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The fusions of receptor tyrosine kinase (RTK) involving anaplastic lymphoma kinase (ALK),
c-ros oncogene 1 (ROS1), and neurotrophic receptor tyrosine kinase (NTRK) represent
the potential targets of therapeutic intervention for various types of solid tumors. Here, the
genomic features of 180 Chinese solid tumor patients with ALK, ROS1, and NTRK fusions
by next generation sequencing (NGS) were comprehensively characterized, and the data
from 121 patients in Memorial Sloan Kettering Cancer Center (MSKCC) database were
used to compare. We found that ALK, ROS1, and NTRK fusions were more common in
younger female patients (p<0.001) and showed a higher expression of programmed death
ligand 1 (PD-L1). The gene-intergenic fusion and the fusion with rare formation directions
accounted for a certain proportion in all samples and 62 novel fusions were discovered.
Alterations in TP53 and MUC16 were common in patients with RTK fusions. The
mutational signatures of patients were mainly distributed in COSMIC signature 1, 2, 3,
15 and 30, while had a higher frequency in copy number variations (CNVs) of individual
genes, such as IL-7R. In the MSKCC cohort, patients with fusions and CNVs showed
shorter overall survival than those with only fusions. Furthermore, the differentially mutated
genes between fusion-positive and -negative patients mainly concentrated on MAPK
signaling and FOXO signaling pathways. These results may provide genomic information
for the personalized clinical management of solid tumor patients with ALK, ROS1, and
NTRK fusions in the era of precision medicine.

Keywords: ALK, ROS1, NTRK, gene fusion, next generation sequencing, mutational signature, copy number
variants, programmed death ligand 1
INTRODUCTION

Chromosomal inversions, deletions or translocations leading to the constitutive activation of
receptor tyrosine kinase (RTK) drive tumorigenesis across different malignancies (1, 2). The
prevalence of RTK fusions involving anaplastic lymphoma kinase (ALK), c-ros oncogene 1
(ROS1), and neurotrophic receptor tyrosine kinase (NTRK) ranges from 0.3% to 5% in solid
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tumors and tyrosine kinase inhibitors (TKIs) are the standard
treatment modality for the first-line setting of patients with
advanced cancer harboring such fusions (3–5). Currently,
multiple ALK fusion partners have been identified, of which
echinoderm microtubule-associated protein-like 4 (EML4) is the
most frequent, with nine variants occurring in nearly 80% of all
the ALK fusion cases of non-small cell lung cancer (NSCLC) (6–
8). Meanwhile, many different 5´ gene partners have been
identified in the fusion with 3´ regions of ROS1. These fusions
are discovered in adult glioblastoma, paediatric glioma, NSCLC,
and inflammatory myofibroblastic tumor (IMTs) (4, 9).
Additionally, approximately 80 NTRK fusion partners have
also been described (10, 11). Although the frequency of NTRK
fusions is low, they are ubiquitous in rare cancer types, such as
mammary analog secretory carcinoma and infantile
fibrosarcoma (12–15).

In recent years, a lot of clinical trials on treatments targeting
specific molecular mechanisms like ALK, ROS1, and NTRK
fusions have been conducted. Small molecule inhibitors for
ALK, ROS1, and NTRK fusions, such as crizotinib, brigatinib,
lorlatinib, entrectinib and larotrectinib, have been approved by
the US Food and Drug Administration (FDA) for different
cancer types (16–20). Despite the potential benefit from
identifying these fusions, it remains unclear whether the
tumors with ALK, ROS1, and NTRK fusions represent a
distinct, although rare, disease subtype that should be detected
early for targeted therapy. Herein, a comprehensive study was
carried out to characterize the molecular and clinicopathological
characteristics, and prognosis of solid tumor patients with ALK,
ROS1, and NTRK fusions.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Sample Collection
In this study, the sequencing data of 7,537 solid tumor samples
from the database of Simcere Diagnostics, Co. Ltd. (Nanjing,
China) for genomic profiling between June 2019 and November
2020 were retrospectively analyzed, including lung cancer
(n=3001), liver cancer (n=762), soft tissue sarcoma (n=281),
bile duct carcinoma (n=232), esophageal cancer (n=155), breast
cancer (n=154), melanoma (n=125), gallbladder carcinoma
(n=121), bone tumor (n=59) and other unspecified tumors
(n=2647) (Table 1). All patients signed written informed
consents. The formalin fixed, paraffin-embedded (FFPE) tissue
samples were selected for analysis, and peripheral blood samples
were collected as the control. Here, 121 ALK, ROS1, and NTRK
fusion-positive cancer patients from the MSK-IMPACT Clinical
Sequencing Cohort (MSKCC, Nat Med 2017), which was
composed of 10,945 samples, were used as the compared cohort.

