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Figure 1. Percentage of embryos that failed to hatch after feeding RNAi knockdown in wildtype (A) or unc-
33(e204) homozygous animals (B): Box limits indicate the 25th and 75th percentiles as determined by R software;
whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented by dots.
Horizontal bars indicate the medians, asterisks indicate the means, and polygons represent density estimates of data and
extend to extreme values. From left to right in the plot, n=24, 23, 24, 23, 23, 24, where each n is the percentage that failed
to hatch from a single hermaphrodite. Standard deviations from left to right are 4.8, 14.8, 4.3, 19.2, 18.4, 30.9.

Description

Microtubules are critical to a number of vital cellular processes, including cell division, intracellular transport, cell
movement, and cell structure. Microtubule-associated proteins (MAPs) facilitate these various microtubule functions by
regulating dynamic instability, crosslinking, and trafficking, among others (Alfaro-Aco and Petry 2015). There are over 60
conserved MAPs in Caenorhabditis elegans, many with essential functions (Oegema 2006; Lacroix et al. 2014; Rose and
Gonczy 2014; Quintin et al. 2016). Not surprisingly, microtubules and MAPs are required during early Caenorhabditis
elegans embryogenesis when cell divisions predominate (Oegema 2006; Rose and Gonczy 2014). Temporally-controlled
microtubule disruption by either drugs or transgenic constructs can bypass these early requirements and have shown that
microtubules are also necessary for proper epidermal morphogenesis during mid-embryonic development (Williams-
Masson et al. 1998; Quintin et al. 2016). However, it is still unclear what complement of MAPs function during this stage
of development to pattern the overall microtubule network and control dynamic instability.

C. elegans UNC-33 is an ortholog to collapsin response mediator proteins (CRMPs), a family thought to regulate the
dynamic instability of microtubules (Li et al. 1992; Fukata et al. 2002; Tsuboi et al. 2005; Lin et al. 2011). Mutants of
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unc-33 exhibit defects in axonal outgrowth and guidance, resulting in paralysis and locomotor defects (Hedgecock et al.
1985; Li et al. 1992). The dendrites of sensory neurons in these animals have far more microtubules than in wildtype and
they are often larger in diameter with other structural defects (Hedgecock et al. 1985). In addition to these neuronal
effects, homozygous mutant animals of the classic allele, unc-33(e204), also appear shorter and stouter than wildtype
animals. While some Dumpy animals are caused by mutations in genes important for cuticle development (Kusch and
Edgar 1986), others are caused by mutations in genes important for embryonic epidermal morphogenesis, such as sma-1
(McKeown et al. 1998; Praitis et al. 2005), let-502 (Piekny et al. 2000; Gally et al. 2009; Quintin et al. 2016), and lin-26
(Ferguson and Horvitz 1985). Two other C. elegans gene products, DHP-1 and DHP-2, are almost 70% identical in
sequence with UNC-33 and are also evolutionarily related to vertebrate CRMPs (Takemoto et al. 2000). In situ
hybridization showed dhp-1 mRNA in hypodermal cells from late gastrula to at least 2-fold body elongation, and a GFP-
tagged version of DHP-1 was also expressed in the larval hypodermis (Takemoto et al. 2000). There are currently no
associated phenotypes to dhp-1, so we hypothesized that UNC-33 and DHP-1 may be functionally redundant in the
epidermis during C. elegans embryogenesis.

To determine if any functional redundancy exists between UNC-33 and DHP-1, we used unc-33(e204) homozygous
animals as a sensitized background and disrupted dhp-1 expression by feeding RNA interference (RNAi). Because we
were specifically interested in potential embryonic effects, we scored the number of embryos that failed to hatch and took
this as a percentage of the total progeny (Figure 1). When analyzed by two-way ANOVA, a significant interaction was
found between the strains and gene knockdowns (p=2.761e-07). We used post-hoc Tukey’s honest significant test to make
all pairwise comparisons; this revealed which of the gene knockdowns interacted with unc-33(e204) mutants. As expected
for a negative control, the empty feeding vector (L4440) fed to either wildtype or unc-33(e204) homozygous animals
showed a low level of lethality, 3.4% and 9.3% on average, respectively. These data were not significantly different from
each other in a pairwise comparison (p=0.872). In wildtype animals, the positive control, hmp-2(RNAi), resulted in 17.9%
of embryos that failed to hatch but this was not found to be significantly different to the L4440 control (p=0.068). It is
important to note, however, that less than 1% of hatched hmp-2(RNAi) animals were normal larva; the vast majority were
Hmp with severe body morphology defects. Surprisingly, unc-33(e204);hmp-2(RNAi) resulted in 65.3% of embryos that
failed to hatch, a significant increase compared to both the negative control in the same strain and hmp-2(RNAi) in
wildtype (p < 0.001 for both). In both wildtype and unc-33(e204) homozygous animals, knockdown of dhp-1 did not
significantly alter the percent of embryos that failed to hatch (3.1% and 19.5%, respectively).

