
art hybrid sequencing (short and long read) and Hi-C technologies
(Singapore Platinum Metagenomes Project – SPMP). The resulting
datasets were assembled to produce high-quality references that sig-
nificantly improve existing databases in assembly quality (>28× N50
improvement), helped identify 70 previously uncharacterized gut
microbial species (>10% novel) and more than 3400 strains in South-
east Asian populations, and uncovered thousands of novel BGCs that
serve as a resource for bioprospecting. The ability to substantially
augment existing databases through in-depth hybrid metagenomic
analysis highlights the value of this strategy applied to understudied
geographical regions like Southeast Asia, the importance of unchar-
acterized Asian microbial diversity, and serves as a template for
population-specific ‘platinum’ metagenome references for precision
medicine programs around the world.

Results
Generation of a population-specific high quality gut microbial
reference catalog
Toexplore theutility of variousmetagenomic strategies for generating
a high-quality gut microbial reference database for a population,
subjects from an existing multi-omics study in Singapore27 were
recruited to provide stool samples with informed consent (n = 109;
Supplementary Data 1, “Methods”). Samples were collected using a kit
designed for preserving anaerobes, DNAwas extractedwith a protocol
optimized for high molecular weight, and shotgun sequencing was
performed using short (Illumina, 2 × 151 bp, average depth = 9.4Gbp,
Supplementary Data 2) and long read (OxfordNanopore Technologies
- ONT, median N50 = 8.6kbp, average depth = 5.8Gbp, Supplementary
Data 2) technologies, along with high-throughput chromosome con-
formation capture (Hi-C) analysis for a subset of samples (n = 24;
Supplementary Fig. 1, Supplementary Data 2, “Methods”). The dis-
tribution of taxa in both sequencing technologies (Illumina and
ONT) were confirmed to be highly concordant (median correlation
coefficient ρ =0.90), enabling joint analysis of both datasets
(Supplementary Fig. 2).

We next compared the commonly used short-read strategy for
building MAG reference collections13,20–22, with a recently proposed
hybrid assembly strategy25, for their utility in building a population-
specific database (“Methods”). From a cost perspective, we noted that
the hybrid strategy required <$150 in additional sequencing costs per
sample (~100% increase in total cost) and marginal increase in cloud
computing cost per sample (“Methods”). This in turn was observed to
result in >61% increase in the number of genomes produced per

sample (>15 additional MAGs; Fig. 1a) with the hybrid strategy, with
some samples yielding >80 genomes. Overall, 4497 MAGs were
obtained with hybrid assembly for 109 samples, versus 2789 MAGs
with short-reads alone (Supplementary Data 3), with several abundant
gut bacterial genera having enhanced representation within hybrid
assemblies (e.g., Bifidobacterium, Faecalibacterium and Blautia;
Fig. 1b). Thiswas observed to substantially improve read assignment to
the reference genome database, ensuring that more genomes were
detected (n = 217 vs n = 119), and with computed relative abundances
being more consistent with kraken abundances for hybrid assemblies
versus short-readassemblies (median relative error = 8%vs 73%; Fig. 1c,
Supplementary Fig. 3). Overall, hybrid assemblies consistently
improved the recovery of genomes across genera, with no significant
bias to any specific genera, highlighting the versatility of this approach
(Supplementary Fig. 4).

Incorporation of long-read data in hybrid assemblies enabled
marked improvements in assembly contiguity (>28×) as reported
previously25, with an average N50 of 339kbp (L50= 12) with hybrid
assembly relative to an N50 of 12 kbp with short reads alone (Fig. 1d).
This was also accompanied by a notably lower level of chimerism
(<10% vs >20%with short-read assemblies) and similar annotated gene
lengths as short-read assemblies (Supplementary Fig. 5), suggesting
that hybrid assemblies are robust to indel errors in long reads. Overall,
this provided higher quality genomes based on MIMAG critera28 after
binning10, wheremany hybridMAGs had correctly reconstructed rRNA
genes29, and no such MAGs were obtained with short-read only
assembly (Fig. 1e, “Methods”). To assess if the quality ofMAGs could be
improved further, Hi-C data was used to assist in contig binning23,30–34.
This was found to marginally increase the proportion of high-quality
MAGs obtained, and double the proportion of near-complete gen-
omes, with similar average assembly contiguity (Supplementary Fig. 6
and Supplementary Data 3). As the per sample cost of Hi-C analysis is
currently high (>$500), studies for generating population-specific
references will need to consider this cost-benefit tradeoff.

Hybrid assembled genomes in SPMP were assigned taxonomy
based on the Genome Taxonomy Database2 (GTDB) and compared to
GTDB reference genomes to assess their utility. SPMP genomes were
found to provide notably improved references formost GTDB species,
for both isolates (>6× increase in N50) as well as uncultivated organ-
isms (>13×; Fig. 1f).While the improvement in assembly is expected for
uncultivated organisms that are primarily assembled using short-read
metagenomics, the observed improvement relative to GTDB isolates
(albeit smaller, Wilcoxon p-value = 1.25 × 10−11) is noteworthy as
assembling the latter is typically less error prone. Overall, SPMP gen-
omes provided high-quality references for 110 GTDB species, 46 of
which have isolates, highlighting the value of a ‘platinum’ metage-
nomics approach for augmenting existing reference genome data-
bases (Fig. 1g and Supplementary Data 4).