DNA Extraction, Library Construction and
Sequencing
DNA was extracted from unstained FFPE sections with more
than 20% tumor cells according to the manufacturer’s protocol.
Library construction was performed using the KAPA Library
Preparation kit. The concentration of the library was assessed
using the Invitrogen Qubit4.0, and the inserted size was
examined on the Agilent 4200 TapeStation. Next generation
sequencing (NGS) was performed on the Illumina Novaseq 6000
system at an average depth of 1000X with a panel of 539 cancer-
related genes (Supplementary Table 1). Genomic alterations,
TABLE 1 | Patients’ characteristics according to the presence or absence of ALK, ROS1, and NTRK fusions.

Characteristics ALK/ROS1/NTRK
fusion negative

(n=7357)

ALK/ROS1/NTRK
fusion positive

(n=180)

p ALK fusion
positive
(n=103)

p ROS1 fusion
positive (n=40)

p NTRK fusion
positive (n=37)

p

Age, years* 0.0002 0.0166 0.0091 0.1514
Median 61 55 57 53.5 56.5
Range 0-107 3-83 15-82 32-77 3-83
Gender** 0.0137 0.1906 0.0006 0.8671
Female 2949 89 48 27 14
Male 4404 91 55 13 23

Pathology <0.0001 <0.0001 0.0005 <0.0001
Bile duct

carcinoma
229 3 0 1 2

Bone tumor 56 3 1 0 2
Breast cancer 152 2 0 0 2
Esophageal

cancer
153 2 1 1 0

Gallbladder
carcinoma

118 3 0 0 3

Lung cancer 2865 136 93 33 10
Liver cancer 757 5 0 1 4
Melanoma 122 3 0 1 2
Soft tissue

sarcoma
270 11 6 0 5

Others 2635 12 2 3 7
June
 2022 | V
olume 12 | Article
The values of p were based on Fisher’s exact test or Mann-Whitney tests. *In terms of age, the total number of patients was 7260 due to lack of information. **Regarding the gender, the
total number of patients was 7533 due to lack of information.
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including single nucleotide variants (SNVs), copy number
variations (CNVs), small insertions, deletions and gene
arrangements were covered. The tumor mutation burden
(TMB) and microsatellite status (MSI) were also calculated
by NGS.

Statistical Analysis
The Fisher’s exact test and Mann-Whitney test were used to
assess the association of ALK, ROS1, and NTRK fusions with age,
gender, and cancer types. To assess the probability of gene
fusions in various cancer types, odds ratios (ORs) and relative
95% confidence intervals (CIs) were calculated. The overall
survival (OS) was analyzed using the Kaplan-Meier method,
and survival curves (mutational signature, SNVs, and CNVs)
were compared using the log-rank test. Fisher’s exact test was
used to evaluate the association of genomic characteristics with
the proportion of PD-L1 expression, with 1% and 50% as the
cutoff value. All statistical tests were two-sided, and p < 0.05 was
considered statistically significant.
RESULTS

Patient Characteristics
There were 103 (1.37%) cases harboring ALK rearrangements in
7,537 solid tumor patients, including lung cancer (n=93), soft
tissue sarcoma (n=6), bone tumor (n=1), esophagus cancer (n=1)
and other unspecified tumors (n=2). ROS1 rearrangements were
detected in 40 cases (0.53%), among whom 33 cases suffered
from lung cancer (Table 1). 37 cases (0.49%) harbored NTRK
fusions, including 9 cases of NTRK1 fusions, 2 cases of NTRK2
fusions, and 26 cases of NTRK3 fusions.