Our hypothesis regarding UNC-33 and DHP-1 was unfortunately not supported by this experiment. While unc-33(e204) is
considered the reference allele, it is also a weak loss-of-function (Tsuboi et al. 2005) and may still provide enough UNC-
33 activity to obscure any redundancy with DHP-1 that might be revealed by dhp-1 knockdown. The unexpected
interaction between hmp-2 and unc-33 is intriguing, however, given that our hypothesis focused on the role of UNC-33
and DHP-1 in the embryonic epidermis. Knockdown of hmp-2/B-catenin by feeding RNAi was chosen as a positive
control because of the reproducible embryonic and larval phenotypes in wildtype. The embryonic lethality and body
morphology defects from hmp-2(RNAi) are due to the essential role of HMP-2/B-catenin at adherens junctions during
epidermal morphogenesis (Costa et al. 1998). HMP-2/B-catenin binds the intracellular tail of the transmembrane HMR-
1/cadherin, strengthening cell-cell adhesion by simultaneously binding to the actin-binding protein HMP-1/a-catenin
(Costa et al. 1998; Maiden and Hardin 2011; Maiden et al. 2013). During epidermal morphogenesis, a subset of epidermal
cells migrates from the dorsal surface towards the ventral midline of the embryo. Once ventral enclosure is completed,
actomyosin contractions in the epidermis shorten the cells along the dorsoventral axis while lengthening occurs along the
anteroposterior axis, elongating the body of the animal 4-fold by the time of hatching (Chisholm and Hardin 2005). F-
actin fails to properly localize to adherens junctions when there is a loss of HMP-2/ B-catenin or HMP-1/a-catenin,
producing shorter animals with dorsal humps when the process of body elongation fails (Costa et al. 1998; Maiden et al.
2013). The phenotypes we observed in wildtype after hmp-2(RNAi) by feeding are relatively weak as RNAI by injection,
or animals that are homozygous null, results in almost complete embryonic lethality (Costa et al. 1998; Sonnichsen et al.
2005). Several studies have implicated microtubules in the regulation of cadherin-based adhesions (Aono et al. 1999;
Stehbens 2006; Meng et al. 2008; Maiden et al. 2016; Ning et al. 2016; Quintin et al. 2016), including one in C. elegans
that showed disrupting microtubules at the 1.5/1.7-fold stage of elongation also perturbed junctional E-cadherin
appearance and turnover (Quintin et al. 2016). The greater percentage of embryos that failed to hatch after hmp-2
knockdown in unc-33(e204) compared to wildtype might further support a role for microtubules at adherens junctions and
indicate a novel role for UNC-33 in regulating microtubule dynamics during epidermal morphogenesis. Future
experimentation using advanced microscopy and additional genetic analyses will be needed to determine how and when
this particular genetic interaction impacts embryogenesis.

Methods

C. elegans strains were cultured using standard protocols (Brenner 1974). Strains used include N2 [wildtype Bristol] and
CB204 [unc-33(e204) 1V]. Bacterial clones for feeding RNAi were obtained from the Ahringer library (Kamath and
Ahringer 2003). Each gene insert was verified by Sanger sequencing through Eurofins Genomics using the following
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vector primers: GTCAGTGAGCGAGGAAGCAAC and CTCTTCGCTATTACGCCAGCTG. For knockdown by feeding
RNAI, bacterial cultures were plated on NGM plates supplemented with 25 pg/mL carbenicillin, 10 pg/mL tetracycline,
and 1 mM IPTG, and incubated for 3 days at room temperature to induce double-stranded RNA. L4 worms at 20 °C were
fed bacteria for 48 hours and then singled to individual plates. After laying eggs for approximately 18 hours, the adults
were removed and all progeny were counted via a dissecting microscope. After an additional 24 hours, the remaining
number of eggs were counted. The violin plot, basic summary statistics, two-way ANOVA Type III, and the post-hoc
Tukey analysis were all completed using R.

Acknowledgments: Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure
Programs (P40 OD010440). Ahringer library clones were kind gifts from Jeff Hardin. Special thanks to Joey Hubbard for
help with the statistical analysis.
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