Asian gut microbiomes harbor substantial uncharacterized gut
microbial genetic diversity
By encompassing threemajor Asian ethnicities (Chinese, Malay, Indian)
in Singaporeweanticipated that theSPMPwouldbeauseful resource to
explore Southeast Asian gut microbial diversity and tested the idea of
population-specific MAG reference catalogs (Supplementary Fig. 7).
Subsampling based rarefaction analysis with SPMP MAGs showed that
with as few as 100 subjects, >90% of the estimated recoverable (at the
genomic level) gut microbial species diversity of the Singaporean
population was represented in the SPMP catalog (Fig. 2a, “Methods”).
Similarly, with a genome collection that is 1/6th the size of the species-
level public gut microbial reference database13 (UHGG; 18Gb vs 3Gb),
the strain-level SPMP database can be used to identify more gut bac-
terial reads from an independent Singaporean study35 (92% vs 91%), and
classify substantially more reads at the genome-level when database
sizes are similar (83% vs 66%; Supplementary Fig. 8). Furthermore, the
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SPMPdatabaseprovidedhigher sensitivity for strain-level readmapping
relative to UHGG even when the number of strains available were
matched across species (“Methods”). These results indicate that a high-
quality database with population-specific strain-level representation
can provide better references for microbiome read mapping or taxo-
nomic classification, while potentially using fewer computational
resources, by capturingboth relevant species and straingenomes found
in the corresponding populations.

To understand microbiome variability across ethnicities and its
utility to discover new biological insights, we used multivariate regres-
sion analysis36 to explore relationships between gut metagenome
composition and demographic factors (e.g., sex, age, and ethnicity).
Interestingly, more than 60% of the taxonomic associations discovered
(91 out of 133;MaAsLin2p-value<0.05)were related to ethnicity, with 23
gender-specific and 19 age-based associations (Supplementary Data 5).
We then aggregated SPMP MAGs into species-level clusters (SLCs, 95%
identity), annotating them with publicly available reference genome
collections (Supplementary Fig. 9, “Methods”) to identify 70 putative
new species for which no genomes have been available previously,
despite large-scale MAG generation efforts2,13 (Fig. 2b). Surprisingly,

these putative new species represent >10% of the SLCs obtained
(n = 685) andare in addition to the363clusters that only haveMAGsand
no isolate genomes in existing databases (GTDB: https://gtdb.
ecogenomic.org/, based on systematic analysis of curated genomes in
RefSeq: https://www.ncbi.nlm.nih.gov/refseq/ and GenBank: https://
www.ncbi.nlm.nih.gov/genbank/). More than 50% of the novel SLCs (38
out of 70) were only assembled with hybrid assembly and weremissing
in short-read assemblies. In addition, hybrid assemblies provided a >13×
median N50 improvement overall, generating nearly all of the high-
quality and near-complete genomes for the novel SLCs (19 out of 20),
highlighting the utility of this strategy for capturingmicrobial diversity.
In comparison to a recently published resource for under-represented
East andSouthAsianpopulations22 we found thatmost specieswere still
novel (87%, 61/70) emphasizing the importance of generating
population-specific references.

Among the novel SLCs, in addition to representatives in nearly all
orders commonly containing gut microbes (e.g., Bacteroidales), we
noted that 17 could be classified to the order Coriobacteriales while an
additional 7 were assigned to Christensenellales, both of which are
relatively understudied gut bacterial orders with high diversity in
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general and few isolates (Supplementary Fig. 10). Additionally, three
novel SLCs with high-quality MAGs represent the only available gen-
omes for the corresponding genera (SLC637 – closest match Pho-
caeicola, <83% identity; SLC487 and SLC667 – closest match
Butyricicoccus, <81% identity), while one of the novel SLCs is among the
top 10 most abundant SLCs within the gut microbiomes of SPMP
subjects (SLC612; Supplementary Fig. 11). We noted that SLC612 is
significantly more abundant in the gut microbiomes of Singaporean
populations than inwestern subjects, potentially explaining why it was
not assembled in previous large-scale studies and emphasizing the
need for population-specific references for even common gut bacteria
(Supplementary Fig. 11).

At the strain-level (99% identity), SPMP genomes were notably
unique compared to >200,000 genomes in the UHGG database, with
3413 novel strains out of 3891 (87% novel,Methods). Among the top 20
most abundant gut bacterial species in SPMP, less than 20% of the
strains were represented in UHGG, with only the keystone gut com-
mensal Bacteroides uniformis having >40% of its strains being repre-
sented by genomes from other populations (Fig. 2c). For species that
are extensively characterized due to their use as probiotics such as

Bifidobacterium adolescentis and Bifidobacterium longum, we noted
that while many strain genomes have been obtained from isolates
(>30; Supplementary Fig. 12), SPMP MAGs reveal an even greater
uncharacterized diversity in the Singaporean population (>50 novel
strains; Fig. 2c, Supplementary Fig. 12) that could be leveraged for
probiotic discovery.