ThroughNGS, a total of 180patientswere found to harborALK/
ROS1/NTRK fusions and were set as ALK/ROS1/NTRK fusion-
positive group (n=180), while those without ALK/ROS1/NTRK
fusions were as ALK/ROS1/NTRK fusion-negative group
(n=7357). As shown in Table 1, ALK/ROS1/NTRK fusions were
more common in young patients (p<0.001). However, no age bias
was presented in patients with NTRK fusion (p>0.05). There was a
higherALK/ROS1/NTRK fusion-positive frequency in females than
males (p=0.0137), and subgroup analysis further showed that the
ROS1 fusion-positive rate in females was significantly higher than
that inmales (p=0.0006), but notALK fusion (p=0.1906) andNTRK
fusion (p=0.8671). The incidence of RTK fusions in soft tissue
sarcoma and bone tumor was significantly higher than that in liver
cancer (p<0.05). Meanwhile, the rates of RTK fusions in bile duct
carcinomaand liver cancerwasmuch lower than that in lungcancer
(p<0.05, OR=0.285) (Supplemental Figure 1).

Molecular Features of ALK Fusion-
Positive Tumors
Of 103 ALK fusion-positive samples, a total of 491 variants were
identified, including frame InDel, missense mutations, nonsense
mutations and splicing mutations. TP53 alterations (26%) were
the most common, followed by MUC16 (11%), HUWE1 (10%),
ARID2 (10%), and ALK (10%). Other genomic alterations
Frontiers in Oncology | www.frontiersin.org 3
included NOTCH3 (6%), MTOR (6%), KMT2C (6%), KDM5C
(6%), and DICER1 (6%) (Figure 1A). The median TMB was 2.21
mut/Mb (0-33.82 mut/Mb). AlthoughMSI status was available in
47% of patients, there was a higher proportion of microsatellite
stability (MSS) in the tumors bearing ALK fusions. In the
MSKCC cohort, totally 94 mutations occurred in 53 ALK
fusion-positive cases, suggesting TP53 and ALK were the most
frequently altered genes (Figure 1B).

Analysis of mutational signatures showed that C>T transition
were the most common, followed by C>A and C>G transitions
(Figure 1C). The probability of T>G and T>A transitions was
the lowest, consistent with COSMIC signature 1 identified in
most cancer samples. Accordingly, our results were highly in
accordance with MSKCC findings that C>T transition was the
most frequently mutation (Figure 1D). Additionally, the
breakpoints corresponding to ALK fusion in the sequencing
data of these patients were also identified. Most of breakpoints
were located at the intron between exon 19 and exon 20 of ALK
gene. In the ALK cohort, EML4-ALK fusion accounted for 67%,
ALK-EML4 fusion for 6%, and others for the remaining 27%.
Coexistence of these fusions was present in 26 patients (25%). 89
out of 103 patients had an EML4-ALK fusion, with variant 1 (v1,
E13:A20), variant 2 (v2, E20:A20), variant 3 (v3, E6:A20) and
variant 5 (v5, E2:A20) detected in 31, 8, 37 and 1 patients,
respectively (Figure 1E). Sixteen novel ALK fusion partners
identified were shown in Supplementary Table 2.

Notably, in our cohort, the mutations at the site of ALK
resistance were detected. The gatekeeper L1196M (4/103) was
present in crizotinib-resistant cases, while the solvent-front
G1202R mutation (2/103) was highly resistant to crizotinib, as
well as to next-generation ALK inhibitors (21).

