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Abstract: Carbonyl-containing oxindoles are ubiquitous core structures present in many biologically
active natural products and pharmaceutical molecules. Nickel-catalyzed reductive aryl-acylation
of alkenes using aryl anhydrides or alkanoyl chlorides as acyl sources is developed, providing 3,3-
disubstituted oxindoles bearing ketone functionality at the 3-position. Moreover, nickel-catalyzed
reductive aryl-esterification of alkenes using chloroformate as ester sources is further developed,
affording 3,3-disubstituted oxindoles bearing ester functionality at the 3-position. This strategy has
the advantages of good yields and high functional group compatibility.
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1. Introduction

Carbonyl-containing oxindoles are ubiquitous core structures present in many natural
products and pharmaceutical molecules, such as Convolutamydine A, Coixpirolactam A,
AG-041R, Surugatoxin, and JMX0254, which show a wide range of biological activities
(Figure 1) [1–5]. In addition, this framework is a very attractive synthon for the synthesis of
other structurally complex indole alkaloids [6–12]. Consequently, it is highly desirable to
develop efficient methods to access carbonyl-containing oxindoles from readily available
chemical materials.
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Figure 1. Carbonyl-containing oxindoles in natural products and pharmaceuticals.

On the other hand, nickel-catalyzed reductive cross-coupling reactions pioneered
by Weix [13] and Gong [14] et al., have received considerable attention over the past
decade as they represent a powerful tool for the construction of diverse C–C bonds [15–30].
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Compared with the classical redox-neutral protocol, this strategy allows reactions to
proceed under mild conditions with high functional group tolerance, without the need
for pre-preparation of sensitive organometallics. Furthermore, Ni-catalyzed reductive
cyclization/cross-coupling reactions have also been developed, in which two C–C bonds
are forged in one pot and the C(sp3) electrophilic fragment is generated in situ via in-
tramolecular addition of a C(sp2) electrophile to an alkene. This method shows attractive
application in the rapid construction of diverse functionalized heterocycles with steri-
cally congested quaternary carbon stereocenters [31–48]. In 2019, our group reported a
Ni-catalyzed reductive aryl-acylation of alkenes for the synthesis of carbonyl-containing
oxindoles by using isobutyl chloroformate as carbonyl source (Scheme 1A) [49]. However,
this strategy is limited to the synthesis of dialkyl ketones. Subsequently, Wang et al., re-
ported a nickel-catalyzed reductive aryl-acylation of alkenes by using ortho-pyridinyl esters
as the acyl sources (Scheme 1B) [50]. However, this method is restricted to the synthesis
of aryl-alkyl ketones, and the use of acid anhydride as the acyl source failed to obtain
the product. In order to overcome the shortcomings of the above methods, we hope to
develop a general method to synthesize various carbonyl-containing oxindoles. Herein,
we report Ni-catalyzed reductive aryl-acylation and aryl-esterification of alkenes, provid-
ing 3,3-disubstituted oxindoles bearing ketone and ester functionalities at the 3-position
(Scheme 1C).
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Scheme 1. The state of the art of Ni-catalyzed reductive aryl-acylation of alkenes. (A) Ni-catalyzed 
reductive aryl-acylation of alkenes [48]. (B) Ni-catalyzed reductive aryl-acylation of alkenes [49]. (C) 
Ni-catalyzed reductive aryl-acylation and aryl-esterification of alkenes (This work). 