To explore the utility of the SPMP database for bioprospecting
and discovering secondarymetabolic pathways thatmay be important
for gut microbiome structure and function, we combined
comparative37 and deep learning38 based approaches for annotating
biosynthetic gene clusters with high stringency filters (BGCs, “Meth-
ods”)). In total, we identified 27,084 BGCs (DeepBGC: 23,175; anti-
SMASH: 3909) that grouped into 16,055 gene cluster families by BiG-
SCAPE39 (GCFs; Fig. 2d). More than 90% of the GCFs (15,134) did not
display similarity to previously known BGCs in curated standard
databases (antiSMASH and MIBiG) and were not found in annotations
within an extensive collection of gut microbial reference genomes
(HRGM, “Methods”), highlighting the value of using complementary
algorithms for bioprospecting in new populations. We estimated that
>85% of SPMP GCFs were not represented in curated databases, even
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when only a higher confidence set of predictions from antiSMASHwas
considered, while 49% of GCFs were novel even after taking into
account more extensive HRGM antiSMASH annotations (Supplemen-
tary Figs. 13 and 14).

While a significant fraction of GCFs were predicted to encode for
saccharides (N = 5888, 37%), in line with their important functions in
microbe-microbe and microbe-host interactions40, many novel GCFs
appear to encode diverse bioactive compounds such as ribosomally
translated and post translationally modified peptides (RiPPs), polyke-
tides and non-ribosomal peptides (NRPs) (Fig. 2d), some of whichmay
have antimicrobial function (“Methods”). In particular, a groupofGCFs
not represented in curated databases was predicted to synthesize a
bacteriocin in aBlautia species,with 3 distinct gene configurations and
genes encoding enzymes for peptide modification (radical SAM
superfamily) and ABC transporter genes (GCF382/271/37, Fig. 2e).
Analyzing the structure of the microbial community in samples with
andwithout the novel GCFs identified distinct networks, with presence
of GCF382/271/37 associated with strong negative correlations
between the Blautia species and multiple Faecalibacterium species
including Faecalibacterium prausnitzii (Fig. 2f, “Methods”). Together
with the known role of Faecalibacterium species in gut health41,42, these
observations highlight the importance of comprehensively identifying
secondary metabolic pathways for understanding gut metagenome
function in human diseases.

Discussion
Despite the growing number of gut microbiome studies worldwide,
including from remote populations in the Americas43 and hunter-
gatherer tribes in Africa44, the gut microbial diversity of Asian popu-
lations remains understudied45. Singapore represents a microcosm of
multiple major Asian ethnic populations (Chinese, Malay and Indian)
living in the shared environment of a modern metropolis. While there
has been extensive study of gut metagenomes of ethnic Chinese
individuals from China, fewer studies have involved individuals from
Southeast Asia and India. The SPMP can thus represent an important
reference for these populations, in addition to Singaporean studies.
We believe that SPMP is only the beginning of such efforts because our
data is unlikely to represent the entirety of microbial diversity even in
Southeast Asia alone. More broadly, we anticipate that the microbial
diversity seen in SPMP might be similar to what would be observed in
other major urban centers in Asia (e.g., New Delhi, Jakarta, Tokyo,
Hong Kong), but is likely the ‘tip of the iceberg’when considering rural
and nomadic populations.

Various parameters are likely to define the appropriate strategy
for a study similar to SPMP in other countries, including cost, targeted
quality of reference genomes, ease of technology access, and avail-
ability of sufficient number of samples from a representative baseline
cohort in the country. While we attempted to employ multiple differ-
ent technologies for SPMP to get high-quality assemblies, we chose the
middle-ground in terms of cost and accessibility as this is an important
consideration for many countries. In particular, even higher-quality
metagenomic assemblies are possible if HiFi reads from the Pacific
Biosciences Sequel IIe system are available46. Also, the recent
announcement of higher-quality reads from ONT could help improve
assembly further and reduce costs47. Even as the sequencing landscape
is constantly changing, the results from our study suggest that high-
quality population-specific metagenomic references are already fea-
sible with a modest-sized cohort and limited sequencing resources.