Molecular Features of ROS1 Fusion-
Positive Tumors
Genomic alterations in ROS1 fusion-positive samples (n=40) were
shown in Figure 2A. The median TMB was 2.94 mut/Mb with a
range of 0-25 mut/Mb. 61% of ROS1 fusion-positive tumors
harboring MSI data showed MSS, while only one case showed
MSI-L. The frequency ofTP53mutations was obviously the highest
(54%), followed by MUC16 (29%), LRP18 (14%), FAT1 (14%),
CARD11 (14%), and ARID18 (14%) mutations. We further
compared our results with the MSKCC cohort that included 43
ROS1 fusion-positive cases harboring 155mutations. TP53was the
most frequently altered gene in the MSKCC cohort, followed by
MLL2 instead ofMUC16 (Figure 2B). Analysis of their mutational
signatures showed that C>T transition was the most prevalent,
followed by T>A and T>C transitions (Figure 2C). The T>G
transition showed the lowest frequency. This pattern was also
consistent with COSMIC signature 1. Moreover, C>T transition
also occurred most frequently in the MSKCC cohort (Figure 2D).

Then we identified the breakpoints and partner genes of the
ROS1 fusion in the sequencing data of these patients. In our
cohort, CD74 was the most common ROS1 fusion partner (33%),
followed by EZR (25%), SDC4 (8%), TPM3 (6%) and more
(Figure 2E). ROS1 fusions were formed via intra chromosomes,
most frequently occurring in ROS1 introns 31, 32, 33, while less
June 2022 | Volume 12 | Article 813158
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frequently in other exons and introns (Figure 2F). Meanwhile,
ROS1most frequently fused to intron 6 of CD74, intron 9 of EZR,
intron 2 of SDC4, and intron 7 of TPM3 (Figure 2G). We also
identified 11 novel ROS1 fusion partners (Supplementary
Table 2). Mutations resulting in substitutions at solvent-front
residues (G2032R) of ROS1 were identified in one CD74-ROS1
fusion case. TheG2032Rmutation had been reported to introduce
steric hindrance and diminish high-affinity crizotinib
binding (22).
Molecular Features of NTRK Fusion-
Positive Tumors
Among 37 NTRK fusion-positive cases (0.49%, 37/7537), 479
variants were totally identified in our cohort (Figure 3A). The
median TMB was 4.41 mut/Mb, with the peak value of 93.38
mut/Mb. In the cases with MSI data, only one case bearing
rearrangements was MSI-H and the others were MSS.

The heatmap of somatic mutations showed that TP53 was the
most altered gene (81%), followed by MUC16 (33%), TERT
(22%), LRP1B (22%), SPTA1 (19%), SMARCA4 (19%), FAT1
Frontiers in Oncology | www.frontiersin.org 4
(19%), and EGFR (19%) mutations. By analysis of the MSKCC
cohort that comprised 25 NTRK fusion-positive cases harboring
299 mutations, TP53 was also found to be the most frequently
altered gene, followed by SYK but not MUC16 (Figure 3B).
Analysis of the mutational signatures showed that C>T
transition occurred most frequently, followed by C>A
transition (Figure 3C). The other transitions were at a low
frequency. As shown in Figure 3D, the frequency of C>T
transition in the MSKCC cohort was the highest, even higher
than ours, which might be associated with different ethnicities
and diets.

The positive rates of NTRK fusions were generally low in a
wide range of cancers and tended to be enriched among rare
cancers. By analyzing its partner genes, we found the proportion
of NTRK3 partner genes was the highest (76%), followed by
NTRK1 (17%), and NTRK2 (7%). Meanwhile, 35 novel NTRK
fusions were identified (Supplementary Table 2). Notably,
G709C mutation resulting in amino acid substitutions was
identified in the QKI-NTRK2 fusion case, which involved the
regions of the xDFG motif and was paralogous to G1269 (ALK)
substitutions (23).
A B