Scheme 1. The state of the art of Ni-catalyzed reductive aryl-acylation of alkenes. (A) Ni-catalyzed
reductive aryl-acylation of alkenes [49]. (B) Ni-catalyzed reductive aryl-acylation of alkenes [50].
(C) Ni-catalyzed reductive aryl-acylation and aryl-esterification of alkenes (This work).
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2. Results

Our initial studies commenced with the cyclization/cross-coupling reaction of N-
(2-bromophenyl)-N-methylmethacrylamide (1a) and benzoic anhydride (2a) utilizing NiBr2
as a catalyst, Mn as a reductant, and K3PO4 as a base in DMA at 80 ◦C. We expect that
the reaction efficiency will be strongly ligand-dependent. As Table 1 shows, this turned
out to be the case. After screening a variety of ligands (entries 1–8), we found that a rigid
phenanthroline framework with electron-deficient carbonyl groups at the 4-positions (L8)
was particularly suitable for our purpose, providing the desired ketone 3a in 57% yield
along with the reductive Heck product 4a in 21% yield (entry 8). Different solvents were
next investigated (entries 9–11), and MeCN was identified as the most effective solvent,
affording 3a in 67% isolated yield, while the reductive Heck product 4a was reduced to 2%
(Table 1, entry 10). The use of Zn0 instead of Mn0 resulted in little change in the yield of
3a, but more side product 4a was observed (compare entry 10 with 12). The reaction can
be carried out at 60 ◦C without affecting the outcome of the reaction (entry 13). Finally,
the best result was achieved using TBAB as an additive, providing 3a in 85% yield with
excellent chemoselectivity (entry 14). The reaction was carried out using 5 mol% nickel
catalyst with only a slight decrease in product yield (entry 15). Finally, a series of control
experiments confirmed that product was not formed in the absence of Ni0 catalyst and Mn0

(entries 16–17).

Table 1. Optimization of the reaction conditions a.
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Entry Ligand Solvent Reductant Yield of 3a (%) b Yield of 4a (%) b

1 L1 DMA Mn <1 6
2 L2 DMA Mn <1 <1
3 L3 DMA Mn 5 35
4 L4 DMA Mn 10 <1
5 L5 DMA Mn 12 <1
6 L6 DMA Mn <1 <1
7 L7 DMA Mn <1 <1
8 L8 DMA Mn 57 21
9 L8 DMF Mn 52 11

10 L8 MeCN Mn 67 2
11 L8 THF Mn 48 <1
12 L8 MeCN Zn 65 24

13 c L8 MeCN Mn 67 <1
14 c,d L8 MeCN Mn 85 <1

15 c,d,e L8 MeCN Mn 85 <1
16 c,d L8 MeCN - 0 0
17 c,d,f L8 MeCN Mn 0 0

a Reaction conditions: 1a (0.10 mmol), 2a (0.20 mmol), NiBr2 (0.01 mmol), ligand (0.02 mmol), reductant
(0.30 mmol), and K3PO4 (0.20 mmol) were carried out in solvent (2 mL) at 80 ◦C for 36 h. b Isolated yields. c 60 ◦C.
d TBAB (0.05 mmol) was used. e NiBr2 (0.005 mmol), L8 (0.01 mmol) was used. f Without NiBr2.
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With the optimal conditions in hand, we turned our attention to validating the gener-
ality of the arylacylation protocol for the preparation of 3,3-disubstituted oxindoles with
ketone functionalities at the 3-position (Scheme 2). The substrate scope with respect to
alkene-tethered aryl bromides 1 was first investigated. Different substitution patterns with
electron-donating or electron-withdrawing groups on the aniline part were well tolerated,
furnishing the corresponding oxindoles 3a–3i in 51–90% yields. N-benzyl protected sub-
strate was also accommodated, providing 3j in 85% yield. The benzyl group can be easily
removed to allow access to the N–H oxindole. The influence of the Cα substituents (R3)
of the acrylamide double bond on the reaction outcome was examined. Methoxymethyl,
benzyl, n-hexyl, and isopropyl all proceeded smoothly to give the corresponding oxindoles
3k–3n in 60–77% yields. Remarkably, the pyridine backbone was also perfectly accom-
modated, furnishing aza-oxindole 3o in 61% yield. In addition to aryl bromides, aryl
triflates are also suitable electrophiles, as shown in the formation of 3p and 3q. We further
investigated the scope of acid anhydrides. Both electron-deficient and electron-rich aryl
anhydrides are well compatible with this reaction (3r–3t). Finally, phenylacetyl chloride
was also found to be a suitable electrophile, providing the dialkyl ketone 3u in 61% yield
after slightly modifying the reaction conditions.
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Scheme 2. Ni-catalyzed reductive aryl-acylation of alkenes. a Aryl triflates instead of aryl bromides.
b 80 ◦C. c Reaction conditions: N-(2-iodophenyl)-N-methylmethacrylamide (0.10 mmol), 2-
phenylacetyl chloride (0.30 mmol), NiBr2 (0.01 mmol), L8 (0.02 mmol), Mn (0.30 mmol), MgCl2
(1.5 equiv), and K3PO4 (0.20 mmol) were carried out in MeCN (2 mL) at 40 ◦C for 36 h.