The advantages of having high-quality references for metage-
nomics are similar towhat other areas of genetics and studies inmodel
organisms have benefited from i.e., substantially reduced cost and
effort in future studies by: (i) allowing the use of short reads or a single
sequencing assay/technology, (ii) enabling increased sensitivity in
identification of genomic features using reference-based approaches
(e.g., taxonomic classifiers for metagenomics), (iii) ensuring that there

are fewer ‘dark matter’ reads whose origin is unknown. We envisage
that efforts such as SPMP will benefit the scientific community by
spurring greater adoption of reference-based analyses in
metagenome-wide association studies48,49. Additionally, as we noted in
Fig. 1f, g, the quality of genomes (measured by higher contiguity and
completeness) that can be obtained using metagenomics and hybrid
assembly can be comparable or better than genomes of microbial
isolates hosted on GTDB, of which a substantial proportion were
sequenced using short reads only. Furthermore, unlike MAGs assem-
bled from short reads only, SPMP MAGs have low levels of con-
tamination and chimerism on average, increasing their utility as
population-specific references. This can galvanize efforts to geneti-
cally map microbial ecosystems in diverse biospheres, further con-
tributing to the references available to study humanmicrobiomes and
understanding of strain sharing between humans and the environ-
ment. As sequencing costs, ease of use and accessibility of new tech-
nologies, and metagenomic assembly algorithms improve, we can
expect that amajority of the high-qualitymicrobial references thatwill
be used in the future would be obtained through metagenomics, thus
helping to bridge the knowledge gap for the hundreds of thousands of
microbial species that are estimated to be there on Earth.

The detection of 70 putative novel species in SPMP is perhaps not
surprising given the unexploredmicrobial diversity and the limitations
of current genetic databases. However, it is noteworthy that this is still
a substantial fraction of the species detected in this study (>10%,
Fig. 2b), and while some of these species are not frequently detected
across individuals, one of them was in the top 10 most abundant gut
bacterial species, while others may still play a significant role in the
biology of some individuals by being sporadically abundant (e.g.,
SLC665 which is among the top 20 most abundant species in 5% of
subjects). Not surprisingly, at the strain-level an even larger fraction of
the observed genetic diversity was novel, but what was notable was
that this was true even for themore abundant andwell-studied species
in the gut microbiome (e.g., Bacteroides uniformis and Bifidobacterium
adolescentis, Fig. 2c). These observations highlight the overall value of
such studies for discovering probiotic strains that could be leveraged
for population health, with modest investments in metagenomic ana-
lysis cost (<$40,000), making it feasible for national microbiome
projects around the world.

Finally, the identification of >23,000 BGCs in the SPMP database
that were not represented in existing annotated databases (88% of
total, Fig. 2d) highlights that we are only scratching the surface in
terms of harnessing microbial pathways and functions for synthetic
biology andbiotechnology applications. Thiswasmadepossible by the
high-contiguity of our hybrid assemblies (>28× N50 relative to short-
read assemblies), and the characterization of distinct, under-
represented South-East Asian populations in SPMP harboring sub-
stantial novelty relative to curated BGC databases (>85%) and
annotated reference genomes (49%, Supplementary Figs. 13 and 14).
The gut microbiome by virtue of being a dynamic, host-associated
communitywith high diversity ofmicrobes is a richhunting ground for
host-modulating, macro-nutrient catabolizing and micro-nutrient
synthesizing functions50,51. In addition, homeostasis in the gut micro-
biomemay bemaintained by keymembers of the community through
the selective expression of antimicrobial peptides52 (AMPs), and cor-
respondingly we identified hundreds of novel BGCs encoding putative
bacteriocins, sactipeptides, lanthipeptides and lassopeptides that can
nowbe further characterized (“Methods”). Notably, we found evidence
that the presence of a BGC in a common Blautia species is associated
with significant changes in overall gut microbiome community struc-
ture for SPMP subjects (Fig. 2f). Together these results highlight the
potential for novel AMPs discovered in SPMP to provide genetic
templates for further optimization, and subsequent use to modulate
the gut microbiome, or as new antimicrobials to target multi-drug
resistant pathogens.
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Methods
Subject recruitment
Subjects for this cross-sectional study were recruited based on recall
from a community-basedmulti-ethnic prospective cohort27 that is part
of the Singapore Population Health Studies project (SPHS -formerly
Singapore Consortium of Cohort Studies). This subset included
109 subjects whowere 48 to 76 years old with 65males and 44 females
(Supplementary Data 1). Subjects in SPHSwere recruited to participate
in the National Health Survey, where subjects were selected at random
using age- and gender- stratified sampling to obtain a representative
sample set of residents in the country. During the period of recruit-
ment from April 16th, 2008 to September 20th, 2018, subjects did not
have any pre-existing major health conditions (cardiovascular disease,
mental illness, diabetes, stroke, renal failure, hypertension and cancer)
based on self-reporting27. The ethnicity of each subject was confirmed
verbally so that all four grandparents of the subject belonged to the
sameethnic group. As such,wedonot anticipate that any self-selection
bias was introduced. A separate comparison of baseline clinical mea-
surements was performed, including age-adjusted BMI and HbA1c,
against the rest of the subjects in the larger ethnicity-specific cohorts
within Singapore Population Health Studies to ensure that the sam-
pling for the initial cohort conformed to population norms. Informed
consent was obtained from all participants. Each subject was given 60
Singapore Dollars for their participation in this study. All associated
protocols for this study were approved by the National University of
Singapore Institutional ReviewBoard (IRB referencenumberH-17-026)
on May 9th, 2017 and renewed until May 31st, 2021.