D

E

C

FIGURE 1 | Mutational profiles and partners of ALK fusion-positive patients. (A) The oncoprint of the somatic SNVs in 103 patients harboring ALK fusion in our
study. (B) The oncoprint of the somatic SNVs in 53 patients harboring ALK fusion in the MSKCC database. (C) Mutational signatures of ALK fusion-positive patients
in our cohort. (D) Mutational signatures of ALK fusion-positive patients in the MSKCC cohort. (E) Distribution of ALK fusion partners and EML4-ALK variants. MSI,
microsatellite instability.
June 2022 | Volume 12 | Article 813158
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Classification of ALK, ROS1, and NTRK
Fusion Events
As shown in Figure 4A, a total of 225 gene fusions were identified in
180 samples, in which coexistence was present in 41 cases. These
fusions occurred mostly in chromosomes, with a few occurring
between adjacent chromosomes (Figure 4B). These fusions were
classified into two categories based on the genome annotation
containing the breakpoint regions (Figure 4C): gene-gene (91.1%)
Frontiers in Oncology | www.frontiersin.org 5
and gene-intergenic (8.9%). The gene-intergenic fusions accounted
for 3.1% of ALK fusions, 6.3% of ROS1 fusions, and 28.2% ofNTRK
fusions. Based on the gene breakpoint regions, we discovered 14%
fusions harboring rare fusion directions, namely “upstream-
upstream-breakpoint” cases (8%) and “downstream-downstream-
breakpoint” cases (6%) (Figure 4D). Due to lack of chimeric
transcripts, they were set aside in most fusion analyses as being
unlikely to be functionally relevant.
A B

D

E F

G

C

FIGURE 2 | Mutational profiles and partners of ROS1 fusion-positive patients. (A) The oncoprint of the somatic SNVs in 40 patients harboring ROS1 fusion in our
study. (B) The oncoprint of the somatic SNVs in 43 patients harboring ROS1 fusion in the MSKCC database. (C) Mutational signatures of ROS1 fusion-positive
patients in our cohort. (D) Mutational signatures of ROS1 fusion-positive patients in the MSKCC cohort. (E) Distribution of ROS1 fusion partners. (F) Distribution of
fusion breakpoint positions in the most common ROS1 fusions including CD74-ROS1, EZR-ROS1, SDC4-ROS1, and TPM3-ROS1. (G) Distribution of breakpoint
locations for ROS1 fusion partner genes, including CD74, EZR, SDC4, and TPM3.
June 2022 | Volume 12 | Article 813158
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Impacts of ALK, ROS1, and NTRK
Positivity on the Prognosis
In this study, we used Signature Multivariate Analysis (SigMA), a
computational tool, to call the mutational signatures, which
could accurately detect the mutational signatures associated
with homologous recombination deficiency from targeted gene
panels (24). Using deconstructSigs R package to extract the
mutational signatures, we identified the presence of signature 1
(Sig 1) in 18.2% (22/121), signature 3 (Sig 3) in 11.6% (14/121),
signature 30 (Sig 30) in 9.9% (12/121), and signature 2 in 9% (11/
121) of the patients in our cohort (Figure 5A). Likewise, Sig 1,
signature 7 (Sig 7), signature 15 (Sig 15), and Sig 30 were detected
in 25.8% (24/93), 6.5% (6/93), 8.6% (8/93), and 6.5% (6/93) of the
MSKCC samples, respectively (Figure 5B).