Encouraged by these results, we further hoped to achieve reductive aryl-esterification
of alkenes. However, using the arylacylation reaction conditions in Scheme 3, the corre-
sponding ester product 6a could not be obtained. A judicious screening of all the reaction
parameters (see Table S1 in Supporting Information) revealed that a combination of NiBr2
(10 mol%), 2,2′-bipyridine (20 mol%), Mn (3.0 equiv), and TBAB (0.5 equiv) in MeCN at
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100 ◦C afforded 6a in 75% isolated yield. With this reliable set of conditions in hand, we
set out to explore the preparative scope of our catalytic aryl-esterification reaction. The
aromatic ring of the aniline moiety with both electron-donating groups (Me, OMe) as well
as electron-withdrawing groups (F, CF3) at the para-position was well tolerated to afford
the corresponding oxindoles 6b–6e in good yields. The meta- and ortho-substituted anilides
generally react well to deliver the corresponding product 6f–6j in good yields. Remarkably,
pyridine backbone was also compatible to afford aza-oxindole 6k, which has received
particular attention due to its prominence in natural product and drug discovery programs.
The cyclizative cross-coupling reaction of N-benzyl acetanilide with aryl chloroformate
5a proceeded efficiently to provide 6l. The influence of the Cα substituents (R3) of the
acrylamide double bond on the reaction outcome was examined. Methoxymethyl, benzyl,
n-hexyl, and isopropyl substituents were well compatible (6m–6p). Finally, the transforma-
tion is not limited to aryl chloroformates, and alkyl chloroformates can also react smoothly
to obtain the corresponding alkyl esters (6q–6s).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 9 
 

 

 
Scheme 3. Ni-catalyzed reductive aryl-esterification of alkenes. a 0.4 mmol chloroformate was used. 

3. Discussion 
To gather direct evidence on the reaction intermediates involved in this transfor-

mation, we prepared σ-alkyl-Ni(II) complex 7 according to our previous report. The stoi-
chiometric reaction of 7 with 5a affords 6a in 21% yield (Scheme 4). The control experiment 
without nickel catalyst did not consume aryl bromide 1a (Table 1, entry 16), indicating 
that the formation of aryl manganese species is unlikely. Taken together, we consider σ-
alkyl-Ni(II)species 7 to be the key intermediate for this transformation. 

 
Scheme 4. Mechanistic study. 

On the basis of the experimental observations and previous studies [31–49], a plausi-
ble reaction mechanism is proposed (Scheme 5). Oxidative addition of catalytically active 
nickel(0) A to aryl bromide 1 affords aryl-Ni(II) intermediate B, which undergoes intra-
molecular migratory insertion to give σ-alkyl-Ni(II) species C. Reduction of the interme-
diate C with Mn(0) affords σ-alkyl-Ni(I) intermediate D, which undergoes further oxida-
tive addition to acid chloride 5 (or acid anhydride 2) to form σ-alkyl-Ni(III)-carbonyl spe-
cies E. Reductive elimination of intermediate E provides the final product and nickel(I) F, 
which regenerates the catalytically active nickel(0) upon Mn reduction. 