Sample collection
Fecal samples were collected from healthy subjects using the Bio-
CollectorTM kit (The BioCollective, Colorado, USA). Samples were
double-bagged and transferred to a polystyrene box, together with a
pre-chilled ice-pack (−20 °C). The polystyrene box was transferred to a
cardboard box and later collected from the participants’ home within
the same day. Samples brought to the Temasek Life Sciences labora-
tory were stored into an anaerobic chamber (atmosphere of N2 (75%),
CO2 (20%), and H2 (5%)). Fecal samples were homogenized and sub-
samples transferred into sterile 2mL centrifuge tubes.

DNA extraction
Genomic DNA was extracted from fecal material (0.25 g wet weight)
using the QIAamp Power Fecal Pro DNA kit (QIAGEN GmbH, Cat. No.
51804) and was quantified using Qubit dsDNA BR Assay Kit (Thermo
Fisher Scientific, Cat. No. Q32853). Integrity of the extracted DNA was
verified using 0.5% agarose gel electrophoresis.

Illumina library preparation and sequencing
Metagenomic libraries were prepared with a standard DNA input of
50 ng across all samples, usingNEBNext® Ultra™ II FSDNALibrary Prep
Kit for Illumina (NewEnglandBiolabs,Cat. No. E7805), according to the
manufacturer’s instructions. The reaction volumes were, however,
scaled to a quarter of the recommended volumes for cost effective-
ness. Barcoding and enrichment of libraries was carried out using
NEBNext®MultiplexOligos for Illumina® (96UniqueDual Index Primer
Pairs; New England Biolabs, Cat. No. E6440). Paired-end sequencing
(2 × 151 bp reads) was carried out on the Illumina HiSeq4K platform
with a minimum and average depth per sample of 2.4 Gb and 9.4Gb
respectively.

ONT library preparation and sequencing
Purity and integrity of DNA was assessed and ensured to fall within
recommended ranges before library preparation. To preserve the
integrity of DNA, the shearing step was omitted and DNA was used
directly for DNA repair and end-prep. Single-plex libraries were pre-
pared using 1D sequencing kit (Oxford Nanopore Technologies, SQK-

LSK108 or SQK-LSK109) according to the “1D Genomic DNA by liga-
tion” protocol. For samples that weremultiplexed (12-plex), the native
barcoding kit (Oxford Nanopore Technologies, EXP-NBD103 or EXP-
NBD104 and EXP-NBD114) was used and libraries were prepared
according to the “Native barcoding genomic DNA” protocol. Both
native barcode ligation and adapter ligation steps were extended to
30min instead of 10min. Single-plex samples were sequenced on
either the MinION or GridION machine with either FLO-MIN106D or
MIN106 revD flowcells. Multiplex samples were sequenced on the
PromethION machine with FLO-PRO002 flowcells. Raw reads were
basecalled with the latest version of the basecaller available at the
point of sequencing (Guppy v3.0.4 to v3.2.6). Basecalled nanopore
reads were demultiplexed and filtered for adapters with qcat (v1.1.0
https://github.com/nanoporetech/qcat). The minimum and average
sample depth was 1.2 and 4.7Gb respectively. Number of reads ranged
from 300,000 to 3.4 million (average = 1.4 million).

Hi-C library preparation and sequencing
Hi-C libraries were generated using Phase Genomics ProxiMeta kit
(version 3.0), based on the standard protocol. Briefly, 500mg fecal
material was crosslinked for 15min at room temperature with end-
over-end mixing in 1mL of ProxiMeta crosslinking solution. Once
crosslinking reaction was terminated, quenched fecal material was
rinsed. Sample was resuspended and a low-speed spin was used to
clear large debris. Chromatin was bound to SPRI beads and incubated
for 1 h with 150 µL of ProxiMeta fragmentation buffer and 11 µL of
ProxiMeta fragmentation enzyme. Once washed, beads were resus-
pended with 100 µL of ProxiMeta Ligation Buffer supplemented with
5 µLof Proximity ligation enzymeand incubated for 4 h. After reversing
crosslinks, the free DNA was purified with SPRI beads and Hi-C junc-
tions were bound to streptavidin beads and washed to remove
unbound DNA. Washed beads were used to prepare paired-end deep
sequencing libraries using ProxiMeta Library preparation reagents.
Paired-end sequencing (2 × 151 bp reads) was carried out on the Illu-
mina HiSeq4K platform. The minimum and average sample depth was
2.3 and 24.5 Gb respectively.