A previous study indicated that Sig 3 positivity was indicative
of clinical benefits (25), so we analyzed the association of Sig 1,
Sig 7, Sig 15, and Sig 30 positive patients with clinical benefits. Sig
1 and Sig 15 were apparently not associated with prolonged OS
(Figure 5B). Sig 7 and Sig 30 positive patients showed slightly
longer OS than others, but without statistical significance.
Interestingly, some fusion samples were absent of SNVs. On
this basis, we examined whether fusion-positive samples without
SNVs could indicate clinical benefits. Unfortunately, the absence
of SNVs did not make a significant difference in OS
(Supplemental Figure 2A).
Frontiers in Oncology | www.frontiersin.org 6
CNVs in Patients With ALK, ROS1, and
NTRK Fusions
CNVs were found in 50% of 180 samples. About 11% of the
patients in our cohort harbored MYC CNVs, which may be a
candidate for tumor genesis and progression (26). In addition,
CNVs of CDKN2A, CDKN2B, MCL1, MDM2, and IRS2 have
been reported to be associated with prognosis (27–31). CNVs of
these genes were also found in fusion-positive samples from the
MSKCC database (Figure 6). Interestingly, we found that CNVs
of IL7R showed a high frequency. Moreover, the CNVs in fusion-
positive samples were related to poor prognosis (p=0.01)
(Supplemental Figure 2B), which needed more data to verify.

PD-L1 Expression in ALK, ROS1, and
NTRK Fusion-Positive Tumors
Over-expression of ALK fusion protein increased PD-L1
expression, while anti-PD-1 antibody (immunotherapy) was
effective in both crizotinib sensitive and resistant NSCLC cells
(32). Hence, we examined the expression of PD-L1 in our cohort.
A total of 3337 patients were eligible after excluding those
without PD-L1 expression. PD-L1 immunohistochemistry
testing was performed using the SP263 antibody. In our
cohort, PD-L1 expression was higher in tumors with ALK
(p=0.0017) and ROS1 (p=0.0036) fusions than fusion-negative
tumors at 1% cutoff. However, PD-L1 expression between NTRK
A B

DC

FIGURE 3 | Mutational profiles and partners of NTRK fusion-positive patients. (A) The oncoprint of the somatic SNVs in 37 patients harboring NTRK fusion in our
study. (B) The oncoprint of the somatic SNVs in 25 patients harboring NTRK fusion in the MSKCC database. (C) Mutational signatures of NTRK fusion positive
patients in our cohort. (D) Mutational signatures of NTRK fusion-positive patients in the MSKCC cohort.
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fusion-positive and -negative tumors showed no statistical
difference (p=0.052). RTK fusions including ALK, ROS1, and
NTRK exhibited a higher PD-L1 expression than fusion-negative
tumors (p<0.0001). Using ≥50% cutoff, a higher PD-L1 positivity
was also observed in tumors with ALK (p=0.0484), but not ROS1
(p=0.2827), NTRK (p=1), or RTK fusions (p=0.0961) (Table 2).
These results indicated that PD-L1 expression from different
RTK fusion-positive tumors may have different predictive values
for benefiting from immune checkpoint inhibitors (ICIs) in
solid tumors.

Aberrations in Relevant Signaling
Pathways
The signaling pathway analysis of NTRK/ROS1/ALK fusion-
positive and -negative patients exhibited significant
dysregulations in well-defined pathways, namely MAPK and
FOXO pathways (Figure 7). According to prior reports,
MAPK pathway regulates cell proliferation, differentiation,
apoptosis, and migration, while FOXO signaling pathway is
related to cell cycle, apoptosis, autophagy, metabolism,
oxidation, immune response, and stem cell maintenance (33,
34). We found that the MAPK signaling pathway was altered in
60% of fusion-positive patients and 57.9% of negative patients.
Fusion-positive patients had a higher frequency of mutations in
EML4, ALK, FGF10, and HRAS, while the rates of EGFR, ERBB2,
and KRAS were higher in fusion-negative patients. Differential
frequencies of IRS2, IL7R, and PLK1 mutations resulted in
Frontiers in Oncology | www.frontiersin.org 7
dysregulation of the FOXO1 signaling pathway between these
two groups.
DISCUSSION

By analyzing the genomic landscape of patients with ALK, ROS1,
and NTRK fusions, a relatively high frequency of TP53mutation,
MSS status, and different TMB levels (NTRK>ALK/ROS1) were
found, supported by previous studies (7, 9, 35, 36). In our cohort,
the frequency of MUC16 mutations was secondary to TP53.
MUC16 mutations appeared to be associated with the
therapeutic and prognostic factors and were expected to be a
biomarker to guide immunotherapy (37, 38). In terms of
mutational signatures, ALK, ROS1, and NTRK fusion-positive
patients showed similar point mutant characteristics, and the
C>T transition was most common, followed by C>A transition.
This pattern was consistent with COSMIC Sig 1 that had been
found in most cancer types (39). Furthermore, survival curves
suggested that Sig 7 and Sig 30 may be associated with a favorable
prognosis in some way, which needed more data to verify.