Scheme 3. Ni-catalyzed reductive aryl-esterification of alkenes. a 0.4 mmol chloroformate was used.

3. Discussion

To gather direct evidence on the reaction intermediates involved in this transformation,
we prepared σ-alkyl-Ni(II) complex 7 according to our previous report. The stoichiometric
reaction of 7 with 5a affords 6a in 21% yield (Scheme 4). The control experiment without
nickel catalyst did not consume aryl bromide 1a (Table 1, entry 16), indicating that the
formation of aryl manganese species is unlikely. Taken together, we consider σ-alkyl-
Ni(II)species 7 to be the key intermediate for this transformation.
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On the basis of the experimental observations and previous studies [31–50], a plau-
sible reaction mechanism is proposed (Scheme 5). Oxidative addition of catalytically
active nickel(0) A to aryl bromide 1 affords aryl-Ni(II) intermediate B, which undergoes
intramolecular migratory insertion to give σ-alkyl-Ni(II) species C. Reduction of the in-
termediate C with Mn(0) affords σ-alkyl-Ni(I) intermediate D, which undergoes further
oxidative addition to acid chloride 5 (or acid anhydride 2) to form σ-alkyl-Ni(III)-carbonyl
species E. Reductive elimination of intermediate E provides the final product and nickel(I)
F, which regenerates the catalytically active nickel(0) upon Mn reduction.
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Scheme 5. Proposed reaction mechanism.

4. Materials and Methods
4.1. General Procedure for the Synthesis of Ketones

An oven-dried sealed tube equipped with a PTFE-coated stir bar was charged with
NiBr2 (10 mol%), 1,10-phenanthroline-5,6-dione (L8) (20 mol%), 1 (0.1 mmol, 1.0 equiv),
manganese powder (3.0 equiv), TBAB (0.5 equiv), and K3PO4 (2.0 equiv). The sealed tube
was evacuated and backfilled with argon (this process was repeated three times) and then
MeCN (0.05 M) was added. This reaction mixture was stirred at room temperature for
15 min and then aryl anhydride 2 (2.0 equiv) was added. The reaction was heated at
60 ◦C for 36 h until the reaction was complete (monitored by TLC). The resulting mixture
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was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether
1:20~1:5 (v/v) to afford the corresponding products 3.

4.2. General Procedure for the Synthesis of Esters

An oven-dried sealed tube equipped with a PTFE-coated stir bar was charged with
NiBr2 (10 mol%), bpy (L1) (20 mol%), acrylamide 1 (0.1 mmol, 1 equiv), manganese powder
(3 equiv), and TBAB (0.5 equiv). The sealed tube was evacuated and backfilled with argon
(this process was repeated three times) and then MeCN (0.025 M) was added. This reaction
mixture was stirred at room temperature for 15 min and then acid chloride 5 (2~4 equiv)
was added. Then, the reaction was heated at 100 ◦C for 36 h until the reaction was complete
(monitored by TLC). The resulting mixture was purified by chromatography on silica
gel, eluting with ethyl acetate/petroleum ether 1:20~1:5 (v/v) to afford the corresponding
products 6.

5. Conclusions

In summary, we have developed a nickel-catalyzed reductive arylacylation of alkenes
using aryl anhydrides or alkanoyl chlorides as acyl sources, providing 3,3-disubstituted
oxindoles bearing ketone functionality at the 3-position. Moreover, we further developed a
nickel-catalyzed reductive arylesterification of alkenes using chloroformate as ester sources,
affording 3,3-disubstituted oxindoles bearing ester functionality at the 3-position. This
strategy has the advantages of good yields and high functional group compatibility. Future
development of the asymmetric version is underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185899/s1, Table S1: Optimization reaction condi-
tions for the synthesis of esters, NMR data of known compounds matched those reported in the
literature [51–56], 1H NMR, 13C NMR, and 19F NMR spectra of all reported products.
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