Estimating sequencing and computing cost
Sequencing costs can vary substantially across sequencing centers and
countries. Here we provide an estimate based on costs at the Genome
Institute of Singapore in November 2021. Based on prices for library
preparation kits as described in this manuscript, we estimate that
Illumina library preparation costs ~US$50/sample and an Illumina
HiSeq sequencing lane costs ~US$1000 with approximate throughput
of >350 million paired-end reads (2 × 151bp; >100Gbp). Considering
that the average Illumina sequencing depth per sample in this study is
~10Gb, 10 samples can be multiplexed in a single lane, leading to the
overall cost per sample of ~US$150. For ONT sequencing, we estimate
that with an approximate flow-cell price of US$500 producing ~30Gbp
of sequencing data, 5 samples can be multiplexed to obtain the aver-
age throughput in this study (~6Gbp). With ONT multiplexed library
preparation costs of ~US$50/sample, we estimate that overall ONT
costs are also ~US$150/sample. Metagenomic assembly of Illumina and
Hybrid datasets with MEGAHIT and OPERA-MS, respectively, typically
took less than 3 h on an AWS C5 instance with 8 CPUs. Using as
reference anAWSC5 instancepriceof 30 cents anhour for 8CPUs, this
translated to a computational cost of <US$1/sample on average, a
marginal increase over total sequencing costs.

Sequence quality assessment
Illumina and ONT read statistics were generated with Fastq-Scan
(v0.4.1, https://github.com/rpetit3/fastq-scan) and NanoStat53 (v1.4.0),
respectively. To assess taxonomic concordance, Illumina and ONT
reads were classified with Kraken254 (v2.1.1, UHGG database13) and
relative abundances were estimated with Bracken55 (v2.6.1) at the
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species level (option -l R7) to compute Pearson correlation coefficients
per sample.

Metagenomic assembly and binning
Illumina reads were assembled using MEGAHIT8 (v1.04, default para-
meters) and hybrid metagenomic assemblies were generated with
Illumina and ONT data using OPERA-MS25 (v0.9.0, --polish). Contigs
were binned with MetaBAT210 (v2.12.1, default parameters). Hi-C bin-
ning was provided by Phase Genomics using its internal pipeline with
MetaBAT results for hybrid assemblies as a starting point. Assembly
binswere evaluated basedonMIMAG standards28, with contamination,
completeness and N50 values determined with CheckM56 (v1.04), and
non-coding RNA annotations from barrnap (https://github.com/
tseemann/barrnap) (v0.9) and tRNAscan-SE57 (v2.0.5, default para-
meters). Assembly bins with contamination <10% and completeness
>50% were designated as medium quality MAGs, those with con-
tamination <5% and completeness >90% as near complete MAGs, and
additionally near completeMAGswith complete 5S, 16S, and 23S rRNA
genes and at least 18 unique tRNA genes were classified as high quality
MAGs. All other bins were classified as low quality and were removed
from further analyses. In total, 4497 medium quality, near complete
and high quality MAGs were designated as being part of the SPMP
database. Hybrid and short-reads assembly based MAGs were further
assessed for chimerism with GUNC58 (v1.0.4, detailed output). Coding
sequence lengths obtained from Prodigal59 (v2.6.3) calls were com-
pared between the two datasets to assess the potential impact of long
read indel errors on gene annotation. Concordant with prior work
showing that hybrid metagenomic assemblies can have high base-pair
accuracy25, we also noted that SPMP MAGs independently assembled
from distinct individual gut metagenomes could exhibit high average
nucleotide identity (>99.99%, consistent with Q40 quality).

Species abundance and rarefaction analysis
Representative MAGs for SLCs were used to create a custom Kraken60

(v2.1.1) database (https://github.com/DerrickWood/kraken2/wiki/
Manual#custom-databases) and relative abundances for SLCs were
estimated for each sample using Bracken55 (v2.6.0, default para-
meters). Rarefaction analysis for estimating overall species diversity
was done using the R package iNext61 (v2.1.7, q =0, datatype = “

incidence_raw” and endpoint=300), based on converting SLC relative
abundance values from Bracken into presence-absence values at a
threshold of 0.05%.

Multivariate regression analysis
Genus-level abundances for each sample were provided as input for R
package MaasLin236 (v1.4.0) along with sample metadata (age, sex and
ethnicity), and significant associations were determined by combining
3 MaasLin2 runs with a compound Poisson linear model.

Strain-level read mapping
Metagenomic reads were mapped (--secondary=no) against reference
databases indexed with minimap262 (v2.24-r1122, -I 24 G; SPMP strain-
level genomes and UHGG species-level representatives). Alignments
were filtered at the strain-level with bamtools (v2.5.2, -tag “NM: < 2”
-length “>99”) and unique reads were extracted based on samtools
(v1.15.1) view results.