Accumulating evidence has suggested that CNVs might be a
potential biomarker or prognostic factor for tumor treatment.
Apart from the genes with a high frequency of copy number
amplification, such as MYC and MDM2, we identified some
genes with copy number loss, such as CDKN2A and CDKN2B.
CDKN2A/B deletions were independent prognostic markers for
A B

DC

FIGURE 4 | Classification of fusion events. (A) Distribution of different fusion numbers (n=1, 2, 3) in our study. (B) A circos plot of 225 gene fusions identified in all
patients. (C) Distribution of different fusion types (gene-gene and gene-intergenic). (D) Distribution of fusions with different formation directions.
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A

B

FIGURE 5 | Mutational signatures of ALK/ROS1/NTRK fusion-positive patients. (A) Distribution of mutational signatures in all patients harboring ALK/ROS1/NTRK
fusions in our study and that from the MSKCC database. (B) Kaplan-Meier graph for survival probability according to Sig 1, Sig 7, Sig 15, and Sig 30 status.
FIGURE 6 | The pink and blue bars represent CNV events occurring in ALK/ROS1/NTRK fusion-positive patients in our cohort and MSKCC cohort, respectively.
*represents the genes not covered in the MSKCC panel.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8131588
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both adult and paediatric lymphoblastic leukaemia (40). MDM2
amplification was associated with poor clinical outcomes and
significantly increased tumor growth rates with anti-PD-1/PD-
L1 immunotherapy (41). This information is important for
guiding clinical treatment. We observed that fusion-positive
patients without CNVs had a favorable prognosis. Notably, the
pathogenic IL-7R CNVs exist in 7% of Chinese patients with
fusions, which is higher than that in the Western population
(0%). IL7R was previously reported to be amplified in various
cancers, with the function of mediating potential tumor
promotion, and high levels of IL-7R may be associated with
poor prognosis (42). Currently, the risk factors for IL-7R-mutant
fusions are unknown. Future studies should focus on how diet
and ethnic differences increase the risk of IL-7R mutations.

Of the 180 fusion-positive samples by NGS, EML4 and CD74
were the most common ALK and ROS1 fusion partners,
respectively. EML4-ALK occurred mainly in the forms of three
Frontiers in Oncology | www.frontiersin.org 9
variants: variant 1, variant 2, and variant 3 (43, 44). Diverse ROS1
fusion partners were identified, and the top four fusion partners
were CD74, EZR, SDC4, and TPM3. As the most common ROS1
fusion partner, CD74 had a frequency similar to the previous
ones (9, 45). There were no high-frequency partner genes
occurring in NTRK fusions, which might be related to the high
incidence of NTRK fusions in rare tumors. We also detected
some novel ALK/ROS1/NTRK fusion partners, such as LPIN1
and SMARCC1 (ALK), SLC16A10 and CRYBG1 (ROS1), SDK1
and GYPA (NTRK3). These results suggested that the NGS-based
evaluation for ALK/ROS1/NTRK fusions was accurate and
comprehensive. Compared with traditional methods, such as
IHC, FISH, and Sanger sequencing, NGS had unique advantages
in detecting unknown fusion partners and identifying accurate
breakpoints. However, the rare fusions remain clinically
interesting, further studies are needed to confirm these
observations in preclinical and clinical studies.
FIGURE 7 | Frequently deregulated signaling pathways in ALK/ROS1/NTRK fusion-positive patients.
TABLE 2 | Summary of PD-L1 expression in patients with ALK, ROS1, and NTRK fusions, n (%).