To further evaluate the utility of SPMP genomes relative to the
UHGG database for read mapping at the strain-level, we created
databases with similar number of strains from both collections.
Reference indexing and mapping were done in a similar fashion as
described before. Alignments were filtered with pysam (v0.19.1) (read
coverage ≥90%, identity ≥99%), and reads were classified at the
species-level with Kraken (v2.1.1, RefSeq bacteria database). Specifi-
cally, we identified 21 species with many strain genomes in UHGG or
SPMP (≥20) and having enough reads (>10× coverage) in at least

3 samples in an independent studyof Singaporeangutmetagenomes35.
Illumina reads were mapped (minimap2, default parameters) inde-
pendently to strain genomes for each species. Kraken2 classification
(standarddatabase) was used to assess ifmapped reads came from the
right species, and to calculate precision, sensitivity and F1 scores. We
noted that median F1 scores were better using SPMP compared to
UHGG for 17 out of 21 species. Overall, SPMP provided significantly
bettermapping performance (F1 score) relative toUHGG for 12 species
(Wilcoxon p <0.05). The converse, i.e., significant improvements with
UHGG relative to SPMP, were not observed for any species. Improve-
ments in F1 scores were driven by better sensitivity in SPMP vs UHGG
for abundant gut bacterial species such Prevotella copri and Alistipes
onderdonkii. While median precision scores using SPMP and UHGG
were similar (0.98 vs 0.99 for P. copri; 0.98 vs 0.97 for A. onderdonkii),
sensitivity was notably higher in SPMP vs UHGG (0.96 vs 0.90 for P.
copri; 0.99 vs 0.90 for A. onderdonkii).

Annotation of MAGs with the Genome Taxonomy Database
The SPMP database was compared to the GTDB database2 (release 95)
using GTDBtk’s63 (v1.4.1) ani_rep command with default arguments,
which leverages Mash64 (v2.3) to provide pairwise genome-wide simi-
larity values between all query MAGs and GTDB sequences. Only pairs
with Mash distance ≤0.05 were retained and used to define the best
match for each SPMP MAG based on minimum Mash distance. GTDB
matches were classified based on their metadata as being uncultivated
(“derived from environmental sample” or “derived from metagen-
ome”) or based on isolate strains. Both N50 values and MIMAG clas-
sifications were extracted from GTDB metadata. MAGs were placed
into a phylogenetic tree using GTDB_TK (v1.4.1) with classify_wf
(default options), based on pplacer_taxonomy values. To assess
novelty in light of the latest human gut metagenome database, we
further compared ourMAGs to the 5414 representative genomes from
theHuman ReferenceGutMicrobiome catalog (HRGM)22 with a similar
Mash analysis (Supplementary Data 6).

Species and strain-level clustering
MAGs were clustered at the species (95%) and strain-level (99%) based
on average nucleotide identity estimates (ANI; using Mash with sketch
size of 10k and k-mer size of 21 bp) with agglomerative clustering
(sklearn v0.23.2, AgglomerativeClustering function, options: link-
age = “single”, n_clusters=None, compute_full_tree=True, affinity = “

precomputed”). For each cluster, representative MAGs were defined
using the highest eigen centrality value based on a weighted network
graph produced by networkx (v2.5; eigenvector_centrality function).
Strain-level clustering was done jointly with all species-level matches
from the UHGG database (v1.0, ANI threshold of 95%). Phylogenetic
analysis at the strain-level was conducted using the biopython Phylo
package65, based on pairwise distances generated with FastANI66

(v1.32). Phylogenetic trees were visualized using FigTree (tree.bio.e-
d.ac.uk/software/figtree).

Species assignment
SLCs were assigned putative species name and types based on com-
parisons withmultiple databases, including GTDB, Pasolli et al.67 (SGB)
and Almeida et al.13 (UHGG). SLCs types were defined as, (i) isolate: if
GTDB match to an isolate was found (Mash distance ≤0.05), (ii)
uncultivated: if amatch to any databasewas found, but no isolates, (iii)
novel: if no matches were found. SLCs were assigned putative species
names based on a majority rule for MAGs in the cluster, with pre-
ference for GTDB ids (Supplementary Fig. 9).

Biosynthetic gene cluster identification and clustering
Biosynthetic gene clusters (BGCs) in the SPMP database were identi-
fied using antiSMASH68 (v5.1.2, --genefinding-tool prodigal-m --cb-
general --cb-knownclusters --cb-subclusters --asf --pfam2go --smcog-
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trees) and DeepBGC38 (v0.1.18, prodigal-meta-mode). BGCs with only
one identified gene and with length <2kbp were removed for both sets
of results. For antiSMASH this provided a set of 3,909 BGCs. DeepBGC
results which overlapped with antiSMASH were removed if the geno-
mic coordinates of both BGCs overlapped by ≥30% in either direction.
DeepBGC candidates were further filtered for (i) being categorized
with a known product class and (ii) containing at least one known
biosynthetic pfam or TIGRFAM protein domain as defined by Cimer-
mancic et al.69, providing an additional set of 23,175 BGCs.

All 27,084 BGCs (3909 from antiSMASH + 23,175 from DeepBGC)
were first categorized into different product classes: ribosomally syn-
thesized and post-translationally modified peptides (RiPPs), non-
ribosomal peptide synthetases (NRPs), polyketide synthases (PKS),
saccharides and others based on the labels reported by each algo-
rithm. We further unified the antiSMASH and DeepBGC product class
labels to integrate both datasets (Supplementary Table 1). A fraction of
mined BGCs were labeled as “hybrids” because antiSMASH or
DeepBGC associated them with two different product classes e.g.,
“bacteriocin;T1PKS”. The BGCs in each product class were grouped
into gene cluster families (GCFs) by sequence similarity using BiG-
SCAPE39 (v1.01, --include_singletons --mix --no_classify --cutoffs 0.3). A
total of 16,055 GCFs were defined by this approach and for each GCF
we took the smallest BGC member as a representative of the family.
Gene cluster diagrams of BGCs were created using Clinker70.

BGCs in SPMP were classified as novel via a two-step approach.
Firstly, BGC sequences were required to have <80% similarity to any
existing sequence in the antiSMASHandMIBiG2.071 databasesusing the
clusterblast results from antiSMASH. Secondly, BGC annotations were
compared to antiSMASH annotations from a comprehensive gut
microbial genome collection (HRGM) using the standalone clusterblast
software72 (v 1.1.0), to identify SPMPmatches based on a 80% similarity
threshold, similar to the approach described in Gallagher et al73.

Characterization of AMPs and impact on microbiome structure
Besides bacteriocins, BGCmining in the SPMP database also identified
other classes of ribosomally synthesized and post-translationally
modified peptides (RiPPs) such as lanthipeptides and lassopeptides
(Supplementary Fig. 15A), which can also possess antimicrobial prop-
erties. Antimicrobial activities of putative peptides encoded by novel
RiPP BGCs in SPMPwerepredicted using an ensemble voting approach
(Supplementary Fig. 15B) with four different AMP prediction models:
AMPscanner74 (v2, convolutional neural network), AmpGram75 (ran-
dom forest model), AMPDiscover76 (based on quantitative sequence
activity models) and ABPDiscover (https://biocom-ampdiscover.
cicese.mx/). Peptides predicted by antiSMASH in these RiPP BGCs
were translated and all amino acid sequences with a length greater
than 10but lesser than 200wereused as inputs into these fourmodels.
Peptides were classified as AMPs if they received votes from both
AMPscanner and AmpGram, and at least one vote from either AMP-
Discover or ABPDiscover, and if the corresponding RiPP BGCs con-
tained a transporter protein. The performance of this ensemble
approach was evaluated using 78 known AMP sequences and
78 scrambled non-AMP sequences taken from the AmpGram bench-
mark dataset75. For our evaluation dataset, we identified and removed
all sequences that were found in the training sets of AMPscanner,
AmpGram, AMPDiscover and ABPDiscover using seqkit77 (v0.11.0) and
samtools faidx (v1.9). The percentage hydrophobicity and overall
charge of selected peptide sequences was determined using the AMP
calculator in the AMP database 3 (APD3; https://aps.unmc.edu/
prediction).

Out of 107 RiPP BGCs that were not bacteriocins, 54 of themwere
predicted to also be AMPs. One of these was found to be a lanthi-
peptide (GCF459) in Dorea longicatena B (Supplementary Fig. 15C),
with no significant blastp matches to the NCBI nr database. This pep-
tide sequence has a 32% hydrophobic amino acid composition and a

net positive charge of +5, which could favor its insertion into the cell
walls and membranes of its targets. Another novel AMP is a lasso-
peptide (GCF26) found in a Ruminococcus species (Supplementary
Fig. 15D), with similarly high proportion of hydrophobic amino acids
(35%) and a slight net positive charge.

To associate BGC presence/absence patterns with microbial
community structure, correlation analysis (Fastspar78 v1.0.0, para-
meters: --iterations 100 --exclude_iterations 20, p-values from 1000
bootstrap replicates and permutation testing) was done based on SLC
abundance profiles across samples (species with medium abundance
≤0.1%filtered out). Correlations in the networkwerekept if they had an
associated p-value <0.05.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Shotgun metagenomic
sequencing data (Illumina and ONT) and SPMP hybrid MAGs are
available from the European Nucleotide Archive (ENA – https://www.
ebi.ac.uk/ena/browser/home) under project accession number
PRJEB49168. All SPMP MAGs, a corresponding Kraken database, gene
annotations and BGC sequences are available on Figshare at https://
figshare.com/collections/SPMP/5993596.

SPMPgenomes were compared to the GTDB database (release 95,
https://gtdb.ecogenomic.org). UHGG genomes and a corresponding
Krakendatabase are available fromhttp://ftp.ebi.ac.uk/pub/databases/
metagenomics/mgnify_genomes/human-gut/v1.0/. SGB genomes are
available from http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html.
HRGM genomes from the initial release are available from https://
www.mbiomenet.org/HRGM/. The Kraken standard database used to
assess Bifidobacterium abundances is available from https://
benlangmead.github.io/aws-indexes/k2. Databases used for anti-
SMASH analysis of SPMP BGCs are available from v5.1.2 of the anti-
SMASH software, while the MIBiG 2.0 database are available from
https://mibig.secondarymetabolites.org/download. Source data are
provided with this paper.

Code availability
Source code for scripts used to analyze the data are available in a
GitHub project at https://github.com/CSB5/SPMP79.
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