Variables 1% Cutoff 50% Cutoff

≥1% <1% p ≥50% <50% p

ALK fusion Positive 23 (63.89) 13 (36.11) 0.0017 6 (16.67) 30 (83.33) 0.0484
Negative 1246 (32.99) 2055 (67.01) 244 (7.39) 3057 (92.61)

ROS1 fusion Positive 11 (78.57) 3(21.43) 0.0036 2 (14.29) 12 (85.71) 0.2827
Negative 1258 (37.86) 2065 (62.14) 248 (7.46) 3075 (92.54)

NTRK fusion Positive 11 (61.11) 7 (38.89) 0.0520 1 (5.56) 17 (94.44) 1.0000
Negative 1258 (37.90) 2061 (62.10) 249 (7.50) 3070 (92.50)

ALK/ROS1/NTRK fusion Positive 45 (66.18) 23 (33.82) <0.0001 9 (13.24) 59 (86.76) 0.0961
Negative 1224 (37.44) 2045 (62.56) 241 (7.37) 3028 (92.63)
June 2022
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A previous study reported the impacts of gene-intergenic and
intergenic-intergenic fusions on the upregulation of their target
genes (46). Therefore, we classified the fusions in our cohort into
two categories: gene-gene fusion and gene-intergenic fusion.
Neither intergenic sequence-ALK nor coexistence of fusions
showed a significant effect on the benefit from crizotinib
treatment (47). However, a substantial portion of chimeric
transcripts was produced by gene-intergenic fusions. The
impact of such intergenic breakpoints on transcriptome has
been unclear. Meanwhile, these fusions with rare fusion
directions mostly coexisted with classic fusions, and their
clinical significance was currently unknown, even though a
portion of them harboring kinase domains. Future research
may focus on investigating the clinical role of gene-intergenic
fusions and fusions with rare fusion directions in cancers.

PD-L1 protein expression in tumor cells emerged as the first
potential predictive biomarker for sensitivity to ICIs (48). In our
cohort, 44.27%of the patients had clinically relevant information in
PD-L1 expression. Consistent with the literature, we observed a
significantly higher expression of PD-L1 in theALK fusion-positive
cohort. Of note, the expression of PD-L1 in the ROS1 or NTRK
fusion-positive cohort was similar to that in the fusion-negative
cohort. However, other data suggested that immune escape may
confer a higher PD-L1 expression in NSCLC patients with an
aggressive tumor phenotype, leading to a poor prognosis with
TKI therapy (40). Moreover, the differentially mutated genes
between fusion-positive and fusion-negative samples were mainly
enriched in the MAPK and FOXO signaling pathways. The
mutational frequency of individual gene varied greatly between
fusion-positive and fusion-negative samples, but with similar
mutational frequency in the whole signaling pathways.

In conclusion, we characterized the genomic landscape of
solid tumor patients with ALK, ROS1, and NTRK fusions and 62
novel fusions were discovered, which may provide more
clinically actionable targets for cancer therapy to a great
extent. Although the gene-intergenic fusion and fusion with
rare fusion directions accounted for a certain proportion of all
fusion samples, the clinical significance of these fusions
remained to be unclear, thus RTK-targeted therapy should be
explored further in solid tumors in the future. Notably, the
frequency of CNVs was high and associated with a poor
prognosis in fusion-positive patients, highlighting the
importance of CNVs as a potential biomarker or prognostic
factor for cancer therapy. PD-L1 high-expression was more
common in the ALK fusion-positive cohort than that in the
fusion-negative cohort, leading us to hypothesize that ICIs
might bring clinical benefits to the solid tumor patients
Frontiers in Oncology | www.frontiersin.org 10
harboring RTK fusions. Collectively, all these findings may
provide genomic information for personalized clinical
management of patients with ALK, ROS1, and NTRK fusions
in the era of precision medicine.
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